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We study the transverse quantum ANNNI model in the region of high frustration ���0.5� using the density
matrix renormalization group algorithm. We obtain a precise determination of the phase diagram, showing
clear evidence for the existence of a floating phase, separated from the paramagnetic modulated phase by a
high-order critical line ending at the multicritical point. We obtain simple and accurate formulas for the two
critical lines.
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I. MODEL

The ANNNI model is an axial Ising model with compet-
ing next-nearest-neighbor antiferromagnetic coupling in one
direction. It is a paradigm for the study of competition be-
tween magnetic ordering, frustration, and thermal disorder-
ing effects.

In the Hamiltonian limit, we consider a one-dimensional
quantum spin S= 1

2 chain interacting with an external mag-
netic field, called the TAM model �transverse ANNNI�.

The TAM Hamiltonian for L spins with open boundary
conditions reads1,2

H = − J1�
i=1

L−1

�i
z�i+1

z − J2�
i=1

L−2

�i
z�i+2

z − B�
i=1

L

�i
x. �1�

We use the “traditional” notation �=−J2 /J1. The notations
�=J1 /B and �=B are sometimes used in the literature.

The sign of J1 is immaterial, since the Hamiltonian is
invariant under the transformation

J1 → − J1, �i
y → �− 1�i�i

y, �i
z → �− 1�i�i

z. �2�

Likewise, the sign of B is immaterial. Without loss of gen-
erality, we set J1=1. We restrict ourselves to positive � and
even L.

We also consider fixed boundary conditions, where we
add to the extremities of the chain two fixed spins �0 and
�L+1, with the possibilities of parallel ��0 ,�L+1= ↑ ↑ � or an-
tiparallel ��0 ,�L+1= ↑ ↓ � boundary conditions.

In the region of high frustration ���0.5�, despite exten-
sive studies,3–7 the phase diagram of the transverse ANNNI
model is not well known. For low B, the model is known to
be in the gapless “antiphase” ↑↑↓↓. It undergoes a second-
order phase transition at a magnetic field B1���. The exis-
tence of a “floating” phase, massless, and with slowly decay-
ing spin correlation functions, up to a Kosterliz-Thouless
phase transition at a magnetic field B2���, is an open ques-
tion. For high B, the TAM is known to be in a paramagnetic
modulated phase.

II. OBSERVABLES

We measure the two lowest energies E0 and E1, the mass
gap �=E1−E0, the entanglement entropy SA �see below�,

and two spin-spin correlation functions: the “slow” correla-
tion function

cs�d� = ��L/2+1
z �L/2+1+d

z �, 1 � d � L/2 �3�

and the “fast” correlation function16

cf�d� = ��L/2−d
z �L/2+1+d

z �, 0 � d � L/2. �4�

Interesting quantities related to the correlation functions
are as follows: The overlap o of cs�d� with the antiphase
correlation function,

ca�d� = �− 1���d−L/2�/2�, o =
2

L
�
d=1

L/2

cs�d�ca�d� . �5�

The average fast correlation function �times an oscillating
sign�,

c̄f = �− 1�L/2 2

L + 2�
d=0

L/2

cf�d� . �6�

The range of the fast correlation function,

R =

�
d=0

L/2

dcf
2�d�

�
d=0

L/2

cf
2�d�

. �7�

A. Entanglement entropy

It is possible to study an order-disorder phase transition
using the entanglement entropy.8 We divide the system of
size L into a left subsystem of size � and a right subsystem of
size L-�, and define

SA��;L� = − Tr��A ln �A� , �8�

where A denotes the degrees of freedom of the left sub-
system, B the degrees of freedom of the right subsystem, and
�A=TrB�	0��	0�; note that SA�� ;L�=SA�L-� ;L�. For a criti-
cal system, we expect �neglecting lattice artifacts�
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SA��;L� � �c/6�log�L sin�
�/L�	 , �9�

where c is the conformal anomaly number �central charge� of
the corresponding conformal field theory, and � means “up
to a �nonuniversal� additive constant;” for the case of interest
for the infinite-volume DMRG, �= 1

2L, and sin�
� /L� only
shifts the additive constant. For a noncritical system, we ex-
pect

SA
1

2
L;L� � �c/6��log L + s�L/��	 , �10�

where s�x� is a universal finite-size scaling function satisfy-
ing the constraints s�0�=0 and s�x��−log x for large x.

