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In volborthite, spin-1/2 moments form a distorted kagomé lattice of corner sharing isosceles triangles with
exchange constants J on two bonds and J’ on the third bond. We study the properties of such spin systems and
show that despite the distortion, the lattice retains a great deal of frustration. Although subextensive, the
classical ground state degeneracy remains very large, growing exponentially with the system perimeter. We
consider degeneracy lifting by thermal and quantum fluctuations. To linear (spin wave) order, the degeneracy
is found to stay intact. Two complementary approaches are therefore introduced, appropriate to low and high
temperatures, which point to the same ordered pattern for J' >J. In the low-temperature limit, an effective
chirality Hamiltonian is derived from nonlinear spin waves, which predicts a transition on increasing J'/J from
V3 \e’g-type order to a ferrimagnetic chirality stripe order with a doubled unit cell. This is confirmed by a
large-n approximation on the O(n) model on this lattice. While the saddle point solution produces a line
degeneracy, O(1/n) corrections select the nontrivial wave vector of the striped chirality state. The quantum
limit of spin 1/2 on this lattice is studied via exact small system diagonalization and compares well with
experimental results at intermediate temperatures. We suggest that the very-low-temperature spin frozen state
seen in NMR experiments may be related to the disconnected nature of classical ground states on this lattice,

which leads to a prediction for NMR line shapes.

DOLI: 10.1103/PhysRevB.76.094421

I. INTRODUCTION

The study of frustrated magnetic insulators has witnessed
a resurgence in recent times, with the discovery of a number
of interesting materials with frustrated spin interactions.
Amongst the most geometrically frustrated lattices are the
pyrochlore and the kagomé lattice, and perhaps the most in-
teresting class of systems are those that combine strong
quantum fluctuations with frustration. Recently, spin-1/2
systems on the kagomé lattice have been identified, the min-
eral volborthite Cu3V,0,(0OH),-2H,0 (Ref. 1) and
herbertsmithite.” In the former, the equilateral kagomé tri-
angles are distorted into isosceles triangles, rendering two of
the nearest-neighbor exchange constants different from the
third. In the latter case, the kagomé lattice is believed to be
structurally perfect, but with perhaps a small percentage of
impurity spins. Nevertheless, both systems display low-
temperature physics very different from their unfrustrated
counterparts and do not show signs of ordering down to tem-
peratures well below the exchange coupling strength.

While a lot of theoretical effort has gone into characteriz-
ing the ideal frustrated lattices, distortions of the ideal struc-
ture, although common, have received less attention.> In
many frustrated magnets, lattice distortions occur spontane-
ously to relieve the frustration, leading to a strong coupling
between magnetic and structural order parameters. Such
“multiferroic” couplings are highly prized from the techno-
logical viewpoint for convenient manipulation of
magnetism,* and certain frustrated magnets are natural
candidates.’ This provides further motivation for studying
the effect of distortions. From the theoretical viewpoint, the
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partial lifting of degeneracy from distortions can lead to a
more tractable level of frustration and allow for new theoret-
ical approaches. Here, we consider the effect of lattice dis-
tortion on the kagomé lattice. The class of lattice distortions
we focus on is motivated by the material volborthite, whose
structure consists of corner sharing isosceles triangles. Bonds
along two directions then have exchange constant J, while
the bond along the third direction has exchange constant J’
=aJ. In volborthite, it is not definitively known if «>1 or
a<1, although a comparison of bond lengths seems to favor
the former.® Hence, we treat both kinds of anisotropy in this
paper with slightly more emphasis on the a>1 case.

We attack this problem first from the classical zero tem-
perature limit. We show that for a wide range of distortions,
the large classical degeneracy of the Heisenberg model on
the isotropic kagomé lattice is partially lifted, and the num-
ber of coplanar ground states now scales in a subextensive
fashion as the exponential of the linear system size. An in-
teresting comparison here is with the isotropic kagomé and
pyrochlore lattices, where the extensively degenerate ground
state can be specified in terms of local constraints reminis-
cent of the Gauss’s law of a lattice gauge theory.”® In fact,
that analogy has been carried further to describe new quan-
tum phases of frustrated magnets corresponding to the Cou-
lomb phase of the lattice gauge theory.>!'" In contrast, the
subextensive classical degeneracy of the distorted kagomé
lattice is naturally thought of as arising from constrains on
one-dimensional structures, and the “soft-spin” dispersion on
this lattice features a line degeneracy in the Brillouin zone,
unlike the flatband of the kagomé lattice. Both these features
are shared by pure ring exchange models on the square lat-
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tice as studied in Ref. 11, where a new spin liquid phase, the
excitonic Bose liquid, was discussed.

In contrast to the isotropic kagomé system, the ground
states of the distorted kagomé lattice are not connected by
local moves, requiring moving an infinite number of spins to
make transitions from one configuration to another. We sug-
gest that this difference may be related to the experimental
observation of spin freezing seen in NMR experiments at
low temperatures in volborthite (but not in the isotropic
kagomé compound herbertsmithite). The classical ground
state ensemble may then be expected to capture aspects of
this glassy state, which we use to make experimental predic-
tions.

Next, we consider the following question: If a spin system
on this lattice develops long-range magnetic order, what is
the preferred spin pattern? The degeneracy is expected to be
broken by fluctuation effects, and hence, we analyze the ef-
fect of quantum and thermally excited spin waves in the
harmonic approximation. Remarkably, the spin waves are
found to have a precisely flat dispersion, as in the ideal
kagomé case, and do not distinguish between the classical
ground states at this level. To proceed, we consider thermal
fluctuations in the classical model with &> 1 in two comple-
mentary ways, approaching from high and low temperatures.
These are found to be consistent with one another and point
to a new ferrimagnetic state, characterized by alternating
chirality stripes, and a doubled unit cell, which we call the
chirality stripe state. The first calculation consists of com-
bining the low-temperature nonlinear spin-wave expansion
with the effective chirality Hamiltonian technique pioneered
by Henley and Chan.!? Whlle at the isotropic point our
method picks out the V33 state, consistent with many
other studies,'?>~!% turning up the spatial anisotropy leads to a
transition into a new state—the chirality stripe state. To at-
tack the problem from the opposite, disordered limit, we con-
sider generalization to the classical O(n) model, which is
tractable in the limit n— o0 and captures the fluctuating na-
ture of the spins at high temperatures. At the saddle point
level, the flatband degeneracy of the ideal kagomé case is
shrunk down to a line degeneracy for > 1. Fully lifting the
degeneracy requires going to the next order in 1/n, which we
accomplish by utilizing the high-temperature expansion. The
selected state has the same nontrivial wave vector as the
chirality stripe state providing additional confirmation. In
contrast, when a <1, the large-n saddle point itself picks out
the g=0 wave vector.

Finally, we study the problem in the quantum limit via
exact diagonalization studies on small (12-site) systems with
spin-1/2. Bulk properties such as specific heat and magnetic
susceptibility at intermediate to high temperatures are found
to be rather insensitive to the anisotropy, and differences
arise only below temperatures of about J/5, as seen in
experiments.! On the other hand, the ground state of the
small cluster is found to be a spin singlet and the spin gap
decreases on increasing anisotropy.

The structure of this paper is as follows. In Sec. II, we
discuss the classical ground states of the distorted kagomé
model as well as the properties of the ground state ensemble,
and possible connections to the NMR experiments on the
low-temperature state in volborthite. Next, we address the
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FIG. 1. (Color online) An L X L (L=2) distorted kagomé lattice.
e, e, and ez are three lattice translation vectors. The exchange
constants J for bonds along the e, and e; directions are equal, but
different from J'=aJ, the exchange constant for bonds along the e,
direction. For volborthite, it is believed that a>1. I', M, and K are
high symmetry points in the Brillouin zone (BZ). The proposed
spin-ordered state has alternating positive and negative chirality
stripes and Fourier components at I" and M points in BZ. Dashed
rectangle is the reduced BZ for the doubled magnetic unit cell.

question of which spin-ordered pattern is favored by fluctua-
tions on this lattice using two approaches, first by deriving an
effective chirality Hamiltonian from nonlinear spin waves in
Sec. III and next via a classical large-n O(n) approach, in
Sec. IV, which produce consistent results. Finally, the prob-
lem is treated in the extreme quantum limit via exact diago-
nalization of small systems in Sec. V. Details of calculations
are relegated to three appendixes.

