
Concept of spinning magnetic field at magic-angle condition for line narrowing
in Mössbauer spectroscopy

Petr Anisimov* and Yuri Rostovtsev
Department of Physics and Institute for Quantum Studies, Texas A&M University, College Station, Texas 77843-4242, USA

Olga Kocharovskaya
Department of Physics and Institute for Quantum Studies, Texas A&M University, College Station, Texas 77843-4242, USA

and Institute of Applied Physics, RAS, Nizhniy Novgorod 603120, Russia
�Received 4 October 2006; revised manuscript received 8 June 2007; published 28 September 2007�

A different technique for narrowing of Mössbauer resonances in crystals is suggested. Similar to high-
resolution nuclear magnetic resonance spectroscopy, it uses a combined action of a continuous wave radio-
frequency field and a dc magnetic field under a “magic-angle” condition. However, the condition itself is
essentially different from the one known previously. Moreover, this technique suppresses the contribution of
the dipole-dipole interaction to the energy of Mössbauer transition only �it does not suppress the contribution
of the dipole-dipole interaction to the energy of individual levels�. It works rather well even in the case of
relatively strong dipole-dipole interaction.
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I. INTRODUCTION

Since the experimental discovery of the Mössbauer effect
�a physical phenomenon of resonant recoil-free emission and
absorption of �-ray photons by nuclei bound in a crystal� in
1957, it has been observed for nearly 100 nuclear transitions
in about 80 nuclides distributed over almost half of all
chemical elements. This effect forms the basis of Mössbauer
spectroscopy �MS� which has a number of applications, es-
pecially in solid state physics and chemistry.1–5

Fundamentally, the width of recoilless �-ray resonances,
Mössbauer resonances, is limited only by the radiative line-
width of the given nuclear transition. However, inhomoge-
neous broadening, ��inh, often sets a limit on the width of
Mössbauer resonances. In particular, for transitions with a
lifetime longer than 10 �s, ��inh defines the ultimate width
of Mössbauer resonances. Large inhomogeneous broadening
of long-lived recoilless transitions, as compared to the radia-
tive broadening, is the major factor restricting their applica-
tions in Mössbauer spectroscopy. �Homogeneous broadening
caused by spin-lattice relaxation can be suppressed down to
0.1 Hz by cooling a sample below 1 K.� In the case of
nuclear transitions with a lifetime shorter than 10 �s, ��inh
may sometimes exceed the radiative linewidth and limit the
resolution of MS. An example of such a transition is the
14.4 keV transition in 57Fe. For this transition, the width of
Mössbauer resonances in some compounds may be four to
nine times larger than the radiative linewidth.6,7 Therefore,
the suppression of inhomogeneous broadening would both
improve the resolution of Mössbauer spectroscopy in the
cases where an interaction with an environment prevents an
accurate measurement and allow for extension of the Möss-
bauer technique to the longer-lived isomers and for observ-
ing Mössbauer resonances narrower than those currently
achieved.

Inhomogeneous broadening also sets a fundamental ob-
stacle to the realization of a Mössbauer �-ray laser. The
original idea of the Mössbauer �-ray laser was suggested in
1961 by Rivlin.8 For lasing to occur, the net gain should

exceed off-resonance losses caused by ionization and Comp-
ton scattering of � radiation in crystals. The net resonant
gain, in turn, is proportional to the ratio of the radiative
linewidth to the total linewidth. For sufficiently long-lived
isomers �for which pumping could be feasible�, this ratio is
very small. Thus, an increase of this ratio via the suppression
of inhomogeneous broadening would lead to a dramatic re-
lease in the amplification condition, as discussed in the lit-
erature devoted to the problem of �-ray laser.9,10

The inhomogeneous broadening of Mössbauer resonances
is caused by the inhomogeneities of hyperfine �HF� interac-
tions. This mechanism is essentially the same as in the case
of nuclear magnetic transitions in solids. Very efficient meth-
ods of suppression of inhomogeneous broadening down to
0.1 Hz have been developed in high-resolution solid state
nuclear magnetic resonance spectroscopy �HRSSNMRS�.11

The field of HRSSNMR started with the pioneering work of
Andrew et al.12,13 They showed that mechanical spinning of
a sample can greatly reduce the width of nuclear magnetic
resonances if the axis of rotation makes a particular angle
with a constant magnetic field. The same result was achieved
by the application of a radio-frequency �rf� field without ro-
tation of the sample.11 Finally, apart from the mechanical
spinning of a sample, two different techniques have been
developed. The first one uses sequences of resonant � /2 rf
pulses.14,15 The second one exploits a slightly detuned con-
tinuous rf field satisfying a “magic-angle” condition.16 Both
techniques are based on the symmetry of the HF interactions
which allows the suppression of the contribution of the HF
interactions down to zero if such a contribution is sufficiently
small.

