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Static flux-closure structures in three-dimensional (3D) mesoscopic ferromagnets are known to differ quite
significantly from their 2D counterparts. How these differences reflect in the dynamic properties of the mag-

netization is, to date, an open question. Micromagnetic simulations are employed to study the normal modes of
magnetic oscillations in thick (60-80 nm) rectangular Permalloy prisms with 3D Landau-type flux-closure
domain structure. Various magnetic normal modes are excited by a short field pulse and extracted using
methods based on Fourier analysis. In particular, well-defined modes in the range of a few GHz are identified
as oscillations of vortices, domain walls, and as excitations localized in the corners. The asymmetric Bloch

wall in the center of the 3D Landau structure wall is a genuinely three-dimensional feature and thus gives rise
to effects which were not reported in previous studies on 2D systems. It is argued that experimental evidence

of these findings can be obtained.
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I. INTRODUCTION

Any memory device based on ferromagnetic elements op-
erates with processes resulting from spin dynamics, which
intrinsically determine the speed of the device. Typical dy-
namical processes occurring in ferromagnets after a pertur-
bation of the static configuration are normal excitations or
magnons. More complicated oscillations can often be either
expanded in series of magnons in the linear case or studied in
terms of interactions between magnons and other excitations
in the nonlinear case. Due to the complexity of the ferromag-
netic problem, however, the normal modes of bulk samples
can be calculated analytically only in some limiting situa-
tions. For submicron confined magnetic elements, in which
both the long-range dipolar and the short-range exchange
interaction have to be taken into account, analytical solutions
are only available for a few simple geometries. Alternatively,
micromagnetic simulations combined with Fourier analysis
methods have been proven to be an effective way to extract
normal modes in confined magnetic structures.'> Usually,
the normal modes obtained from simulations can be directly
compared to the results of Brillouin light scattering (BLS),
time-resolved (TR) magneto-optical Kerr studies (MOKE),
and other experiments, which are currently the most suitable
techniques to the study of magnetic normal modes experi-
mentally. Excellent agreements are achieved in most of the
cases.

Several studies on magnetic excitations in various thin-
film elements have been reported, including wires,>”’
rectangles,*3-19 circular disks>'""! and squares?** with
closure domains, rings,” and several other elementary
shapes. In all examples listed above, the samples studied
were essentially two-dimensional (2D), i.e., thickness effects
are not important as far as the profile of the dynamic mode is
concerned. Along the sample thickness, the magnetization is
assumed to be homogeneous, while it varies at the surface.
Thus, the mode profiles in those systems can be considered
to be confined on the sample surface. Recently, studies of
magnetic excitations in 3D cylindrical dots?®?” and dc spin-
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polarized current-driven modes in 3D elliptical dots?® have
been reported, pointing out the importance of three-
dimensional processes in spin dynamics.

In this paper, we present micromagnetic simulations of
normal modes in 3D soft-magnetic rectangular samples. The
thickness of the sample is in the range of 60—80 nm and the
lateral extension of the order of a few 100 nm. The thickness
effect is already significant in the equilibrium configuration,
leading to a characteristic, asymmetric magnetic ground
state. This 3D character of both the sample and the magnetic
ground state represents a fundamental qualitative difference
compared with the numerous studied previously reported on
2D systems. In contrast to the 2D case, where the magnetic
structure of a patterned element usually maintains the sym-
metry of the sample itself, with the same symmetry being
evident in the corresponding normal modes, in the case of
3D elongated elements the magnetic ground state generally
does not maintain the symmetry of the sample shape. The
ground state is often a complicated magnetic-flux-closure do-
main pattern with an asymmetric Bloch wall separating the
two main domains.?”3% As will be shown later, the asymmet-
ric domain wall can be considered as a part of a stretched
magnetic vortex core that extends through the thickness of
the sample. Recently, the dynamics of magnetic vortices and
vortex cores in thin-film elements has been intensively
studied.>!'-2# In this context, the present study of the dynam-
ics of a 3D vortex structure can be considered as an exten-
sion of the previous knowledge on this topic.

In our simulations we find that the excitation of a very
large number of normal modes is typical for 3D samples. It is
due to this mode complexity that usually only a few of them
can be well resolved and understood. All the well-defined
modes are three-dimensional, asymmetric excitations. We
find in several respects a distinctly different behavior of
these 3D modes as compared with that known from 2D ele-
ments. The purpose of this paper is to identify the most im-
portant 3D modes and to demonstrate the direct influence of
the three-dimensionality of the sample and the resulting
asymmetry of the magnetic ground state on the dynamic nor-
mal modes.
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II. MICROMAGNETIC MODEL AND SIMULATION
METHOD

This study was carried out using 3D micromagnetic simu-
lations. The simulation procedure is divided into two parts,
the static and the dynamic one. In the static part, the ground
state is obtained by energy minimization. The principle be-
hind this is that equilibrium magnetic structures are
minimum-energy configurations. Numerically, the dis-
cretized vector field of the magnetization can thus be varied
systematically to minimize the total energy and thereby ob-
tain a discretized representation of a stable magnetic configu-
ration. In micromagnetism, the total energy of the system
usually contains four terms: The Zeeman energy, the ex-
change energy, the dipolar energy, and the anisotropy energy.
In our case, we study Permalloy samples—which have very
small anisotropy—at zero static field. Therefore, only the
exchange energy and dipolar energy are relevant to our static
calculations. By representmg the magnetization inside the

sample as a vector field M(7) with the constraint [M|=M
=const, where M, is the saturation magnetization, the two
energy terms can be written as®’