II. CLASSICAL GROUND STATES

Consider the antiferromagnetic Heisenberg model on the
distorted kagomé lattice (Fig. 1) with different couplings for
bonds on the three principal directions,

H= E (J4sSa - Sp+JpcSp-Sc+JcaSc - Sy)

triangles
I1s LS Scl’
—- + — | —constant,
JBC Jea  Ja

s

2 triangles

where S are quantum or classical spins, [1J means J,5J/pcJ cas
and A, B, and C are indices for the three sublattices.

If Jup, Jpc, and Joy are all different, we call the lattice
fully distorted kagomé lattice. In this paper, however, we
consider mainly the distorted kagomé lattice in which J,p
=Jcp # Jpc. For simplicity, we set Jyp=Jc4=1 and Jpc=a.
The Hamiltonian simplifies to the following form:
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a<1/2
Zni=16 or,
n,=nm,=0

\
\T]4/

\/

FIG. 2. (Color online) Ground states of a single triangle [6,
=arccos(—1/2a)], definition of chirality variables, and constraint on
the six chirality variables for the distorted kagomé model on a
single hexagon of the honeycomb chirality lattice. ABCDEF are
labels of six spin sites used to calculate the effective chirality inter-
actions in a later section.

H= 2 (SA'SB+aSB'SC+SC'SA)

triangles
a 1 2

== > [(—)SA+SB+SC} — constant. (1)
2 triangles @

There are two simple limits. In one limiting case, a«— 0, the
lattice becomes a decorated square lattice, with additional
sites at the midpoints of square lattice edges. In the other,
quasi-one-dimensional (quasi-1D), limit a@— o, the lattice
turns into decoupled antiferromagnetic chains and “free”
spins.

From the lattice structure,’ especially the Cu-O bond
lengths data of volborthite, we expect that > 1 in that ma-
terial, although there are no direct experimental data avail-
able or quantitative first principles calculations available yet.
Hence, the a<<1 case is also considered in some of the fol-
lowing theoretical treatments.

The first step of studying the classical ground states on the
lattice is to solve the classical ground states of a single tri-
angle. Setting the “cluster spin” in Eq. (1) to zero, we can
solve the angle between A-site spin and B(C)-site spin, de-
noted as fy=arccos(—1/2a) (see Fig. 2). Since a# 1, this
angle will be, in general, incommensurate to 27. We ignore
the accidental commensurate cases in the following discus-
sion since they form a measure-zero set of «. Then, the
(three-state) Potts model description for the coplanar ground
states of the isotropic kagomé case does not work for the
distorted kagomé lattice.

A special case is @ <<1/2. In this case, there is no way that
the cluster spin can be zero and the classical ground state is
a collinear state with A-site spin antiparallel to B(C)-site spin
(Fig. 2). Thus, for a<1/2, the classical ground state is col-
linear and there is no degeneracy except a global spin rota-
tion. Notice that the lattice becomes bipartite (not frustrated)
in the limit a=0. This classical consideration shows that the
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frustration of BC bonds is ineffective for nonzero a<1/2.
Later, we will see from exact diagonalization study that this
naive classical picture survives in quantum regime. The clas-
sical collinear state has a macroscopic net moment and is a
“ferrimagnetic” state.

For a>1/2 case, we expect that coplanar classical
ground states are favored by thermal or quantum fluctua-
tions, and there will be zero-energy band(s) for the O(n)
model with n= 3, because the Hamiltonian in Eq. (1) can be
written as a sum of squares of cluster spins.'” Then, it is
convenient to utilize the chirality variables used in the iso-
tropic kagomé model.'* The chirality variables are Ising vari-
ables living at the centers of triangles, thus forming a hon-
eycomb lattice. The positive or negative chirality variable
represents the cluster of three spins on a triangle rotating
counterclockwise or clockwise when one goes from A to B
and then to C site, or S, X (Sz—S) pointing toward the +z or
—z direction, assuming all spins lie in the x-y plane (Fig. 2).

It should be emphasized that the chirality variables are not
independent. They determine how spin rotates (counterclock-
wise or clockwise) when one walks along a bond, but after
walking along a closed loop on the lattice, the spin should go
back to the initial direction. We need only to consider length-
six hexagonal loops on the (distorted) kagomé lattice. Each
one of these loops will impose a constraint on the six chiral-
ity variables 7 in the corresponding hexagon in the honey-
comb chirality lattice (Fig. 2),

7(260) = 17260 — 13600 + 14(26) = 15600 — 1766, =0,
mod 27r. (2)

For the isotropic kagomé antiferromagnet, 6,=27/3, and the
constraint simplifies to 2?217;1:16 or 0. There are 22 al-
lowed patterns on a single hexagon out of 2°=64 combina-
tions. For the distorted kagomé model, 6, is incommensurate
to 277 and the constraint is more restrictive: E?zl 7,=+6 or
2?:177;0 and 7,+ 7,=0. The last equation is the new con-
straint compared to the isotropic kagomé lattice. Note that
this constraint holds for all a# 1, as long as a coplanar (non-
collinear) ground state is favored, i.e., @>1/2. There are
only 14 allowed patterns on a single hexagon. For the fully
distorted kagomé lattice, the constraint is even more restric-
tive: E?Zl 7=%6 or W+ m=1+ns=13+1,=0. There are
only ten allowed patterns on a single hexagon.

A. Properties of coplanar ground states on distorted kagomé
lattice

The degree of degeneracy for these models on a lattice is
a much more subtle problem. From Baxter’s solution,'® we
know that the degeneracy of the coplanar ground states of
the isotropic kagomé antiferromagnet (or three-state Potts
antiferromagnet) is extensive, exp(0.379N), where N is the
number of kagomé unit cells.

By counting the allowed chirality patterns for the dis-
torted kagomé model with the L X L open boundary geom-
etry in Fig. 1 up to L=9, we conclude that the degeneracy is
“sub-extensive,” about exp(2.2L). Table I lists the exact enu-
meration result.
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TABLE 1. Exact enumeration results for L X L open boundary chirality lattice in the geometry of Fig. 1.
The number of classical ground states Ngg for isotropic and for distorted kagomé lattices are shown. The
tendency to order in different patterns [¢g=0(T"), V3 X \V3(K), and stripe (M) patterns] is compared by evalu-
ating mean-square values of relevant chirality combinations [(m%), <m§{>, and <m§4> respectively].

Kagomé Distorted
. N (mp) (myy) N (mp) (myy)
GS N GS N

(my) (my) (my) (my)
1 22 0.50 1.00 14 0.64 1.00
2 952 0.32 0.90 168 0.62 1.03
3 84048 0.22 0.92 1864 0.61 1.25
4 15409216 0.17 0.84 19724 0.61 1.25
5 201584 0.61 1.31
6 2008276 0.61 1.35
7 19596536 0.61 1.45
8 188078644 0.60 1.41
9 1779795056 0.60 1.48

Appendix A derives the asymptotic formula of the degen-
eracy by transfer matrix method for a slightly different ge-
ometry with periodic boundary condition. The subextensive
behavior is proven by rigorous upper and lower bounds and
the asymptotic formula.

For fully distorted kagomé model, the degeneracy is also
subextensive, about exp(1.4L) for the geometry in Fig. 1.

One should be aware that the constant in the exponent
depends on geometry and boundary conditions. Notice that
Appendix A uses another geometry so that the result is not
exactly the same as the enumeration results, although they
both show subextensive behavior.

Another issue about classical degeneracy is the existence
of the so-called weather-vane modes. In the isotropic
kagomé model, thoge local zero-energy modes were argued
to favor the 3 X 3 state.'* However, one can easily prove
that in the distorted kagomé O(3) model, there is no local
weather-vane modes. This is because the cluster of spins of a
weather-vane mode must be bounded by spins pointing to the
same direction. Those boundary spins inevitably involve all
three sublattices if the cluster is finite. However, an A-site
spin can never be in the same direction as a B-site spin if
fy=arccos(—1/2a) is incommensurate to 2.

There could still be nonlocal weather-vane modes involv-
ing an infinite number of spins in the thermodynamic limit.
However, the number of these modes do not scale as the area
of the system. In this respect, the ground state manifold of
the distorted kagomé model is much less connected than that
of the isotropic kagomé model. Thus, glassy behavior is
more likely to happen in the distorted model.