For the last 40 years, HRSSNMRS has been developed
into the flourishing field of research and applications. There-
fore, the extension of the techniques of HRSSNMRS to
Mössbauer spectroscopy appears to be promising. The me-
chanical rotation of a sample would be inappropriate since
MS essentially uses the Doppler effect for changing the tran-
sition frequency. However, the application of a rotating rf
field is possible. The influence of the rf field on the Möss-
bauer resonance was widely studied theoretically since the

PHYSICAL REVIEW B 76, 094422 �2007�

1098-0121/2007/76�9�/094422�11� ©2007 The American Physical Society094422-1

http://dx.doi.org/10.1103/PhysRevB.76.094422


1960s;17 see also Refs. 18–22 for reviews. Some coherent
effects in MS caused by the rf field, such as collapse of the
HF structure,23–25 ac-Stark splitting,26–29 and two-photon
gamma-rf transitions,30–32 were observed experimentally.
The idea to apply the HRSSNMRS techniques to narrow
Mössbauer resonances was pioneered in the 1970s. It was
suggested to use sequences of � /2 rf pulses33 or quasicon-
tinuous rf fields.9 The peculiarity of MS as compared to
HRSSNMRS lies in the presence of HF structure in an ex-
cited nuclear state as well as in a ground nuclear state. For
example, the dipole-dipole interaction couples pairs of nuclei
in a ground state as well as in an excited state; moreover, it
couples pairs of nuclei one of which is in a ground and the
other one is in an excited state. Thus, the idea presented in
the previous papers9,33 was to suppress HF interactions both
in ground and excited nuclear states. The outcome of such an
approach would be simultaneous elimination of all possible
contributions from HF interactions. The drawback of such an
approach was the requirement for rather complicated se-
quence of cycles of bichromatic rf field. One rf frequency
was meant to affect ground nuclear states, while the other
was supposed to affect excited nuclear states only. After all,
line narrowing was still limited by the fact that each rf fre-
quency was affecting both ground and excited nuclear states.
As far as we know, no experimental attempts for the verifi-
cation of this proposal were undertaken.

In our recent papers,34,35 we considered the possibility to
narrow Mössbauer resonances by a monochromatic cw rf
field. We used a combination of a traditional magic-angle
condition with effective time averaging. It was shown that
partial narrowing could be achieved and that an optimization
of the parameters used is required for further improvement.

In this paper, we suggest an essentially different approach
for the suppression of the inhomogeneous broadening of
Mössbauer resonances caused by the dipole-dipole interac-
tion. Namely, we look for a condition where the contribution
of the dipole-dipole interaction to the frequency of a Möss-
bauer resonance vanishes under the action of a monochro-
matic continuous rf field. At the same time, we are not at-
tempting full suppression of the dipole-dipole interaction and
its contributions to the energy of individual levels. The fre-
quency of �-ray absorption remains well defined even
though the energy of individual nuclear levels deviates sig-
nificantly. This happens due to the cancellation of these de-
viations when the energy difference is observed. In this way,
we define the magic-angle condition for MS and show that
efficient suppression of the inhomogeneous broadening of
Mössbauer resonances becomes possible with one mono-
chromatic continuous rf field.

II. THEORETICAL MODEL

A typical Mössbauer experiment involves a nuclear tran-
sition between two levels, with energy separation of about
10–100 keV. Each nuclear level has sublevels with a definite
projection of the nuclear moment onto a quantization axis.
The energy separation of nuclear sublevels is on the order of
10 neV. These sublevels are actually responsible for the HF
structure of observed spectra. In a typical Mössbauer setup,

the flux of incident � photons from a radioactive source is
not sufficient to excite several nuclei in the close vicinity of
each other. Therefore, one can always consider that only one
�primary� nucleus interacts with � radiation and the rest of
the nuclei �of the same type as the primary nucleus or some
different nuclei in the crystal host� represent the environment
and cannot be excited. For the sake of further discussion, we
label the primary nucleus as “1” and a nucleus from the
environment as “2” �see Fig. 1�.

In order to introduce the inhomogeneous broadening in
our system, we assume that the primary nucleus interacts
with the environment through the dipole-dipole interaction.
This is a short-range pairwise interaction, which depends on
a distance r0 between the nuclei in the pair and on a relative
position n0= �cos � sin � , sin � sin � , cos �� of the pair with
respect to the axis of quantization �z axis�. Short-range inter-
actions mostly involve the nearest nuclei. Therefore, we as-
sume r0 to be constant and equal to the distance between
nuclei. Furthermore, due to the pairwise nature of the dipole-
dipole interaction, we can reduce our system to the pair of
nuclei, which contains the primary nucleus and a nucleus
from the environment. Thus, in order to calculate a bulk
response, one has to average the pairwise response over �
and �.

Our system has a close resemblance to the one used to
describe HRSSNMR except for the possibility of the primary
nucleus to be in the excited state. Thus, there are two contri-
butions to the width of Mössbauer resonances instead of one
contribution to the width of nuclear magnetic resonances.
The first contribution is due to the interaction of the primary
nucleus in the ground state with the environment, Hg, and is
also present in the case of HRSSNMR. The second contribu-
tion comes from the interaction of the primary nucleus in the
excited state with the environment, He, and is specific for
Mössbauer resonances. Thus, the HRSSNMR techniques
have to be modified to consider this contribution.