B. Domain-wall energy

So far, we only considered open boundary conditions.
Following Ref. 9, we define the domain-wall energy �note
that our definition of L differs by 2 from the definition of
Ref. 9�

EDW��,B,L� = �− 1�L/2+1�E0
↑↑��,B,L� − E0

↑↓��,B,L�	 ,

�11�

where E0
↑↑ and E0

↑↓ are the ground state energies with parallel
and antiparallel boundary conditions, respectively.

III. ALGORITHM

We implement the density matrix renormalization group
�DMRG� algorithm described in Ref. 10. We sample the ns
lowest energy levels with equal weights, i.e., we use the
reduced density matrix

�̂S =
1

ns
TrE �

i=0

ns−1

��i���i� �12�

�see Eq. �26� of Ref. 10	. Usually, since we are interested in
the mass gap �, we set ns=2. We identify system and envi-
ronment �for antiparallel boundary conditions, up to a spin
flip �i

y→−�i
y, �i

z→−�i
z�. The typical dimensions of the trun-

cated system and environment M range from 80 to 160; in
the following, M =80 will be understood, unless M is explic-
itly quoted.

The crucial part of the numerical computation is finding
the lowest eigenvalues and eigenvectors of the superblock
Hamiltonian; we employ the implicitly restarted Arnoldi al-
gorithm implemented in ARPACK,11 in the routine dsaupd
used in mode 1. We use �typically� 100 Lanczos vectors and
require convergence to machine precision, obtaining residual
norms �Hx−�x� / ����10−14.

We observe a truncated weight �the sum of the eigenval-
ues of the density matrix whose eigenvectors are dropped in
the truncation� 
�10−8 for “normal” configurations, and 

�10−7 for peaks of � �see below�.

We managed to diagonalize the system exactly up to L
=22; both the finite- and the infinite-volume DMRG algo-
rithms, reproduce the results of exact diagonalization. For
moderate L, finite- and the infinite-volume DMRGs, give
consistent results. For higher L, discrepancies between finite-

and infinite-volume DMRGs, and M dependence of � be-
come noticeable; they are strongly observable dependent,
and they will be discussed below, where results on observ-
ables are presented.

During a run of the finite-volume DMRG algorithm on a
system with Ln sites, information about the system and envi-
ronment for all smaller system is available. It is therefore
possible, with a moderate extra numerical effort, to estimate
the observables for all the systems with L�Ln sites. These
estimates almost coincide with the results obtained running
independently at each L. The additional errors introduced by
this procedure will also be discussed below.

The finite-volume DMRG algorithm at large L requires a
very large amount of memory; however, since the observ-
ables at each lattice size are accessed only twice per cycle,
they can be conveniently kept on disk, requiring only a very
large amount of disk space; for L=600 and M =80, e.g.,
�6 Gbytes are required.

IV. PHASES AT �=0.75

We will first focus our attention on the model at �=0.75,
and later on extend the study to other values of �.

Running the infinite-volume DMRG algorithm at �
=0.75 and B�0.257, with open boundary conditions, we
observe that the mass gap � vanishes exponentially in L,
apart from numerical errors due to the fact that � is com-
puted as E1−E0: see, e.g., Fig. 1.

The slow correlation function cs�d� almost coincides with
ca�d�; the overlap o approaches a value very close to 1 with
corrections proportional to 1/L. The fast correlation function
cf�d� is constant and close to ±1, apart from d=0 and d’s
close to L /2; the range R is almost exactly L /4 �the value for
a constant cf�d�	 and the average c̄f approaches a value very
close to −1 with corrections proportional to 1/L.

There is a very sharp phase transition at 0.257�B1
�0.258. We will postpone its detailed study, since it is best
done using EDW.

Running at �=0.75 and B�0.258, the mass gap � as a
function of L at fixed B shows sharp peaks with a frequency
increasing with B: see Fig. 2. Each peak matches exactly a
change of sign of c̄f. At each B, for L smaller than the first
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FIG. 1. Mass gap vs L for �=0.75 and B=0.257. To appreciate
the effect of numerical errors, note that E0�B=0.257��−0.8L.
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peak, we observe signals very similar to the case B�0.257;
for higher L, we observe that the minima of � seem to go to
zero for B�0.4 and to a nonzero limit for B�0.5; however,
the determination of � from the infinite-volume DMRG is
not accurate for L�200; finite-volume DMRG data with
M =80 become unreliable for L�300; we show in Fig. 3 the
case B=0.3.