Huse and Rutenberg studied the ground state ensemble of
the isotropic kagomé antiferromagnet'> by field theoretical
and Monte Carlo methods and found that the spin-spin cor-
relation has the \3 X 13 state signature but with power-law
decay.

We study the classical ground state ensemble of the dis-
torted model by measuring the ensemble-averaged spin-spin
correlation. Lacking a good Monte Carlo algorithm, we use

the exact enumeration result for L XL lattice with open
boundary up to L=9. Because of the small size and possible
boundary effects, we have not been able to extract the scal-
ing form of the correlation functions. However, the result is
qualitatively different from those of the isotropic kagomé
antiferromagnet. For A sublattice, the correlation has a large
g=0 (I"-point) component. For B(C) sublattice, the correla-
tion has a large Fourier component at the M point, the mid-
point of the BZ top (bottom) edge.

Based on these hints, we propose an ordering pattern as in
Fig. 1. It has horizontal alternating stripes of positive (nega-
tive) chiralities. We will later call it the chirality stripe state.
This pattern doubles the magnetic unit cell in the vertical
direction, thus reducing the Brillouin zone (BZ), and the M
point is actually equivalent to the I" point for the reduced BZ
(Fig. 1).

To further confirm this, we measured the mean square of
three Fourier modes of the chirality variables (m?): (i) the
uniform pattern, corresponding to the ¢g=0 (I" point in BZ)
spin configuration, with mp=X7; (ii) the staggered pattern,
corresponding to the V3x13 spin configuration of the iso-
tropic case or K point in BZ, with mg=X+ 5, where the two
sublattices in the honeycomb chirality lattice have opposite
+signs; and (iii) the chirality stripe pattern, corresponding to
our proposed spin configuration (M point in BZ), with m,,
=3+ nexp(iky-R), where the +signs are the same as the
staggered pattern, R is the position of the honeycomb unit
cell, and k,, is the wave vector of M-point (Fig. 1).

Results are summarized in Table I. For the isotropic
kagomé model, the staggered pattern mode has the largest
mean-square value, while for the distorted kagomé model,
the chirality stripe pattern has the largest mean-square value,
which is consistent with the ensemble-averaged spin-spin
correlation result. Also, from the scaling of the mean squares
with system size, we conclude that there is no long-range
order for chirality variables at these Fourier modes.
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B. Comparison with 51y NMR in volborthite

We have already noted that in contrast to classical ground
states on the isotropic kagomé lattice, all ground states on the
distorted kagomé lattice are disconnected from one another
and require moving an infinite number of spins. Within a
semiclassical viewpoint, large kinetic barriers separating the
distorted kagomé ground states might lead to freezing at low
temperatures.  Interestingly, = low-temperature =~ NMR
experiments'® on volborthite indicate spin freezing below
1.5 K (~J/60),%° but no such freezing is observed in the
isotropic herbertsmithite.>!=* It is tempting to attribute this
difference in behavior to the difference in connectivity of
classical ground states in the two cases. The vanadium atoms
occupy the hexagon centers of the kagomé lattice and are
hence coupled to six spin-1/2 Cu moments. Experimentally,
on cooling through the glass transition temperature, there is a
rapid rise of 1/7}, and at lower temperatures, two distinct
local environments for the >'V sites appear, a higher static
field environment (rectangular line shape) estimated to in-
volve 20% of spins and a lower field environment (Gaussian
line shape) for the remainder. We assume that the glassy state
locally resembles one of the classical ground states, and that
they occur with equal probability. Then, a volume average of
a local quantity in the glassy state corresponds to an en-
semble average over classical ground states. Of relevance to
the NMR experiments here is the distribution of exchange
fields at the °'V site, arising from spin configurations on the
hexagons. For the nearly isotropic case a= 1, three different
field values (H) are possible, H~3H¢,, H=~\3H¢,, and H
~0, where Hg, is the field from a single spin. For example,
the first corresponds to a local v Bx\3 pattern with staggered
chirality. We need to calculate the probability to find these
different fields.

The authors of Ref. 19 put forward the interesting sugges-
tion that the hlg_h field component seen in NMR corresponds
to local V3 X3 pattern. Their arguments though rested on
properties of the isotropic kagomé model. Here, we analyti-
cally evaluate the probability distribution of different field
configurations for the distorted kagomé lattice using the
transfer matrix method (details in Appendix A). The prob-
ability of obtaining the 3H¢, exchange field is found to van-
ish in the thermodynamics limit, while that of the \SHCU 1s
25% and that of that the approximately zero field configura-
tion is 75%. This is roughly consistent with the experimental
observation but implies a revised value for the local moment
that was obtained in Ref. 19 which assumed a local field of
3Hc,. Hence, we anticipate a copper moment per site of
0.4 % 3=0.7 of the full moment for small anisotropy. If the
amsotropy is significant, the local field also changes, with the
previous \3ch—’ V(5a—2)/a’H, and the zero field values
now being |2—-2a~!|Hc, (with 50% probability) and a?|a
—1|Hg, (with 25% probability). This suggests an upper
bound for the anisotropy by requiring the local moment be
less than unity, which gives a<<1.6.

III. EFFECT OF FLUCTUATIONS ABOUT THE
CLASSICAL GROUND STATES

It is well known that thermal or quantum fluctuation can
lift the classical ground state degeneracy.?” In the isotropic
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kagomé model, these kinds of “order-by-disorder” studies
sgggest that the kagomé antiferromagnet would select the
V3 X 3 ground state,'>'>2% namely, the staggered chirality
pattern.

We study the order-by-disorder effect in the distorted
kagomé model (a>1) by quantum and classical “spin-
wave” theory. It is found that at quadratic order, the fluctua-
tions (quantum or classical) cannot distinguish different co-
planar classical ground states. One has to go beyond
quadratic order of fluctuation to find order-by-disorder phe-
nomenon.

A. Linear spin-wave theory

A classical coplanar ground state can be described by
angles ¢; of classical spins with respect to a reference direc-
tion in spin space. Define a local spin axis for every site such
that the S axis is perpendicular to the common plane of all
classical spins, and the S* axis is along the classical spin
direction.

The Hamiltonian becomes

H= 2, J,[SiS5+cos(6,)(SiS + S)SY)

(ij)

+ Sin(eij) (S?Sjy' - S?'S;)], (3)
where 6;;=6;— 0; is the angle between classical spins on sites
i and j, and the chiralities determine the sign of these angle
differences.

For quantum spin-S spins, we can use the Holstein-
Primakoff bosons to describe the fluctuations

S;C = S —n;,
S?’ = Si) + lSlz = \”25 - nibi,

Sy =S)—iSi=b\N2S—n,,

where n,:b:fb,- is the boson number operator.
Expanding in powers of 1/S, the Hamiltonian becomes

H=Egs+S?H, +SH, + S’ Hy+ Hy + -+,

where Egg is the classical ground state energy and H, con-
tains nth order boson creation (annihilation) operator poly-
nomials. In fact, H, identically vanishes. H, gives the qua-
dratic (or so-called linear) spin-wave theory,

Hy=2, Hy s
(ij)

H, ;== J;; cos(6,)[n; + n; = (1/2)(b] + b) (b} +b))]

= (1/2)J;(b] = b)(b] - b)). 4)

Notice that H, only depends on cos(6,); then, it is identical
for all classical ground state conﬁguratlons (6;; can differ
only by a sign between different classical ground states).
Therefore, spin-wave expansion at the quadratic level cannot
lift the classical degeneracy.

Dispersion of the quadratic spin wave is presented in Ap-
pendix B. One interesting result is that although the disper-
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sion becomes much more complicated than that of the iso-
tropic kagomé model, the zero-energy flatband still exists.
Another strange feature is that as long as a# 1,a>1/2, the
“spin-wave velocity” vanishes in the direction perpendicular
to the BC bonds.