For all further estimates and numerical simulations, we
assume the primary nucleus to be 57Fe in a soft ferromag-
netic material.36 Such nuclei experience a strong internal
magnetization, which can be easily manipulated in soft fer-
romagnets by a rather weak external magnetic field. In prin-
ciple, the environment may contain nuclei other than 57Fe.
However, for further estimates, we also use all typical char-
acteristics of 57Fe except for the magnitude of the dipole-
dipole coupling constant. At the atomic distances, the dipole-
dipole interaction between 57Fe is relatively weak when

Primary
Nucleus Environment

Ie1

14.4keV

Ig1 Hg Ig2

He

FIG. 1. Schematic representation of the studied system in the
case of 57Fe. Hg and He represent an interaction of the primary
nucleus in the ground and excited states with its environment,
respectively.
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compared to the width of the Mössbauer resonance. For the
sake of demonstration, we assume that the dipole-dipole cou-
pling constant 	�

�1�2

r0
3 �where �i is the magnetic dipole mo-

ment of the ith nucleus� is large enough to provide substan-
tial inhomogeneous broadening of the Mössbauer spectrum.

In order to achieve the suppression of inhomogeneous
broadening, we place the system in the external magnetic
field which consists of two components: a constant compo-
nent �this component defines the z axis� and a time-
dependent one. We choose the time-dependent component in
such a way that the total external magnetic field spins around
the z axis: B=B0�r cos �rft ,−r sin �rft ,1�. In the previous
expression, we introduced r as the ratio of the magnitudes of
the time-dependent and the constant components of the mag-
netic field.

The Hamiltonian of the system consisting of the pair of
nuclei placed in the external magnetic field and coupled
through the dipole-dipole interaction is written as follows
�
=1�:

H = − B��1I1 + �2I2� + 	�I1I2 − 3�n0I1��n0I2�� , �1�

where �i and Ii are the gyromagnetic ratio and the nuclear
moment of the ith nucleus. For our system, �1 and I1 are not
fixed and depend on the state of the nucleus; however, �2 and
I2 are fixed to �g=1.373 MHz T−1 and Ig= 1

2 , respectively,
since the second nucleus can be in the ground state only. For
the primary nucleus, the gyromagnetic ratio and the nuclear
moment can also be equal to �e=−0.787 MHz T−1 and Ie

= 3
2 if the nucleus is in the excited state.
Depending on the state of the primary nucleus, the system

can be in the ground state described by the Hamiltonian

Hg = − B��gIg1 + �gIg2� + 	g�Ig1Ig2 − 3�n0Ig1��n0Ig2��
�2�

or in the excited state, with energy 
�0=14.4 keV, described
by the Hamiltonian

He = − B��eIe1 + �gIg2� + 	e�Ie1Ig2 − 3�n0Ie1��n0Ig2�� ,

�3�

where
	e

	g
=

�e

�g
=−0.573. The energy of the excited state is

omitted here, a condition which is equivalent to the rotating
wave approximation in quantum optics.37

For Hg, we have two nuclei with Ig1= 1
2 and Ig2= 1

2 , which
leads to the basis � 1

2 ,m1= 1
2 ,− 1

2 � � � 1
2 ,m2= 1

2 ,− 1
2 �. However,

as shown in our previous work,35 the basis of the total mo-
ment, �0,0�, �1,1�, �1,0�, and �1,−1�, is the most useful for a
system of two identical nuclei. This observation is based on
the fact that a state with a total moment equal to zero �0,0� is
not affected by magnetic interactions. Thus, it can be ex-
cluded from consideration.

For He, the primary nucleus has Ie1= 3
2 , which leads to the

basis � 3
2 ,m1= 3

2 , . . . ,− 3
2 � � � 1

2 ,m2= 1
2 ,− 1

2 �. In this case, there is
no actual preference for the basis of the total moment.

The Mössbauer transition in the primary nucleus from the
ground to the excited level is considered to be magnetic di-
pole allowed �corresponding to the case of 57Fe�. It means
that a transition operator can be written as V=−�̂ ·B�. In the

previous expression, we introduced the magnetic field of a �
quantum, B�, and the magnetic moment of the transition, �̂.
The magnetic moment �̂ is proportional to �m=−1

1 �̂m ·Xm,
where ��̂m�me,mg

= 	Ig ,1 ,−mg ,m��Ie ,me� are the Clebsch-
Gordan coefficients38 and X0=z0, X±1= �

1

2

�x0± iy0�. We as-
sume that an incident � radiation propagates along the y axis
and can have either B� �z0 or B� �x0. Hence, the transition
operator is represented by the matrix Vz

0 in the case of B� �z0
or by the matrix Vx

0 in the case of B� �x0:

Vz
0 = K�

0 0


2 0

0 
2

0 0
, Vx

0 =
K

2�

− 
3 0

0 − 1

1 0

0 
3
 , �4�

where K is some constant which is irrelevant for further dis-
cussion. Here, the following basis for the primary nucleus is
assumed: �Ie= 3