We performed a finite-size analysis of �, similar to the
analysis of Ref. 2, but with a complication arising from the
peak structure. We run the finite-volume DMRG algorithm
for B=0.4,0.41,0.42,0.43,0.44,0.45,0.46 and Ln�292 cor-
responding to a minimum of �. For each B, we select the
minima of � and define �L�B ,�� outside the minima by in-
terpolation in L. We now take two values L1 and L2 and look
for the intersection Bi�L1 ,L2� of the two curves L1�L1

�B ,��
and L2�L2

�B ,�� vs B �interpolating in B at fixed L and � as
needed�. The results are shown in Fig. 4: we note that M
=120 and M =160 data almost coincide, and even M =80
data are adequate in the range of L’s considered; we quote as
a final result B2=0.424�3�. The data presented here were
obtained from a run at a single Ln for each B �see Sec. III�; in
order to check that the error introduced is under control, we
also performed separate runs for all the values of L required,
for N=80 and for N=120 at B=0.42, and repeated the analy-
sis: the values of Bi�L1 ,L2� never change by more than
0.0005.

For 0.258�B�0.45, the slow correlation function cs�d�
at fixed L shows oscillations with power-law damping, in
rough agreement with

cs�d� � ad−� cos�qd + �� , �13�

with ��0 for B=0.258, increasing with B but remaining
smaller than 1

3 . For B�0.5, cs�d� at fixed L shows oscilla-
tions with exponential damping. We tried to extract � by
fitting cs

2�d�, smoothed by taking a running average over
�2
 /q+ 1

2 � points, to the form ad−2�. In Fig. 5, we show the
typical case B=0.425; cs

2�d� for different values of L con-
verge not to a single curve but to two separate curves, with
different values of �, preventing a precise determination
of �.

The range of the fast correlation function R should distin-
guish clearly the floating phase, where R→� as L→� �since
��

1
2 �, from the paramagnetic phase, where R has a finite

limit as L→�. A first problem is the presence of oscillations,
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FIG. 2. Mass gap peaks in the L-B plane for �=0.75.
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FIG. 3. Minima of mass gap � vs L for �=0.75 and B=0.3.
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FIG. 4. �Color online� The intersection Bi vs L, for �=0.75.
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FIG. 5. The smoothed squared slow correlation function cs
2�d�

for �=0.75 and B=0.425, from the finite-volume DMRG at Ln

=710 and M =120, for values of L corresponding to minima of �.
�Data at M =80 give a very similar plot.�
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with dips corresponding to the peaks of � �see Fig. 6�; it is
solved by selecting the values of R at the L’s corresponding
to the peaks of �. After this operation, R vs L at fixed B and
M is well fitted to the form

R�L� =
sRL2 + pL

L + q
. �14�

If we plot the asymptotic slope sR vs B, we should be able to
see a drop toward 0 in correspondence with the phase tran-
sition. However, in the critical region, R �and sR� strongly
depend on M: see Fig. 6; we can only conclude that B2

0.45.

The analysis of the range of the slow correlation function
gives similar, but even less precise, results. We conclude that
the spin correlation functions are unsuitable for the precise
determination of the floating/paramagnetic phase transition.

A. Entanglement entropy

We show in Fig. 7 the entanglement entropy SA for the
typical case B=0.425. Finite-volume DMRG essentially re-
produces the results of infinite-volume DMRG at the same
M. We can estimate that the DMRG determination of SA is
reliable up to L=200 for M =80, up to L=300 for M =120,
and up to L=400 for M =160. For each value of M, within
the given range of L, the difference between finite- and
infinite-volume DMRG results is less than 0.001. We can
therefore compute SA using the faster infinite-volume
DMRG, and this allows us to work at larger values of M.

In the antiphase, SA is essentially constant, indicating a
very small correlation length.

The simple ansatz for the finite-size scaling function en-
tering Eq. �10�,

s�x� = − ln�x + e−�x� , �15�

with ��1, is found to fit the entanglement entropy data very
well �excluding just the very smallest lattices with L�10� in
all cases for the floating and paramagnetic phases; c is al-
ways compatible with 1. The best determination of �, ob-

tained by fitting SA with c�1 fixed, is shown in Fig. 8; our
final estimate is B2=0.44�1�.

B. Domain-wall energy

So far, we only considered open boundary conditions. We
now switch to fixed boundary conditions, in order to com-
pute the domain-wall energy EDW; with fixed boundary con-
ditions, there are no problems with quasidegenerate energy
levels �typically, ��0.01� or peaks in � associated with
level crossings, and truncated weights are 
�10−9 or smaller
for M =80. Even if we are not interested in the mass gap, we
run with ns=2, which gives results more stable than ns=1.