B. Classical spin wave expansion and effective chirality
Hamiltonian

To lift the classical degeneracy, we need to consider the
“nonlinear” spin-wave theory, especially the cubic order
terms H3, because they are the lowest order terms distinct for
different classical ground state configurations. Following
Henley and Chan,'? we can, in principle, derive the effective
interactions between chirality variables. In the remaining
part of this section, we use a different formalism by combin-
ing the idea of Henley and Chan and the classical low-
temperature spin-wave expansion.?’~%

We consider classical O(3) spins on the distorted kagomé
lattice. To simplify the notations, we set the spin length S to
unity. We define local spin axis as in previous section, S° axis
perpendicular to all spins and $* axis along the classical spin.
We can still use the expression [Eq. (3)] for the Hamiltonian.
For classical spin, it is convenient to parametrize the fluctua-
tion by

P=€, =€ S=vV1-(¢)-(€)>,

and the in-plane € and out-of-plane € fluctuations are sup-
posed to be small at low temperatures.

The most important contributions to the partition function
comes from fluctuations around classical ground states,

z=z; f DS exp(~ BH)[] A(S)° - 1]

o« De"Déexp(—BH)H(l),

o
classical GS i Si

where &(S;)>—1] is the Dirac-4 function used to ensure unit
spin length, and the product II(1/S7) is the Jacobian of
changing variables from O(3) spin to € and €. Z,=(2m)*" is
chosen in such a way that Z—1 as B—0 (N is the number
of unit cells).

Absorb the Jacobian into the exponential and expand S$* in
terms of € and €, then the exponent becomes

1
—ﬁH:—B{H§+H§+H3+H4—<E)TZ &+ }

where —(1/2)TZ[(€)?+(€)*] comes from the Jacobian, and
to simplify the notation, we define &=(€))*+ ()% Then,
Hy =2 J; cos(0){ele] - (112)[(€)* + ()T},
(i) '

i 1
H; = % i€ € - (5)%’ cos(6,)[(€)* + (€)1,
ij

1
o
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Hy= (l) E Jij COS(aij)(fiz +4§E+ sz) (5)
8/ Zij>
Again, the quadratic terms are identical for all classical
ground states. _
We can rescale € and € by 3 to absorb 8 into H} and
H;. Defining @=1B€’ and &€= ¢, then the exponent be-
comes

- BH=- B} - Hy—\TH,; - TH, - O(T?),

where ﬁ%z and H, are obtained by replacing €, € by @, & in
the formulas of H3, H5, and Hj, respectively. H, combines
the original quartic order term H, and the lowest order term
from the Jacobian, and we have set the Boltzmann constant
kp=1. Since higher-than-quadratic order terms are controlled
by temperature, we can do a controlled perturbative expan-
sion in powers of the small parameter 7.

As the first approximation, we may keep only I})z and Ijlé
for very low 7. Solution of the quadratic theory is presented
in Appendix C. The out-of-plane fluctuation € has a flat
zero-energy band, which is consistent with the mode-
counting argument of Moessner and Chalker.!” The in-plane
fluctuation has the “Goldstone” mode at wave vector k=0.
However, since this is a classical theory, the dispersion
around the Goldstone mode is quadratic.

C. Effective chirality Hamiltonian

Now we can formally write down an expansion for small
T. Define Zy=[ exp(—H—H5)D&D&. Remember that 2, is
the same for all classical ground states we are perturbing.
The free energy f per unit cell for fluctuations around one
classical ground state is

f=(1/N)Egs—3TIn T— (1/N)T In Z,— (1/2)TX(H;)*/N),

+ TXH,INYo + O(T?), (6)

where N is the number of unit cells, and (A), means the
expectation value in the quadratic theory, ie., (A),
=2, [ A exp(-H}— H})DEDE. Since Z, and H, are identi-
cal for all classical ground states, difference at T2 order
comes from the ((ITI3)2/ N)q term. Remember that each term
in H; contains a sin(6;;), the sign of which is determined by
the chirality of the triangle containing the bond (ij). There-

fore, ((H3)*/N), will generate effective chirality-chirality in-
teractions J;;7,7; for each pair of chirality variables 7; and
7;. Details about the calculation of the chirality interactions
are presented in Appendix C.

There are two technical obstacles for this order-by-
disorder analysis: (i) The flat zero-energy band will make the
two-& correlation function diverge and (ii) the Goldstone
mode will make the two-€ correlation function diverge.
Both (i) and (i) will make ((H3)?/N), divergent.

To proceed, we add a term J°2;(S%)? in the Hamiltonian.
This can be thought as a single-ion anisotropy term disfavor-
ing out-of-plane fluctuation. The flat zero-energy band will
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TABLE II. Effective chirality couplings J, ¢ (see Fig. 11) divided by 77 for J°=0.1 and J*=0.01. Positive

number means antiferromagnetic coupling.

a 1y Jin Joy Jon

1 0.9702 0.9702 0.2614 0.2614

1.5 1.8231 —0.3340 -0.01294 0.8895

@ I3 J3n Jau Jam Jaa

1 0.1916 0.1916 0.002661 0.002661 0.002661
1.5 0.4318 0.3631 0.04897 -0.2770 0.007420
a Isu Isp, Jou Jen

1 0.002924 0.002924 0.002914 0.002914

1.5 —0.06089 0.01172 -0.03724 0.1996

be shifted to a positive value and no longer produce diver-
gence. We also need to cure the divergence from the in-plane
Goldstone mode. Howerver, no natural interaction can do
this job. Therefore, we add an artificial mass term JS,(€])?
to the Hamiltonian, which gives the Goldstone mode a small
gap, or can be thought as an infrared cutoff. Eventually, we
would like to take the limit J?, J”— 0. More detailed renor-
malization group (RG) treatment has been done by Brezin
and Zinn-Justin.”’

To check consistency, we first calculated the effective
chirality interactions for a=1 kagomé model. The interac-
tions are antiferromagnetic and seems to be short ranged (see
Table II in Appendix C). Because the nearest-neighbor
chirality antiferromagnetic coupling dominates, the stag-
gered chirality pattern (namely, the y3 X v3 spin configura-
tion) is selected, which is consistent with all previous order-
by-disorder studies for the isotropic kagomé model. This
selection is independent of J* and J” for the range of param-
eters we studied.

The a>1 case is more delicate. It seems that the chirality
interaction is not short-ranged (see Table II in Appendix C),
and the selection of chirality pattern is more sensitive to J*
and J”. We have calculated chirality interactions up to sixth
neighbor, with /*=0.01 as the smallest value we can use and
for various J%, and a. A rough picture (Fig. 3) is that for «
close to unity or small J,, the staggered chirality pattern

J® JY=0.01

stripe state

1 staggered
state

1.1 1.2 1.3

FIG. 3. Phase diagram obtained from classical spin-wave order-
by-disorder analysis with J*=0.01 (artificial gap for in-plane fluc-
tuation). J, is the single-ion anisotropy. For large a or J%, the chiral-
ity stripe pattern is selected. Dots are calculated boundary points,
and the line is a guide for the eye. Weak interlayer couplings are
assumed to stabilize true long-range order.

(analog of the V3x\3 spin configuration of the isotropic
kagomé model) is still favored, but in the other part of the
parameter space, our proposed chirality stripe state is se-
lected. One should be aware that this picture may still de-
pend on the unphysical parameter J7, and including further
neighbor chirality interactions may also modify the phase
boundary.

We have also tried to use this approach for a<<1 case.
However, the selection of ground state is much more sensi-
tive to the unphysical parameters and the number of
chirality-chirality couplings we include. We decide to leave
this part for more detailed studies in the future.

IV. LARGE-N APPROXIMATION

Another way to study (anti)ferromagnet is to generalize
classical O(3) spin to O(n) spin. At n— o limit, the theory
can be solved exactly by saddle point approximation. One
can also calculate 1/n corrections systematically. The saddle
point approximation is supposed to be good for high-
temperature disordered phase. As temperature decreases, one
can usually decide at which wave vector the long-range order
is developed by looking at the position of the lowest “exci-
tation” energy, or the lowest eigenvalue(s) of the inverse of
the spin correlation function matrix.

For the isotropic kagomé model, the lowest excitation is
wave vector independent in the saddle point solution. For
distorted kagomé (a> 1) model, the lowest excitation is de-
generate on a line in momentum space. We have to include
1/n correction to determine the possible ordering wave vec-
tor uniquely. However, for a<<1, the ¢g=0 wave vector is
selected at the saddle point level.