2 ,me= 3
2 , . . . ,− 3

2 � for the excited and �Ig

= 1
2 ,mg= 1

2 ,− 1
2 � for the ground state. Finally, the transition

matrices for our system of two nuclei with one nucleus con-

fined to the ground state are Ṽx,z
0 =Vx,z

0
� 1̂22, which have to

be transformed to the basis discussed above.
We calculate Mössbauer spectra based on the Floquet-

state perturbation theory presented in Refs. 34 and 39. This
theory was developed to study homogeneously broadened
Mössbauer spectra under the influence of the rf field. It treats
� radiation as a perturbation which is always the case for MS
allowing for a nonperturbative treatment of the rf field. It is
important to note that it also allows for a nonperturbative
analysis of the dipole-dipole interaction. As far as we know,
nobody has used this method to study inhomogeneously
broadened Mössbauer spectra �the broadening caused by the
dipole-dipole interaction�. This theory predicts a time-
averaged absorption spectrum to be the sum of the Lorentz-
ians:

L = �Vk�e,g��2
2

�

�

�� − �n,m,k�2 + �2 , �5�

where Vk�e ,g�= 1
T�0

T	ne�Ṽx,z
0 �mg�eik�rftdt is the kth coefficient

of the Fourier series of the matrix element of the transition

operator Ṽx,z
0 between the Floquet states �ne� and �mg�;

�n,m,k=�0+E�n�
e −E�m�

g −k�rf is the resonance frequency of
the corresponding transition.

III. GROUND STATE MAGIC-ANGLE CONDITION

The strength of the dipole-dipole interaction can be
judged by

	g

��ef f�
, the ratio of the coupling constant to the Zee-

man splitting in the effective magnetic field, which is defined
in Appendix A. If the ratio is small, then the dipole-dipole
interaction can be treated by perturbation method. First, we
consider the primary nucleus in the ground state and the ratio
being small. In this case, our system is described in the coro-
tating frame of reference by a so-called truncated Hamil-
tonian �see Ref. 40�:
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Hg
0 = − �g�Bef f�g�Ig1 + Ig2� − 	gA�Ig1 · Ig2 − 3�Ig1�z�Ig2�z� ,

�6�

where Igi is the nuclear moment of the ith nucleus, �g is the
gyromagnetic ratio, 	g is the dipole-dipole coupling for the
ground state, and A=3 cos2 �−1 represents the dependence
of the interaction Hamiltonian on the relative position of the
nuclear pair. Eigenvalues of Hg

0 in the absence of the dipole-
dipole interaction are �0,�ef f ,0 ,−�ef f� �see Appendix A�,
which are the dynamical energy levels corresponding to the
states dressed by the rf field with a corresponding total mo-
ment equal to 0 for the first eigenvalue and 1 for the last
three eigenvalues. The dipole-dipole interaction provides an
additional contribution to the eigenvalues:

�0,− 	gD��ef f�,2	gD��ef f�,− 	gD��ef f�� . �7�

These linear corrections are proportional to D��ef f�
= A

8 �3 cos2 �ef f −1�, and thus can be set to zero all at once if

3 cos2 �ef f − 1 = 0. �8�

This condition is well known in solid state high-resolution
nuclear magnetic resonance spectroscopy as the magic-angle
condition, which defines the magic angle as �ef f =arccos � 1


3
�.

IV. STRONG DIPOLE-DIPOLE INTERACTION IN THE
GROUND STATE

A typical value of the magnetic field experienced by 57Fe
in the soft ferromagnets is on the order of 30 T. In such a
field, a Zeeman splitting is ���

2� =41.2 MHz, i.e., it exceeds the
radiative linewidth, which is equal to 2�

2� =2.256 MHz, only
by a factor of 18. Thus, if the inhomogeneous broadening
caused by the dipole-dipole coupling exceeds the radiative
linewidth, then this coupling should be relatively strong, so
that the ratio

	g

��� cannot be smaller than 1/18. In other words,
a range of the dipole-dipole coupling constants where the
magic-angle condition works well is quite narrow:
2.256 MHz �

	g

2� �41.2 MHz.
When the dipole-dipole constant becomes comparable to

or even exceeds Zeeman splitting,
	g

��ef f�
�1, we cannot use

perturbation theory anymore. In this case, the energies of the
ground state should be calculated numerically. We are going
to use Floquet analysis according to the prescription outlined
in Appendix B.

Figure 2 presents quasienergies �circles� of the Floquet
states, which correspond to the states with a total nuclear
moment equal to 1, in the case

	g

2� =9.024 MHz. There are
more than three values at each particular frequency �rf, but
unique points are confined to the first Floquet zone, which
lies in between two dashed lines ±

�rf

2 .
In the absence of the dipole-dipole interaction, quasiener-

gies can be calculated analytically. They are represented by
the solid lines marked as �1, �0, and �−1.

The frequencies of the rf field satisfying the magic-angle
condition �defined by Eq. �8� for the chosen parameters� are
presented by the vertical short-dashed lines in Fig. 2.