We may fit EDW to the form

EDW = a exp�− dL�L−� + E� �16�

in the antiphase and
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FIG. 7. �Color online� The entanglement entropy SA� 1
2L ;L� vs

the size of the system L, for �=0.75, B=0.425, Ln=710, and
infinite-volume DMRG.
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FIG. 8. The reciprocal correlation length 1/� �determined from
SA� vs B, for �=0.75. Fitting the M =120 and M =160 data for 20
�L�200, we obtain results almost identical to the M =80 results
plotted; likewise, fitting the M =160 data for 20�L�300, we ob-
tain results almost identical to the M =120 results plotted; we omit
these results from the plot for readability. All data for B�0.43 are
consistent with zero, with a very small error ��10−6� which is not
visible at the scale of the plot.
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EDW =
a exp�− dL�

L
��cos�kL + ��� − �sin�kL + ���	 �17�

in the floating phase �with d=0� and in the paramagnetic
phase.9 The fits, excluding �typically� lattices with L�16,
are of very good quality and stable.

Equation �16� fits perfectly EDW for B�0.257, giving
E�→0, constant �
1.6, and d
0.008 for B↗B1. Equation
�17�, with d=0, fits perfectly EDW for B�0.257 and gives
k→0 for B↘B1. The best estimators of B1 are E� in the
antiphase and k2 in the floating phase, both vanishing linearly
at B1, see Figs. 9 and 10 and 10; the final estimate of the
critical field is B1=0.2574�2�.

So far, we obtained results very similar to those of Ref. 9.
We turn now to the problem of identifying the floating phase,
i.e., a region with d=0. The data generated with the infinite-
volume DMRG at 0.3�B�0.4 seem to indicate d�0; this
appears to be an artifact of the infinite-volume DMRG, as we
can see from the comparison of EDW evaluated with the
finite- and infinite-volume DMRG at B=0.3, shown in Fig.
11.

We must therefore resort to the resource-consuming
finite-volume DMRG. We checked in several instances that

M =80 is sufficient to obtain accurate results and that obtain-
ing the data for all L’s from a run at a single Ln is acceptable:
in all cases, the determinations of d are well within the error
quoted.

We show the results in Fig. 12. The value of d obtained
from the finite-volume DMRG is consistent with zero up to
B=0.425, where we estimate ��1/d�104. The smoothness
of d vs B suggest a higher-order, possibly Kosterliz-
Thouless, phase transition. Note that d is quite compatible
with 1/� of Fig. 8 �apart from a normalization stemming
from the different definition of correlation length�, and so is
the resulting B2=0.435�10�.

The precise determination of the transition point of a
Kosterliz-Thouless phase transition is a notoriously difficult
problem: it is always possible that a system with a
huge correlation length is mistaken for a critical system.12

Indeed, the correlation length is expected to diverge very
rapidly when the Kosterliz-Thouless critical coupling is ap-
proached; following Ref. 13, we could conjecture a behavior
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FIG. 12. The decay parameter d of the domain-wall energy
EDW, computed with the finite-volume DMRG, vs B, for �=0.75.
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�� exp�b / �B−B2�	 for B↘B2. A fit to the above form of the
data of Fig. 12 gives unstable results for B2, indicating that
the determination of B2 from EDW should be treated with
some caution. On the other hand, a fit to the data of Fig. 8
gives results which are stable and fully consistent with the
estimate of B2 from SA given above.

The two determinations of B2 from �L and SA, obtained
by quite different methods, are accurate and in agreement
with each other �and with the less reliable determination
from EDW�; moreover, for each method, we see no trend of
B2 decreasing with increasing L or M �see especially Figs. 4
and 8�. We can conclude that, while it is possible that the
errors on B2 are underestimated, it is difficult to believe that
the floating phase might disappear completely on larger sys-
tems.

V. PHASE DIAGRAM

The study of the phase transitions at other values of �’s is
very similar to the one at �=0.75 presented in Sec. IV and
we can avoid repeating the details. We selected for our analy-
sis the values �=0.5, 0.52, 0.55, 0.6, 0.75, 1.0, 1.25, 1.5, 2.0,
5.0.