A. Saddle point solution and line degeneracy for distorted
kagomé lattice

The model we use is the O(n) spin antiferromagnet on the
distorted kagomé lattice,

H= 2 2 (SiS5+aSpSe+SeSh). (7)
triangles a=1

with constraints =/'_ (S¢)?=1. We rescale all spins and 3 by
§f= V"ZS? and B=B/n. The partition function becomes
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z-2 [ (T oo Bl fn- 3 7).

where Zy=[n"?a7"2/T'(n/2)]*" such that Z—1 as B—0, N
is the number of unit cells, and H is the Hamiltonian H with
S directly replaced by S. In the remainder of this section, we
will write §, fl, and E as S, H, and 3, respectively. We will
write DS instead of II; ,dS7.

Using the fact that

o

d\;
—— exp[(i\;+ p)x],

A=)

where \; is a real dummy variable and u; is an arbitrary real
parameter to be determined later by the saddle point condi-
tion, we can rewrite the partition function as

z:zg'fpsm exp{—3H+EX,.[n—E(s;‘)2”

-7 f DSDA exp[— > SIM S+ 2 n):i], (8)
a.i,j i

in which M ;= (i\;+u;) 5;;+8J;;/2 is a symmetric matrix, A
=ik+u, and DN=II[d\;/(27)]. Integration over S} gives

L

Z= Z(")lﬂ3"N/2 f DX det(M)™""? exp[z n(i\; + ,ui)] .

Now, the saddle point condition is
d

Indet(M)=2, Vi.
i

Let us assume that the saddle point solution has all lattice
symmetries, e.g., translational invariance. Then, w; depends
only on which sublattice the site i belongs to. Furthermore,
because the B and C sublattices are equivalent, we have
MB=Mc-

Assuming translationally invariant u;, the matrix M;; can
be block diagonalized by Fourier transformation. det(M)
=11, det[M(Kk)], where M(K) is a 3 X 3 matrix,

o Bcos(ks/2) B cos(ky/2)
M(K) =| Bcos(ks/2) s aBcos(k/2) |,
Bcos(ky/2)  afcos(k,/2) Me

with k;=k-e; (k3=—k;—k,). The saddle point condition be-
comes

1 P
(—)E —— Indef{M(k)]=2, X=A.,B,C,
N7\ dpx

and in the thermodynamic limit N— o, the sum becomes a
integral ~ over  the  Brillouin  zone, (1/N)Zg
— [T 37k, dky | (27)2.

This saddle point equation cannot be solved analytically.
However, when S is small, we can expand it in terms of 3
and obtain a high-temperature series for wy. The result is

2us=1+4p*-4af*+ -, (9a)
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FIG. 4. (Color online) Dispersion w of the O(n) model in the
saddle point approximation along certain high symmetry directions
(shown in the first panel) for three different « at 8=0.2. The lowest
eigenvalue(s) are shown with bold lines (dot).

2upc=1+2(?+ 1) -4af’+ ---. (9b)

We notice that up > s for a>1, which leads to a degen-
erate line of lowest excitation in the saddle point approxima-
tion. This high-temperature (small ) series can be extended
to intermediate temperature () by Padé approximation.

After solving uy, we can solve the “dispersion,” or the
eigenvalues of M (k). Dispersion along certain high symme-
try directions is shown in Fig. 4. Note that for a<<I, the
lowest eigenvalue is uniquely determined at k=0. However,
for a>1, the lowest eigenvalue is degenerate on the k;=0
line, or the vertical I"-M line in the BZ. Finally, for a=1, the
lowest eigenvalue is degenerate over the entire BZ.

To decide the ordering wave vector uniquely, we must
consider 1/n correction for =1 cases. Before presenting
that in the next section, we show the calculated elastic neu-
tron scattering intensity (Fig. 5) [Zx y(M™")xy]? of the saddle
point solutions for four different & with relatively high tem-
perature B=0.2 (summation is over X,Y=A,B,C). We em-
phasize that the maximum appearing in the elastic neutron
scattering intensity does not directly correspond to the pos-
sible long-range-order wave vector.

B. Lifting the line degeneracy of a>1: 1/n correction

To lift the degeneracy of the lowest excitations of the
saddle point approximation, we have to include fluctuations
around the saddle point.

|
Yot

FIG. 5. (Color online) Predicted elastic neutron scattering inten-
sity for distorted kagomé model, obtained from the saddle point
solutions at 8=0.2 for four different «. Hexagons are BZ borders.
Darker regions have lower intensities. The a>1 case shows
quasi-1D feature.
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FIG. 6. (Color online) Feynman rules for calculating 1/n cor-
rections of O(n) model. O(n) indices are omitted. X and Y are
sublattice indices. The first panel contains free propagators and the
only vertex in the theory. Straight lines represent the spin propaga-
tor. The second panel is the one-loop Dyson equation [Eq. (10)] for
the N propagator. The third panel is the one-loop Dyson equation
[Eq. (11)] for the spin propagator. Thick lines are full propagators.

We have three Ny fields and 3n Sy, fields in the action,
where X is the sublattice index and a is the O(n) index of
spin. The Green’s function of the spins with the same O(n)
indices is a 3 X 3 matrix. Under the saddle point approxima-
tion, it is Gg(,)[)th,xy(k)z[M(k)])_(;’éab’ where X,Y=A,B,C for
three sublattices and a,b are O(n) indices. We need the cor-
rection to this Green’s function by the fluctuations of A
around zero. From Eq. (8), we see that there is a three-leg
vertex between \ and S¢ of the form —i\;(S7)%.

The Feynman rules and Dyson equations are summarized
in Fig. 6. Notice that the three-leg vertex preserves sublattice
index for all fields and also O(n) index for the spins. There is
no free propagator for A fields in the original theory. To make
the perturbative expansion well defined, we add a term
+2,€(\;)? to the Hamiltonian, which corresponds to a free
propagator (1/€)dyy. Finally, we will take the e— 0 limit.

The one-loop Dyson equation for the propagator of \ is
shown in Fig. 6. The inverse of the Green’s function at one-
loop level is

[G)_\l(k)]xy =(6) 0y — I\ xy==T)xrs (10)

where I'y is the self-energy of N\ (the loop diagram in the
second panel of Fig. 6). Here, we have taken the e— 0 limit,

F\xy= 2 (- i)zf dzqG.(S(,)c)w,XY(k + q)G_(S‘(,)zm,YX(q)
a BZ

- nf d*q[M ' (k + @) Ixy[M (@) yx-
BZ

There 1s no summation over sublattice indices X,Y on the
right-hand side. [p,d’q is the normalized integral over the
entire BZ. Since the summation over O(n) index a becomes
a factor of n, the one-loop N\ propagator is of the order 1/n.
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We use this one-loop N propagator to calculate the one-
loop correction to the spin propagator,

[G5hal®) ]y = [M(K) Iy = Ts o xys (11)

where I xy is the self-energy of spins (the loop diagram in
the third panel of Fig. 6).

1—‘S,Lm,XY = (_ l)zf

BZ

dzqG(S(,)()m,xy(k -q)G) xv(q).

Again there is no summation over X,Y on the right-hand
side.

These integrals cannot be evaluated exactly. Instead, we
use the high-temperature (small B) expansion to get analyti-
cal result. We found that up to 87 order, the one-loop correc-
tion does not qualitatively change the form of Gy, (k). It has
similar wave vector dependence of the inverse free propaga-
tor M(K); therefore, the line degeneracy of a>1 model and
the degenerate band of a=1 model cannot be lifted at S’
order.

However, at 8% order, a qualitatively distinct correction
appears. The self-energy (the loop diagram) contains a term

a cos a cos
2 2
k k
(1/m)B3C acos(ﬂ) 0 —'uBccos(ﬁ) ,
2 Iu‘A 2
(ﬁ) Mpc (’2)
@ Ccos cos 0
2 ,LLA 2

where k;j=k;—k; and a constant C=a?/ (643 upc). This
looks like a next-neighbor ferromagnetic coupling.

For @>1 model, we have a degenerate line k;=0 at the
saddle point level. This (1/n)8® correction will favor k,=,
which is the M point in the BZ. For a=1 model, we have a
degenerate band in the saddle point approximation. This
(1/n)B® correction will favor k;=k,=4/3, which is the K
point in the BZ, corresponding to the V3x43 spin configu-
ration.