As it is obvious in Fig. 2, the higher value of the fre-
quency satisfying to magic-angle condition �which lies above

the nuclear magnetic resonance frequency for the ground
state

�rf

2� =41.2 MHz� does not correspond to the vanishing
contribution of the dipole-dipole interaction to the ground
state energy. It is less obvious for the lower value of the
frequency. Therefore, we provide a closer look at the selected
area in Fig. 3. Moreover, we plot the normalized difference
between an exact numerical value of the energy and that
obtained analytically in the absence of the dipole-dipole in-
teraction:

��

�
=

�num − �0

�
. �9�
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FIG. 2. Quasienergies of Hg as a function of the rf frequency for
the states with the total moment equal to 1. These values, marked

by circles, are calculated for the following set of parameters:
	g

2�

=9.024 MHz, r=0.44, �

2� =41.2 MHz, and �= �

4 . Solid lines labeled
by �1, �0, and �−1 correspond to the quasienergies of Hg calculated
analytically in the absence of the dipole-dipole interaction. Dashed
lines represent the limits of the Floquet zone. Vertical short-dashed
lines correspond to the magic-angle condition. More detailed analy-
sis of the selected region is presented in Fig. 3.
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FIG. 3. The normalized difference between the numerical value
of the quasienergy of the ground state and the value obtained ana-
lytically in the absence of the dipole-dipole interaction �see Eq. �9��
as a function of �rf is represented. The parameters are the same as
in Fig. 2.
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As it follows from Fig. 3, only �−1 is unaffected by the
dipole-dipole coupling at magic-angle condition. The contri-
bution of the dipole-dipole interaction to �0 and �1 does not
vanish at magic-angle condition. Finally, it is important to
note that it is possible to minimize the ground state dipole-
dipole contribution, if �rf =30.7 MHz, for all three quasien-
ergies at once.

Let us study how the dipole-dipole coupling in the ground
state affects a Mössbauer spectrum. For this purpose, we
temporarily put 	e=0 �see also Ref. 34� and use the same
coupling constant

	g

2� =9.024 MHz as above. This coupling is
strong enough to provide a noticeable broadening of the
Mössbauer resonances �see Fig. 4�. This figure contains con-
tributions from x- and z-polarized � radiation which sums up
to a total spectrum for unpolarized radiation. One can see
that there are four major Mössbauer resonances: two for x-
and two for z-polarized radiation which are marked accord-
ingly as XR, XL, ZR, and ZL in Fig. 4.

We calculated Mössbauer absorption spectra for a broad
range of parameters of the rf field. Figure 5 presents depen-
dence of the width of the four strongest Mössbauer reso-
nances on the relative strength r �vertical scale� and the fre-
quency �rf �horizontal scale� of the rf magnetic field. As it
could be expected, the regions where the linewidth reaches
its minimal value extend along the solid lines defined by the
magic-angle condition �see Eq. �8��. However, due to the
large strength of the dipole-dipole interaction, the actual

minima for XR and ZR, which involve �1, are shifted to the
higher values of �rf. This result could be expected based on
the behavior of �1 described in the beginning of this section.

Table I summarizes the analysis of the ground state con-
tribution to the width of Mössbauer resonances and contains
numerical values of the ground state contribution to the
width of the four major Mössbauer resonances. This contri-
bution was estimated as ��d=��inh−2�, where ��inh is the
total linewidth and 2� is the linewidth in the absence of the
dipole-dipole interaction. The first row of Table I presents
the dipole-dipole contributions in the absence of the rf field.
The next four rows show absolute minima of ��d for each of
the four strongest Mössbauer resonances with corresponding
labels presented in the last column. The last row of Table I
corresponds to the minimum of the function defined as fol-
lows:

F�r,�rf� = 0.5 �
�&���

����d�� − ���d���2, �10�

where �= �XL,ZL,ZR,XR� and ���d�� is a contribution of
the dipole-dipole coupling to the width of the Mössbauer
resonance marked by �.

A final conclusion of this section is that suppression of the
ground state contribution is possible. However, it does not
happen at the magic-angle condition and needs an adjust-
ment of the parameters. Moreover, efficient suppression re-
quires different sets of parameters for each Mössbauer reso-
nance. Nevertheless, Table I shows that a compromise can be
found and an equivalent suppression can be achieved simul-
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taneously for all the strongest Mössbauer resonances �see
Fig. 6�.

V. EXCITED STATE “MAGIC-ANGLE” CONDITION

In this section, we consider the primary nucleus in the
excited state. When the contribution of the dipole-dipole in-
teraction to the energy of the excited state is small,

	e

��ef f�
�1 it

can be treated perturbatively, similar to the analysis carried

out for the ground state in Sec. IV. In a corotating frame of
reference, the truncated Hamiltonian for the excited state
�taking into account the dipole-dipole coupling in the first
order of the perturbation theory� takes the form

He
0 = − �e�Bef f�e · Ie1 − �g�Bef f�g · Ig2

+ 	eA�Ie1 · Ig2 − 3�Ie1�z�Ig2�z� , �11�

where �Bef f�g and �Bef f�e are the different effective magnetic
fields for the magnetic dipole moments in the ground and
excited states, respectively, I�g/e�i and �g/e are the nuclear
moment of the ith nucleus and the gyromagnetic ratio for the
ground and/or excited state, 	e is the dipole-dipole coupling
for the excited state, and A=3 cos2 �−1 represents a depen-
dence on the relative position. Eigenvalues of He