At �=0.5, the DMRG algorithm becomes inefficient at
low B, and we are unable to run at B�0.01. We see no sign
of a floating phase: the curves L�L�B ,�� vs B almost coin-
cide for B�0.06, and the intersections are very unstable.
Determining � by fitting SA with c�1 fixed, we see no sign
of �=�, see Fig. 13; given the poor convergence in M for
small B, we estimate B2�0.04. The analysis of EDW does not
give precise results for B2. The behavior of the modulation
parameter k �see Fig. 14�, which goes to a nonzero value as
B→0, hints at the very peculiar nature of the multicritical
point at �=0.5, B=0.1,14

For �=0.52 and 0.55, the quality of the determinations of
B1 and of the determination of B2 from SA is similar to those
at �=0.75; on the other hand, the analysis of �L and EDW do
not give precise results for B2. We present the plot of 1 /� for
�=0.52 in Fig. 15: the difference from Fig. 13 is remarkable.

For 0.6���1.5, there are no relevant differences from
the case �=0.75 described in Sec. IV; we only present the
determinations of B1 and B2 in Table I. For �=2, the only
difference is that EDW is not fitted well by Eq. �17� in the
floating and paramagnetic phases, and therefore the determi-
nation of B2 from EDW is unreliable.

In the case �=5, the determination of B1 and B2 is rather
imprecise: EDW is not fitted well by Eq. �16� in the antiphase,

TABLE I. Determinations of the transition fields B1 and B2 by different techniques.

� B1 �EDW� B1 �o� B2 ��L� B2 �SA� B2 �EDW�

0.5 0 0 �0.06 �0.04 �0.08

0.52 0.0201�1� 0.021�1� 0.095�15� 0.115�5� 0.12�3�
0.55 0.0501�2� 0.052�2� 0.160�15� 0.175�5� 0.18�2�
0.6 0.1015�2� 0.103�2� 0.235�6� 0.25�1� 0.25�1�
0.75 0.2574�2� 0.2575�5� 0.424�3� 0.44�1� 0.425�10�
1.0 0.5213�2� 0.522�2� 0.700�5� 0.72�1� 0.71�1�
1.25 0.7867�2� 0.785�2� 0.972�4� 1.00�1� 0.98�1�
1.5 1.0514�2� 1.045�5� 1.235�3� 1.26�1� 1.26�1�
2.0 1.5775�2� 1.576�2� 1.756�6� 1.79�1� 1.79�3�
5.0 4.667�3� 4.88�1�
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FIG. 13. The reciprocal correlation length 1/� �determined from
SA� vs B, for �=0.5.
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FIG. 14. �Color online� The squared modulation parameter k2 vs
B, for �=0.5.
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and it is fitted poorly by Eq. �17� in the floating and para-
magnetic phases; it is very hard to get precise results from
�L, since the modulation parameter is very small �k�0.01 in
the floating phase�. It is still possible to estimate B1 from o
and B2 from SA.

For all the values of � considered, the different determi-
nations of B1 and B2 are in substantial agreement with each
other: this is a strong argument supporting the reliability of
our results. It should be noticed, however, that the determi-
nation of B2 from �L is systematically lower than the deter-
mination from SA, possibly indicating that the error on the
determination from �L reported in Table I is underestimated.

We can beautifully summarize all the above results by
noticing that all the determinations of B1 and B2 are consis-
tent with

B1��� � 1.05
� −
1

2
�, B2��� � 1.05�
� −

1

2
��� − 0.1� .

�18�

Finally, we draw the phase diagram in the �-B plane in
Fig. 16. The region ��0.5 was studied in Ref. 2; the critical
line separating the paramagnetic modulated and paramag-
netic unmodulated phases is known analytically.15 The data
in the region ��0.5 are taken from the present work; note

that earlier results3–6 provided only a qualitative picture of
the phase diagram in this region.

A very interesting question is whether the floating phase
extends up to �=� or it terminates at finite �; we found that
the floating phase extends at least up to �=5.

VI. SUMMARY AND CONCLUSIONS

We applied the DMRG algorithm to the study of the quan-
tum transverse ANNNI model in the region of high frustra-
tion ���0.5�.

We obtained clear evidence for the existence of a floating
phase for ��0.5, extending at least up to �=5. The floating
phase is separated from the paramagnetic modulated phase
by a high-order �possibly Kosterliz-Thouless� critical line,
ending at the multicritical point ��=0.5, B=0�; the corre-
sponding central charge is c=1. In Ref. 7, the floating phase
was shown to have a finite extent at �=0.5; our study cannot
exclude a floating phase of very small extent, i.e., 0�B2��
=0.5��0.04.

We obtained precise estimates for the critical points, veri-
fying that different methods give consistent results. Simple
and accurate formulas, for the two critical lines are reported
in Eq. �18�.
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