We notice that a previous high-temperature series expan-
sion study®® also lifts the degeneracy of the kagomé O(n)
model at ,88 order. Their result contains, in some sense, cor-
rections to all orders of 1/n but does not have a simple
analytical form. Our simpler analytic method (expanding in
both 1/n and B) is complementary to their linked-cluster
series expansion study and our results are consistent with
theirs in the region of overlap.

V. QUANTUM LIMIT: EXACT DIAGONALIZATION AND
SLAVE PARTICLE MEAN FIELD THEORIES

We have performed exact diagonalization on small lattices
of spin-1/2 moments to study the effect of distortions in the
kagomé model. We used the open source ALPS library and
applications®! on an office computer. Two different kinds of
results are presented: the nature of the ground state and low
lying excitations and the thermodynamics (specific heat and
magnetic susceptibility). The latter requires knowing all ei-
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FIG. 7. (Color online) spin excitation energies at different wave
vectors from the exact diagonalization study (12 sites: 2 X2 unit
cell system with periodic boundary condition). Energy is measured
from the lowest singlet state (ground state for &> 1/2). Other spin
excitations, S>2 at any wave vector or S=2 away from the I" point,
have much high energies than the ones plotted.

genvalues of the Hamiltonian and is hence restricted to small
system sizes of 12 sites (2 X2 unit cells) with periodic
boundary conditions. Based on previous studies,>> we be-
lieve that this small system can still produce qualitatively
correct high-temperature properties. For the former, we study
system sizes up to 24 sites (4 X 2).

Before discussing the results of exact diagonalization for
the low lying eigenstates, let us briefly recall the expectation
from the semiclassical picture developed so far.

(1) For @<1/2, a collinear ferrimagnetic state with a
magnetization of 1/2 per unit cell is expected.

(2) For a>1, the ferrimagnetic chirality stripe state is
expected, which implies a net spin in the ground state and
low energy spin excitations at the M point as shown in the
inset of Fig. 7.

(3) For 1/2<a<1, we do not have a firm expectation
from semiclassics; however, the large-n saddle point solution
seems to favor a g=0 state, which would also be ferrimag-
netic.

Numerically, we find that the first prediction is remark-
ably well obeyed even in this extreme quantum limit. On
decreasing «, the ground state is found to have nonzero total
spin. Moreover, this is found to happen precisely below «
=1/2. The ground state moment is also exactly what is ex-
pected, for example, it is S=2 for the 2 X2 lattice and S=3
for the 3 X 2 lattice.

For a>1/2, the comparison is less clear. For example,
the ground state is a spin singlet on lattice sizes up to 24
sites. However, there is a clear tendency of the =2 state at
the I" point to drop in energy on moving away from the
isotropic kagomé point as seen in Fig. 7, indicating perhaps a
tendency to develop a net moment. On the other hand, while
the spin gap may be expected to be soft along the M point
(the wave vector for the chirality state) for a> 1, it turns out
that the M point is actually not the location of the lowest spin
carrying excitation—which instead occurs at different wave
vectors, the M’ (and equivalent M”) locations in the case of
2 X2 system. Similarly, for the 4 X2 system, the S=1 exci-
tation energy at the M point is higher than those at the M’
and M" points (the latter two are inequivalent on this lattice).
Moreover, the lowest S=1 excitation occurs at the M” point.
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FIG. 8. (Color online) Spin excitation energies at the high sym-
metry points (see inset in Fig. 7 for definition) vs number of sites,
for @=0.75 and 1.25, for 12-site and 24-site systems. Due to the
geometry of the 24-site (4 X2 unit cell) lattice, the M’ and M"
points are not equivalent. Lines are guides for the eye.

It should be noted though that the S=1 excitation energy at
the M point decreases rapidly from the 12-site to the 24-site
lattice (Fig. 8) and might end up being the lowest spin exci-
tation at larger system sizes. Paradoxically, in the 1/2<a«
<1 limit, the M point is the location of the lowest spin
carrying excitation, both in the 12 and 24 sized systems we
studied. We therefore have to leave the question of the va-
lidity of the semiclassical “chirality stripe” picture in the
extreme quantum limit open to future systematic numerical
studies on bigger systems. Finally, we note that as in the
isotropic kagomé case, we have observed singlet excitations
inside the spin gap (the energy of the lowest excitation with
nonzero spin).

Thermodynamics. The magnetic dc susceptibility and spe-
cific heat results for several different « are presented in Fig.
9. In both figures, the temperature has been rescaled by the
average coupling Jyyernee=(2+a)/3 for each curve, and y is
also rescaled accordingly. For high temperatures (7T
> 0.2Jverage)> the dc susceptibilities for different a converge
to the =1 result. The positions of the broad maxima in the
specific heat curves are also more or less the same for dif-
ferent a. Therefore, we conclude that the anisotropy does not
induce qualitative difference in these two macroscopic ob-
servables for high enough temperature (e.g., 7> 0.2/, erage)-

Slave particle approaches. Other theoretical approaches
can also be used to attack the problem directly from the
quantum limit. These methods have been applied to the iso-
tropic kagomé lattice and can be utilized to study the effect
of distortion. The Schwinger boson technique [large-N Sp(N)
approach] has been used to study the volborthite lattice
recently,”® where, for not too large spatial anisotropy, the
V3 X3 state was found to persist, although the ordering
wave vector is shifted to an incommensurate value (the stag-
gered chirality pattern remains the same). Fermionic slave
particle representation of the spins®* as well as the dual vor-
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FIG. 9. (Color online) Susceptibility y and specific heat C, from
the exact diagonalization study (2 X2 unit cell system, 12 spins,
with periodic boundary condition). Temperature is rescaled by the
average coupling Jayerage = (2+a)/3 for each curve. The susceptibili-
ties of different &> 0.5 converge to the @=1 result even at moder-
ate temperatures. The positions of specific heat maxima at around
T/J ayerage=21/3 are consistent between different a values.

tex formulation® have recently been used to study the iso-
tropic kagomé lattice in connection to herbertsmithite. Ex-
tending these studies to the volborthite lattice should be
interesting. For example, the Dirac fermions in the proposal
of Ref. 34 would remain massless on the distorted lattice as
well, since the mass term is prohibited by the translational
and time reversal symmetries that remain intact.

VI. CONCLUSIONS

We have studied the distorted kagomé model by several
approaches. First, we proved that the classical degeneracy is
reduced from an extensive one (of the isotropic kagomé
model) to a subextensive one. As a result, we found that the
ground state ensemble is much less connected in the dis-
torted kagomé model compared to the isotropic case. One
has to change an infinite number of spins (in the thermody-
namic limit) in order to move from one classical coplanar
ground state to another. This could result in a greater ten-
dency toward glassy behavior and may be consistent with the
fact that spin freezing was observed (not observed) in
volborthite (herbertsmithite). We then studied the properties
of the ground state ensemble by enumeration and transfer
matrix methods. Using transfer matrix method we calculated
the probability of different local spin configurations and
showed that this consideration may provide an explanation
of the low-temperature NMR data in volborthite.
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We then studied how this remaining degeneracy can be
lifted by two refinements of various approaches to the clas-
sical problem. In particular, we used a low-temperature clas-
sical spin-wave expansion to compute the effective chirality
interactions which lead to a preferred ordering pattern. We
also studied the large-n O(n) model in the saddle point ap-
proximation and with 1/n corrections, the latter being per-
formed in conjunction with a high-temperature expansion.
Our results for the isotropic case a=1 are consistent with
previous order-by-disorder studies for the isotropic kagomé
model, i.e., V3 X 3 state is selected. However, for a>1,
both classical approaches we pursued point to a possible
long-range-order pattern different from that of the isotropic
kagomé model. The resulting “chirality stripe state” doubles
the magnetic unit cell, has a Fourier component at the M
point in the Brillouin zone, and has a net magnetic moment
(Fig. 1). Of course, this classical 2D system cannot develop a
long-range order at any finite temperature, but in the pres-
ence of weak inter layer couplings, the ordering pattern we
propose is the most reasonable candidate if magnetic long-
range order sets in. Exact diagonalization studies of small
systems showed that the specific heat and susceptibility for
different values of @ do not vary much at intermediate tem-
peratures upon the change of the anisotropy parameter «.