0 in the ab-
sence of the dipole-dipole interactions are

3

2
�ef f

e ±
1

2
�ef f

g , �12�

1

2
�ef f

e ±
1

2
�ef f

g , �13�

−
1

2
�ef f

e ±
1

2
�ef f

g , �14�

−
3

2
�ef f

e ±
1

2
�ef f

g �15�

�see Appendix A�.
Since there are two different effective fields, the magic-

angle condition for only one effective angle becomes mean-
ingless now. Nevertheless, some condition connecting two
parameters of the rf field, namely, its relative strength r and
its frequency �rf, can be derived based on the requirement of
vanishing of the linear order corrections to the energy of the
excited state.

��3	eD̃, � 	eD̃, ± 	eD̃, ± 3	eD̃� . �16�

These corrections are proportional to the following function
of the two arguments:

TABLE I. Contribution of the ground state dipole-dipole coupling to the width of the four strongest
Mössbauer resonances. The first row presents contributions in the absence of the rf field. The next four rows
present residual contributions after applying the rf field. Each row corresponds to maximal suppression for a
particular Mössbauer resonance, specified in the last column. The last row presents parameters and values
corresponding to the case when function defined in Eq. �10� reaches minimum, which means that all four
Mössbauer resonances have residual contributions of the same order.

�rf

�MHz� r
��d for XL

�MHz�
��d for ZL

�MHz�
��d for ZR

�MHz�
��d for XR

�MHz� Abs min for

0 0 3.2546 3.3171 3.7089 3.6831

29.66 0.4614 0.1716 0.1814 0.2054 0.1953 XL

30 0.4517 0.1781 0.1651 0.2012 0.2068 ZL

29.56 0.4398 0.1848 0.1809 0.1857 0.1891 ZR

29.39 0.4472 0.1846 0.1911 0.1921 0.1861 XR

29.989 0.4108 0.19845 0.19863 0.20071 0.20102 Optimal
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FIG. 6. Mössbauer absorption spectrum calculated in the pres-
ence of the spinning magnetic field with the following parameters:
B0=30 T, r=0.4108, and �rf =29.989 MHz. The dipole-dipole cou-

pling constants are
	g

2� =9.024 MHz and
	e

2� =0 MHz. A shift of 120
arbitrary units is introduced to separate the spectrum for unpolar-
ized radiation from its polarized contributions. The residual ground
state contribution to the width of the strongest Mössbauer reso-
nances is given in Table I.
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D̃��ef f
g ,�ef f

e � =
A

8
�3 cos2��ef f

e + �ef f
g

2
� − 1 − sin2��ef f

e − �ef f
g

2
�� ,

�17�

which reduces to D��ef f� in the case of �ef f
e =�ef f

g . Zero values

of D̃��ef f
g ,�ef f

e � define the following condition for the sup-
pression of the linear order correction to the energy of the
excited state:

3 cos2��ef f
e + �ef f

g

2
� − 1 − sin2��ef f

e − �ef f
g

2
� = 0. �18�

VI. STRONG DIPOLE-DIPOLE INTERACTION IN THE
EXCITED STATE

When the dipole-dipole coupling constant 	e becomes
comparable to or even exceeds Zeeman splitting in the ex-
cited state, the dipole-dipole interaction cannot be treated
perturbatively. Similar to the case of the ground state, the
energies of the excited state can be calculated numerically
using the Floquet analysis.

Modification of the Mössbauer absorption spectrum due
to the dipole-dipole interaction in the excited state is demon-
strated in Fig. 7. Here, we assume that

	e

2� =−5.171 MHz and
	g=0. According to the relationship 	e=

�e

�g
	g=−0.573	g, the

dipole-dipole coupling constant
	e

2� =−5.171 MHz corre-
sponds to the previously used ground state coupling constant
	g

2� =9.024 MHz.
The contribution of the dipole-dipole couplings in the

ground and excited states to the widths of the Mössbauer
resonances can be seen in Table II. Note that the contribution
to the excited state, ��d, for x-polarized radiation is larger
than for z-polarized radiation. It is due to the fact that the
corresponding transitions involve states with three times
larger projection of the nuclear moment. Finally, when both
contributions are combined, the Zeeman sextet becomes hard
to recognize �see Fig. 8� because inhomogeneous broadening
becomes comparable to the separation between the Möss-
bauer resonances �see the last row of Table II�.