Eepe = f A[(Vm)? + (Vm,)? + (Vm)*ldv (1)
)

and
Edip = @ 1\2 . I}de, (2)
2 Jw)

respectively. In Eq. (1), A is the exchange constant and m,,
my, and m, are the three Cartes1an components of the unit

vector m=M /M. In Eq. (2), H is the dipolar field, which

can be calculated by solving the Poisson equation AU =VM
for the magnetic scalar potential U using the well-known
Neumann boundary conditions at the sample surface. The

dipolar field is the gradient field of the potential (H,
=-VU) and is a unique function of the magnetization distri-
bution in the sample. The integrals of both Egs. (1) and (2)
are taken over the whole volume of the sample. The total
energy of the system is uniquely determined by the magne-
tization distribution.?

The energy minimization method cannot be used to cal-
culate dynamic oscillations of the magnetization as they oc-
cur, e.g., after a short perturbation by an external field pulse.
To study these effects, the magnetization dynamics is mod-
eled numerically by integrating the Landau-Lifshitz-Gilbert
equation

AM() oy e
P 1+ az)M(r,t) X H(7,1)
s M XIMED X Hea 7],

A3)
in time, where 7 is the gyromagnetic ratio, « is a phenom-

enological damping factor and H.; is the effective field,
which comprises external and internal field contributions
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from the various energy terms. The effective field is defined
as the negative derivative of the total energy density with
respect to the magnetization.

The static and the dynamic micromagnetic calculations
are performed with our finite-element codes already used in
previous studies.>’3? In this framework, the sample is dis-
cretized by dividing its volume into tetrahedral elements. Lo-
cal values of each magnetization component, of the scalar
magnetic potential U, and of each effective field contribution
are defined at the nodal points of the elements. The magne-
tostatic field calculation is performed with a hybrid finite-
element-boundary-element method as described in Ref. 33.
The static part of the calculation of the magnetic structure
(i.e., the energy minimization) is performed using the conju-
gate gradient method. In this case, the nonlinear constraint
|M| =const is observed automatically by representing the
local magnetization direction with polar angles 6 and ¢. In
contrast to this, the dynamic integration uses the Cartesian
components of the local magnetization. Minute variations of
, which may occur during the integra-
tion of the Gilbert equation, are constantly corrected by
renormalizing the local magnetization at each node after a
certain number of time steps. The numerical integration of
Eq. (3) is performed using the Adams integration scheme.*

The simulations are performed for three rectangular Per-
malloy prisms with different thicknesses, i.e., 60, 70, and
80 nm to study the influence of the sample thickness on the
normal modes. All prisms have the same aspect ratio
(2:1:0.4). In all cases, the cell size of the irregular tetrahedral
mesh is approximately 5 nm, which is fine enough to prop-
erly resolve all relevant inhomogeneous magnetic regions in
the samples studied. The largest one (400 nm X200 nm
X 80 nm) consists of 307 200 tetrahedrons. Typical values
for Permalloy (M,;=1.0 T and A=13 pJ/m, K=0) are used
for the material parameters. The damping factor in the dy-
namic calculation is chosen to be a=0.01, which is small
enough to ensure underdamped precession of the magnetiza-
tion as required to observe the characteristic normal modes.

II1. MODE EXCITATION AND FOURIER ANALYSIS

The dynamic part of our study consists in first exciting
magnetic oscillations by applying a short magnetic field
pulse to the structure at equilibrium and extracting the vari-
ous normal modes by means of Fourier analysis. The pulse is
weak and short to ensure that the excitations stay in the lin-
ear regime. To couple to modes with different profiles, we
have studied different situations, in which the field pulse is
applied either in the plane of the sample (along the short axis
of the prism) or perpendicular to it. In all cases we used a
10 mT Gaussian-shaped field pulse with a width of o
=50 ps. After the sample magnetization is tipped away from
equilibrium, the dynamic calculation yields the change of
magnetization with time at every discretization point. To ob-
tain a clear description of the oscillations, the static equilib-
rium structure is subtracted as a constant background from
the results obtained from the dynamic calculation. The re-
maining vector field is then only the dynamic part of the
magnetic structure, i.e., the variations of the magnetization in
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FIG. 1. (Color online) Power spectrum of m, for the
60-nm-thick sample excited by an in-plane field pulse. Each peak of
the curve indicates a normal mode candidate.

time and space. The perturbation induced by the field pulse
leads to rather noisy magnetization dynamics, from which
the main oscillation frequencies can be extracted by means
of Fourier transforms. Instead of using the spatially averaged
magnetization, we calculate the Fourier transform at each
node. Then, the total spectrum is obtained by averaging the
amplitude of the oscillations over all nodes. In this way, the
antisymmetric modes are obtained as well.