Shortly after completion of this work, there appeared an-
other paper’” studying the same lattice but via the Sp(N)
large-N treatment and perturbation theory. Their analysis of
the degree of classical degeneracy is in agreement with our
result.
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APPENDIX A: TRANSFER MATRIX SOLUTION OF THE
CLASSICAL GROUND STATE DEGENERACY OF
THE DISTORTED KAGOME MODEL

In this appendix, we derive the asymptotic formula of the
classical ground state degeneracy in the distorted kagomé
model and also establish rigorous upper and lower bounds to
show that the degeneracy is subextensive. We also study the
probability of various local hexagon configurations in the
ground state ensemble of the distorted kagomé model, which
is related to NMR studies of the volborthite.'

We stretch the honeycomb chirality lattice horizontally to
make a topologically equivalent “brickwall” lattice (Fig. 10).
Chiralities are Ising variables on the vertices. For simplicity
of derivation, we use a different, less symmetric geometry
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FIG. 10. (Color online) brickwall lattice for the transfer matrix
study in Appendix A. Seven possible single brick configurations
and their probabilities in the thermodynamic limit are presented.

other than the geometry used for enumeration study in the
main text. The lattice consists of M rows of “bricks,” and
each row contains L bricks. We will establish the upper and
lower bounds, 4¥** and 2M*!, for open boundary condition
and the asymptotic formula 2+~ for periodic boundary con-
dition in the thermodynamic limit.

It is better to represent the states of the Ising chirality
variables by domain wall configurations (Fig. 10). As in all
Ising systems, the number of Ising configurations is two
times the number of domain wall configurations. All possible
domain wall configurations within a brick is given in Fig. 10.
Number below each brick configuration is the probability of
that local configuration in a lattice with periodic boundary
condition in the thermodynamic limit, to be derived later.

There are several important observations:

(a) If there is a horizontal domain wall crossing, one of
the vertical edges of the brickwall, this domain wall must
extend through the entire lattice, cutting the entire row of
bricks.

(b) The number of vertical domain walls cutting a hori-
zontal line in the brickwall is conserved from line to line.

(c) Whether there is a horizontal extended domain wall in
the row of bricks or not completely determines the propaga-
tion of vertical domain walls from the upper line to the lower
line.

(d) If there are two vertical domain walls in the same
brick in the upper line (we call this a “collision” of two
vertical domain walls), then there must be a horizontal ex-
tended domain wall in the row of bricks, and we have only
one choice for the vertical domain wall configuration on the
lower line. Otherwise, for a given vertical domain wall con-
figuration on the upper line, we have two choices on the
lower line.

(e) Vertical domain walls do not cross each other.

We can obtain an upper bound for the number of chirality
configurations by the following considerations for a lattice
with open boundary condition: (i) The vertical domain wall
configurations on the topmost line give 2°* choices. (ii) The
horizontal extended domain walls give a factor of at most
2M _(iii) On each row of bricks except for the first row, there
could be one additional Ising degree of freedom depending
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on whether there is a vertical domain wall entering from the
top-right edge of the rightmost brick (an example of entering
vertical domain wall is given in Fig. 10—the third row from
top). This is at most a factor of 2¥~!. Combining all these
factors, we get an upper bound 4¥*~ for chirality configura-
tions on the L X M open boundary lattice.

We can easily get a subextensive lower bound for open
boundary condition by considering the case that there is no
vertical domain wall. Then, we have 2¥ domain wall con-
figurations via the M possible horizontal extended domain
walls. Thus, a lower bound of the number of chirality con-
figurations is 2M+!.

Now, we impose the periodic boundary condition on an
LX M brickwall. Strictly speaking, the periodic boundary
condition will introduce two additional nonlocal constraints
on the chirality variables, and it will impose constraints on
the total number of vertical domain walls (must be even) and
also horizontal domain walls. They are not supposed to
change the asymptotic behavior and we ignore them for sim-
plicity.

Define the transfer matrix T, where x and y label the
vertical domain wall configurations on the upper and lower
line of a row of bricks, respectively. T, is the number of
ways that vertical domain walls in x can propagate down-
ward to y. Some examples are as follows: (i) x is the con-
figuration where there is no vertical domain wall in a line,
and then the only y satisfying 7,,#0 is y=x
=(no vertical domain wall) and 7,,=2 because there could
be one, or no, extended horizontal domain wall in between,
which should be counted as two different ways of propaga-
tion. (ii) x is the configuration where there are vertical do-
main walls on every edge of the upper horizontal line, and
then 7,,=1 because there must be one extended horizontal
domain wall in between and T,,=0, Yy #x.

The number of domain wall configurations is the trace of
the Mth power of the 2>/ X 22l transfer matrix T, which
equals the sum of the Mth powers of all eigenvalues \ of T,
Tr(T™)=2,\™. From the previous observations (c) and (d),
we have 2, T, <2. Therefore, all eigenvalues have absolute
values smaller than or equal to 2. This provides an upper
bound 2%4M for domain wall configurations.

Taking the thermodynamic limit M — o, with L large but
finite, then the trace Tr(T") reduces to the sum of the Mth
power of the largest eigenvalues (it is 2 and can be degener-
ate), 2,.,2M. Now, we want to construct all eigenvectors
corresponding to eigenvalue 2. The property of the ground
state ensemble is dominated by these eigenvectors in the
thermodynamic limit.

Suppose a, is a (left) eigenvector with the eigenvalue 2,
>.a,T.,=2a,. Then, we have the following two properties:
(i) a,=0, Vx, which comes from the fact that T,,=0; and
(ii) a,=0 for x containing a collision, which comes from
observation (d).

If there is no collision in x, but there is one vertical do-
main wall crossing the top-left horizontal edge of one brick,
and one of its neighboring vertical domain wall crosses the
top-right horizontal edge of another brick, we can always
bring those two vertical domain walls together to make a
collision by propagating them downward (an example is
shown in Fig. 10). Therefore, we must have a,=0 for this
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kind of x, which contains both vertical domain walls crossing
top-left and top-right edges of some bricks.

Now, we can construct all eigenvectors with the largest
eigenvalue (2). Take an x containing vertical domain walls
crossing only the top-left edges of some bricks. It can propa-
gate to the next line without change, or shifted by one-half of
the lattice constant. By translating this x on the line (with
periodic boundary condition) by multiples of half lattice con-
stant, we find a connected subspace of the state space, de-
noted by span (x). Then, a,=1, Vy e span(x), is the (not
normalized) eigenvector with the largest eigenvalue (2) in
this subspace (by Perron-Frobenius theorem, this eigenvector
is unique in this subspace).

The degeneracy of the largest eigenvalues (2) equals the
number of distinct subspaces constructed as in the previous
paragraph, or the number of inequivalent x with only the
top-left-edge vertical domain walls (inequivalent under
translation). This is still a nontrivial combinatorial problem,
but we have a rough upper bound 2* and a lower bound
2L/L. Combining all previous considerations, we have the
asymptotic form of the number of configurations 2M*,

Now, we have, in principle, all the eigenvectors relevant
in the thermodynamic limit. We can find the probabilities of
every brick configuration, or the configuration of the six
spins in a hexagon in the original distorted kagomé lattice.
This is related to the °'V NMR study of Bert et al.,' because
different local spin configurations will produce different
magnetic fields on the V site. However, the authors of that
experimental paper did not take into account the constraints
on chirality variables; thus, their theoretical estimates of the
probabilities of different local configurations are incorrect.

First we consider the brick configuration containing a col-
lision of vertical domain walls. This corresponds to the local

I~ Iy . . .
V3 X3 configuration, which produces the largest magnetic
field (three times of a single Cu if a~1; in general, the
factor is 2+2a~'=a7?) on the V site. However, since our
eigenvectors do not contain collision, the probability of this
local configuration is zero.

Next, we consider the configuration where there is one
vertical domain wall and also one horizontal domain wall
through the brick. This will produce a smaller magnetic field
[V3 times of a single Cu if @~ 1; in general, the factor is

TP
V5a-2)/a’].

Notice that we have a particle-hole-like symmetry. For a
subspace span (x) discussed in the previous paragraphs,
where x contains vertical domain walls through some of the
top-left edges of bricks, we can construct another subspace
span (x) from a “complementary” configuration X, in which
there is one vertical domain wall through a top-left edge of a
brick if and only if there is no vertical domain wall through
that edge in x.