VII. MAGIC ANGLE CONDITION FOR NARROWING OF
THE MÖSSBAUER RESONANCES

In order to suppress the dipole-dipole coupling both in the
ground and excited states �when this coupling is relatively
week� in the presence of the spinning magnetic field, two

different magic-angle conditions derived above �Eqs. �8� and
�18�� should be fulfilled. However, it is easy to see that it is
impossible to satisfy both conditions simultaneously. On the
other hand, these are not the energies of the excited and
ground states themselves but their difference, E�n�

e −E�m�
g ,

which defines the frequencies of the Mössbauer resonances.
Therefore, there is no need to suppress the contribution of
the dipole-dipole interaction to the energies of the excited
and ground states; rather, we have to make these contribu-
tions equal to each other in order for the frequencies of the
Mössbauer transitions to remain unaffected by the dipole-
dipole coupling. The following equation expresses this re-
quirement mathematically:

	g�3 cos2 �ef f
g − 1� = �	e�3 cos2��ef f

e + �ef f
g

2
� − 1

− sin2��ef f
e − �ef f

g

2
�� , �19�

TABLE II. Comparison of the contributions due to the dipole-dipole couplings in the ground, excited, or
both ground and excited states to the width of the Mössbauer resonances in the absence of the rf field.

��d for XL
�MHz�

��d for ZL
�MHz�

��d for ZR
�MHz�

��d for XR
�MHz�

	g

2�
�MHz�

	e

2�
�MHz�

3.2546 3.3171 3.7089 3.6831 9.024 0

5.9498 3.4867 5.5633 9.3575 0 −5.171

10.9444 7.8394 7.9814 13.8331 9.024 −5.171
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FIG. 7. Broadening of the Mössbauer resonances caused by the

dipole-dipole interaction in the excited state assuming that
	e

2�
=−5.171 MHz and 	g=0. The shift of 80 arbitrary units is intro-
duced to separate the spectrum for unpolarized radiation from its
polarized contributions.
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where �= ±0.5, ±1, ±1.5, and ±3. The choice of � depends
on the Floquet states, which contribute to the particular
Mössbauer resonance. This condition provides the suppres-
sion of the dipole-dipole contribution to a particular Möss-
bauer resonance by applying only one spinning magnetic
field.

We demonstrate it numerically choosing B0=30 T,
	g

2�

=2.256 MHz, and
	e

2� =
�e

�g
	g=−0.573	g=−1.2927 MHz.

The initial Mössbauer absorption spectrum �in the ab-
sence of the rf field� is shown in Fig. 9. This spectrum has a
well-defined Zeeman sextet and a noticeable contribution
from the dipole-dipole interaction to the width of Mössbauer
resonances. Numerical values of this contribution to the four
strongest Mössbauer resonances are given in the first row
of Table III.

We calculated the Mössbauer absorption spectra for a
broad range of the parameters of the rf field. Figure 10 pre-
sents the width of the four strongest Mössbauer resonances
as a function of the relative strength r �vertical scale� and the
frequency �rf �horizontal scale� of the rf magnetic field. It
clearly follows from Fig. 10 that the regions where maximal
suppression of the inhomogeneous broadening is obtained
are aligned along thick lines corresponding to the magic-
angle condition determined by Eq. �19�. Mössbauer reso-
nances with x-polarized radiation are described by the con-
dition with �= ±1.5 �dashed� and �= ±3 �solid�, while
Mössbauer resonances with z-polarized radiation are de-
scribed by the condition with �= ±0.5 �dashed� and �= ±1
�solid�. When �rf passes through the resonance for the
ground state, � changes sign since the effective magnetic

TABLE III. Broadening of the four strongest Mössbauer resonances caused by the dipole-dipole interac-

tion for
	g

2� =2.256 MHz and a corresponding
	e

2� =−1.2927 MHz. The last row presents parameters and values
corresponding to the case when function defined in Eq. �10� reaches minimum, which means that all four
Mössbauer resonances have residual contributions of the same order.

�rf

�MHz� r
��d for XL

�MHz�
��d for ZL

�MHz�
��d for ZR

�MHz�
��d for XR

�MHz� Abs min for

0 0 2.648 1.017 1.436 2.894

33.55 0.4701 0.0809 0.1489 0.0996 0.0920 XL

31.50 0.4000 0.2727 0.0326 0.0722 0.2973 ZL

32.00 0.4310 0.1689 0.0516 0.0591 0.1946 ZR

35.30 0.4504 0.0858 0.1747 0.0934 0.0842 XR

31.90 0.4796 0.1332 0.1568 0.1270 0.1511 Optimal
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FIG. 8. Mössbauer absorption spectrum broadened due to the
dipole-dipole interaction in both ground and excited states in the

absence of the rf field. B0=30 T,
	g

2� =9.024 MHz, and
	e

2�

=−0.573
	g

2� =−5.171 MHz. A shift of 80 arbitrary units is introduced
to separate the spectrum for unpolarized radiation from its polarized
contributions.
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FIG. 9. Mössbauer absorption spectrum calculated in the ab-

sence of the rf magnetic field. B0=30 T,
	g

2� =2.256 MHz, and a

corresponding
	e

2� =−1.2927 MHz. A shift of 120 arbitrary units is
introduced to separate the spectrum for unpolarized radiation from
its polarized contributions.
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field for the ground state changes the direction. Positive �
corresponds to the frequencies below the ground state reso-
nance, and negative � corresponds to the frequencies above
the resonance.