Therefore, the probability that there is one vertical do-
main wall through the brick is one-half. The probability of a
horizontal domain wall through the brick is clearly also one-
half for the eigenvectors we consider. Combining these two
factors, we have the probability of 25% for this type of local
configuration. Note that whether the vertical domain wall is
on the left- or right side will give another factor of one-half,
hence, the 12.5% probabilities in Fig. 10 for the two configu-
rations of this type.
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Probability of other configurations can be derived in the
similar fashion. However, all the other local configurations
will produce very small magnetic field on the V site (for a
~1). In particular, the configuration with no domain wall
through the brick has a magnetic field [2—2a7!| times a
single Cu field, with the probability of 25%. The configura-
tion with no vertical domain wall but a horizontal domain
wall has the same magnetic field factor [2—2a!|, with the
probability of 25%. The two configurations with one vertical
domain wall but no horizontal domain wall have the mag-
netic field factor |@—1|/a? and the total probability of 25%
(12.5% each).

Based on these analyses, we argue that the 20% slow
component observed in NMR!? is not due to the local \3
X 3 configuration, but rather the configurations producing a
smaller (factor of \3 rather than 3) magnetic field and with a
theoretical probability of 25% (with one vertical and one
horizontal domain wall).

APPENDIX B: DISPERSION OF QUADRATIC QUANTUM
SPIN WAVE

In this appendix, we present the quadratic (or the so-
called linear) quantum spin-wave dispersion of the distorted
kagomé Heisenberg model. We notice that there is still a
zero-energy band, and the spin-wave velocity of the disper-
sive branch vanishes in one direction in momentum space.

We start from Eq. (4) and do the Fourier transform of the
bosonic fields,

bxx=N"22 exp[-ik- (R+ry)]bxr,
R

where X=A,B,C label the three sublattices and N is the
number of unit cells. R are positions of unit cells, ry are
positions of the three basis sites within a unit cell, and k is
the wave vector.

The quadratic Hamiltonian is then block diagonalized,

Hy= >, i - M(K) - i + constant,
k

where = (b}, \.bh k. bi . bak-Dpx.be ), M(K) is a 6
X 6 Hermitian matrix, and the summation is over the k
points in the BZ. Here, M (k) can be written as

P Q
M(k):(Q P)'

Here, P and Q are both 3 X 3 matrices as shown below, and

. k k k
we use the notation c1=cos(3]), cz=c0s(72), and c3=cos(§),
with k;=k-e; and ky=—k, -k,

| 4 QRa-1)c; Qa-1)c,
=—| Qa-1)c;  4d? ¢ ,
a
Qa-1)c, ¢ 4o
c c
2a+1 ’ ?
0= 5 3 0 2a-1)c,
a
Cy (20[— l)cl 0
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We need to further diagonalize M (k) by an SU(3,3) Bo-
goliubov transformation. Namely, we need an SU(3,3) matrix
U such that

1 0
U'tU=r, T=< 3 ),
0 —l3x;

and

ok) 0 )

UTM(k)U:( 0 -k

where 1343 is the 3 X 3 identity matrix, and w(k) is a 3 X3
diagonal matrix with three branches of spin dispersions as
the diagonal elements, because of the inversion symmetry
w(k)=w(-Kk).

In isotropic kagomé model, P and Q commute and can be
diagonalized simultaneously, which simplifies the calcula-
tion. However, for general a matrices, P and Q do not com-
mute.

A simpler way to get the dispersion is to solve the eigen-
values of 7-M(k). It is fairly simple to prove that the six
eigenvalues of 7-M(K) are +w;(k), i=1,2,3, indicating three
branches.!® The characteristic polynomial of 7-M(k) is x°
—2f>x*+f4x%. The dispersion is the following:

T

W= 0, (1)2’3 = \/fz + \r’A

where A= fg —f4 and

fr=2a?+1-2a"'+2a72 - (2a* - 1)cos(k;)
— a [cos(k,) + cos(k3)],
(a—1)°

12+ a® + a? cos(k;) — 2a[cos(k,) + cos(ky) ]}

A=2

Although the dispersion has become much more complicated
than the kagomé case, the zero-energy band still exists.

When a=1, f2—£,=0, we have Wy=w;
= \/3—cos(kl)—cos(kz)—cos(k3). For small |k|, the dispersion
becomes w,=ws~ \kj+kik,+k;|k|. Thus, we have two
linear spin-wave branches.

However, as long as a# 1, we have w,# w; and w;(k
=0)=2[1-a"!|>0. We still have one Goldstone mode be-
cause w,(k=0)=0. However, the small wave vector disper-
sion is drastically changed, w,~\(a?=1/4)kx|k,|.
Namely, the spin-wave velocity in the k, direction (vertical
direction in k space) vanishes.

APPENDIX C: CLASSICAL SPIN WAVE: QUADRATIC
THEORY AND CHIRALITY INTERACTIONS

Let us start from Eq. (5), replace € and € by € and &,
and do the Fourier transforms of € and € (see the previous
appendix for notation),

&x= N2> exp[- ik - (R + ry) & g,
R
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Gu=N""2 expl-ik - (R+ry)]&g.
R

The quadratic Hamiltonian can be block diagonalized,

I’:Ié = E X;Mv(k)xk’
k

Hy =2, giM_(K) .,
k

where Xli:(%?&,—k’ G ?é,—k) and ¢£:(gjﬁ,—k’g‘73,—k*gﬁc‘,—k)’
and M, (k) are both 3 X 3 matrices, shown below, where we

use the notation clzcos(%), c2=cos(%), and c3=cos(%),

2 —C3 —Cy
M,(k) = o 207 (1-2a%c, |,
—¢, (1-2a%¢, 242

a_l C3 Cy

Mz(k)=2 C3 o ac

Cy acy o

It is straightforward to check that M (k) has a zero eigen-
value with (not normalized) eigenvector
(asin(k,/2),sin(k,/2),sin(k3/2)) for all k, and M, (k=0)
has a zero eigenvalue with eigenvector (1,1,1).

For small |k|, the dispersion of the lowest branch of
M, (k) is approximately (1/ 6a)(a2k%+k1k2+k%).

Now, we consider the calculation of the chirality interac-
tions. Each chirality interaction is calculated by 36 terms in

(H)?*; we show here an example in Fig. 2. Chiralities 7, and
75 are defined on triangles ABC and DEF in the distorted
kagomé lattice, respectively. »; determines the sign of the
angles between spins on ABC sites, 64,3=7,6), 0Opc
=-2m 6y, and Ocp=1,6y. Opp, Ogr, and Opp are determined

FIG. 11. (Color online) chirality-chirality couplings calculated
here. Equivalent couplings under space group symmetry are not
shown.
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in the similar way by #s, and 6,;=—6,;. Plugging these into
Eq. (5), then the relevant terms in (Hs)? are 27, 7s(hp
+hge+hen)(hpp+hep+hep), where

hap = sin( 90)(23153 - %gA)’
hge=sin(= 290)(%50 - @ycfg),

hea = sin(6p)(€péq — €,6c).

Here, we use &=[(€)*+(&)?] and @y=arccos(-1/2a), and
hpg, hep, hpp are obtained by replacing subscripts ABC by
DEF, respectively.

According to Eq. (6), the effective chirality-chirality cou-
pling is —T*((hyp+hgc+hes)(hpp+hep+hep))o. Expanding
this expression, we have 36 terms, each of the form

PHYSICAL REVIEW B 76, 094421 (2007)

(€/£,€&,)o which can be further expanded into four terms,
(€(8)°€(€,))0+(€(€)8(€,) )0 +(&(€)*E(E,))0

+(€/(€)*€(€,)*). Each term in the last expression can be
expanded into a sum of products of three two-point correla-
tors by Wick’s theorem. The two-point correlators are com-
puted following the standard routine in all quadratic theory,

e.g.,
(€)08pr)0= f PK[M (k)] g™ ®rsra)

for the A-sublattice site in the unit cell at origin and the
B-sublattice site in the unit cell at position R. We calculated
up to the sixth neighbor chirality couplings (Fig. 11). Some
data are presented in Table II.

All the above mentioned calculations in Appendix B and
in this appendix were done in the software MATHEMATICA.
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