Table III contains the sets of the parameters for which the
best line narrowing in the case of individual Mössbauer reso-
nance is achieved. The last row in Table III corresponds to
the somewhat balanced case defined by the minimum of the
function defined in Eq. �10�, when broadening of the four
strongest Mössbauer resonances reaches common minimal
broadening. The Mössbauer spectrum corresponding to this
optimal set of the parameters, r=0.4796 and �rf
=31.90 MHz, is presented in Fig. 11. In addition, Fig. 12
compares this optimal configuration with the initial Möss-
bauer spectrum, presented in Fig. 9. One can easily see that
the line narrowing effect takes place.

VIII. CONCLUSION

In this work, we suggested a different technique for sup-
pression of inhomogeneous broadening of Mössbauer reso-
nances. This technique relies on the mutual compensation of
the contributions of HF interactions to the ground and ex-
cited states rather than total suppression of HF interactions.
It is based on the combined action of the continuous wave rf
and dc magnetic fields satisfying the specific “magic-angle”
condition �Eq. �19��. This technique is demonstrated numeri-
cally in a simple model dealing with a specific HF interac-
tion, namely, the dipole-dipole interaction. It can be general-
ized for other types of HF interactions, in particular, the
quadrupole interaction, exhibiting similar symmetry with re-
spect to rotation.
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APPENDIX A: CONCEPT OF EFFECTIVE
MAGNETIC FIELD

The Floquet analysis can be used to study behavior of the
magnetic moment in the continuous wave rf and dc magnetic
fields Brf =rB0�cos��rft�x0−sin��rft�y0� and B0=B0z0, re-
spectively. However, an equivalent description in terms of an
effective magnetic field is more insightful.

The concept of the effective magnetic field may be intro-
duced by carrying out a transformation to the corotating
frame of reference �old�=R�−�rft��new�, where R���
=e−i�Iz0 is a rotation operator with a direction of rotation
along the z axis. This transformation gives

d

dt
�new� = − iHnew�new� , �A1�

where Hnew=R−1�−�rft�HoldR�−�rft�+�rfIz=−�Bef f. Here,

we introduce the effective magnetic field Bef f = �rB0 ,0 ,B0

−
�rf

�
�. The effective magnetic field is time independent and

makes an angle with the z axis �ef f =tan−1�r�1−
�rf

�B0
�−1�. A

Zeeman splitting corresponding to this field is �ef f

=−��Bef f�=�
�1+
�rf

�
�2

+r2, where �=−��B0� is a Zeeman
splitting in the laboratory frame. Thus, the eigenvalues are
Zeeman splittings En=mz,n�ef f in the effective magnetic
field, and the eigenvectors are obtained by rotating the sys-
tem around the y axis by the angle �ef f:

�n� = �
m=−I

I

dm,mz,n

I ��ef f��m� , �A2�

where a function dm,mz,n

I ��ef f�=Dm,mz,n

I �0,�ef f ,0� is an element
of the rotation matrix.41

An equivalence with the Floquet analysis can be shown
by a transformation to the laboratory frame. It gives

�n,t� = �
m=−I

I

dm,mz,n

I ��ef f�ei�rftm�m� . �A3�

This is the Floquet state of the initially time-dependent
Hamiltonian corresponding to a quasienergy En
=mod�mz,n�ef f ,�rf�.

If the system consists of two noninteracting subsystems,
the Floquet states are obtained as a direct product of the
Floquet states of individual subsystems �n , t�= �n1 , t� � �n2 , t�
with quasienergy En=En1

+En2
.

APPENDIX B: PRESCRIPTION FOR THE
FLOQUET ANALYSIS

According to the Floquet theorem in the case of periodic
Hamiltonian H0�t�, there is a set of time-dependent Floquet
states �n , t� and corresponding quasienergies �n which satisfy
the following conditions: �i� each state is periodic in time
�n , t�= �n , t+T�, where we have denoted the period by T, and
�ii� the quasienergies and the Floquet states satisfy the
Schrödinger equation

i
�

�t
�e−i�nt�n,t�� = H0�t��e−i�nt�n,t�� . �B1�

In order to avoid inherent ambiguity in a definition of the
Floquet states, we always assume that the corresponding
quasienergies are chosen in the interval �n��0,�rf =

2�
T

�.
Furthermore, at any fixed time, the Floquet states may be
chosen to form an orthonormal basis. This property allows us
to write a time evolution operator in terms of the Floquet
states as

U�t,0� = �
n

e−i�nt�n,t�	n,0� , �B2�

which obeys the equation U̇�t ,0�=−iH0�t�U�t ,0� with an ini-

tial condition U�0,0�=1̂. The first step is to diagonalize
U�T ,0� because U�T ,0�=�ne−i�nT�n ,T�	n ,0� is diagonal in
the basis of the Floquet states with eigenvalues �n=e−i�nT. It
is true due to the periodicity condition �n ,T�= �n ,0�. The final
step is to propagate the obtained states over the period
�n , t�=ei�ntU�t ,0��n ,0�, where we used �n=− 1

T arg��n� shifted
by �rf to fit the interval �n� �0,�rf�.
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