Figure 1 shows a typical power spectrum obtained by
Fourier transform of the oscillations excited by a short field
pulse. Experimentally, such spectra could be recorded, e.g.,
in ferromagnetic resonance (FMR) studies. Each peak of the
spectrum represents a normal mode candidate, which can be
analyzed individually. This is achieved by means of win-
dowed Fourier transforms. First, the oscillations of the mag-
netization at each node are Fourier transformed. Then, a
small frequency range of interest is selected and the oscilla-
tions with frequencies within this range are transformed back
from the frequency domain to the time domain. By this, the
spatiotemporal profile of each mode can be obtained sepa-
rately, using both the amplitude and phase information. Simi-
lar methods were used in Refs. 7 and 9. The simulations are
extended over a time period of at least 10 ns to obtain a
frequency resolution (sampling) of 0.1 GHz in the Fourier
analysis. The marked peaks in Fig. 1 will be discussed later
in detail as they correspond to magnetic normal modes which
are well resolved in the calculation. They are connected with
characteristic oscillations of the vortex, the domain walls,
and the magnetization at the corners of the sample. These
modes are all located in the magnetically inhomogeneous
regions of the equilibrium structure.

For reasons of simplicity, we only focus on the variations
of the z component of the dynamic magnetization to analyze
the spatial distribution of the normal modes, although the
information on all three components is obtained. We eluci-
date the mode profiles by showing representative snapshots
of the periodic oscillation, and we do this by displaying iso-
surfaces of the local magnitude of the oscillation. The dy-
namic evolution of these modes can be seen in various mov-
ies, which we provide as supplementary material.>> The
analysis of the 3D modes is found to be significantly more
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FIG. 2. (Color online) Magnetization distribution at equilibrium
for the 60-nm-thick sample. The arrows indicate the orientation of
the magnetization in the four domains. The color (grayscale) repre-
sents the local value of m,, ie., the x component of the
magnetization.

complicated than in the 2D case. As will be shown, all the
observed modes display markedly nontrivial features, even if
they are clearly resolved in the simulations. The complicated
spatial distribution of the modes is a direct consequence of
the complexity of the 3D magnetic ground state. The visual-
ization of the 3D mode profile also represents a difficulty;
especially compared to the usual case of 2D modes, which
can be easily displayed on a surface.

IV. THREE-DIMENSIONAL LANDAU STRUCTURE

In all the cases that we have studied, the zero-field
ground-state structure is an asymmetric, Landau-type 3D
magnetic flux-closure domain pattern. Such an asymmetric
structure was predicted by micromagnetic simulations of a
rectangular Permalloy block® and later observed experimen-
tally in Fe particles.?® Since this ground-state structure is
rather complex and important for the understanding of the
corresponding normal modes, we give a brief description of
it in this section.

Figure 2 shows the closure domain pattern on the surfaces
of the 60-nm-thick sample. Here and in all the following
cases, the coordinate system is chosen so that the x axis is
along the long axis of the slab, the y axis along the interme-
diate edge, and z along the thickness. The magnetization in
the sample is divided into four domains, forming a Landau
domain structure. In the 3D case, this basic flux-closure do-
main structure is not only inhomogeneous in the film plane,
but also along the sample thickness. Hence, a study of the
internal magnetic structure is essential for understanding its
fundamental properties. Contrary to the 2D case, the 3D Lan-
dau structure is asymmetric. This asymmetry is already evi-
dent at the top surface shown in Fig. 2. Looking into the
interior of the bar, it can be seen that the two large domains
are separated by a characteristic domain wall known as
asymmetric Bloch wall or Hubert-LaBonte wall.3*37 Figure 3
shows the magnetization distribution of the asymmetric
Bloch wall on a cross section parallel to the y-z plane in the
middle of the sample. In the center of the sample, the mag-
netization changes its direction from one domain to another
[Figs. 3(a) and 3(b)] by rotating in the z direction [Fig. 3(d)],
thus forming a Bloch type wall. Near the surfaces, however,
the magnetization direction changes by rotating parallel to
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FIG. 3. (Color online) (a) Magnetization distribution indicated
by arrows in a cross section parallel to the y-z plane in the center of
the 60-nm-thick sample. Color (grayscale) representations of m,,
my, and m, on this cross section are shown in (b), (c), and (d),
respectively, to display the asymmetric Bloch wall and its Bloch
and Néel components. Note that the domain wall is asymmetric and
the Bloch component of the domain wall [yellow (bright) spot in
panel (d)] is not exactly at the middle of the cross section.

the surface in the y direction [see Fig. 3(c)], thereby forming
the so-called Néel caps. This Néel-like transition at the sur-
faces minimizes the magnetostatic surface charges and thus
the dipolar energy. It is clear that this structure cannot main-
tain the left-right symmetry of the sample.

Another important feature of the ground state is the for-
mation of magnetic vortices on the top and bottom surfaces.
The location of the vortex on the surface is determined by
the orientation of the Néel cap, which can point in the posi-
tive or negative y direction. On the surface, the caps consti-
tute a 180° Néel-type domain wall, which ends by connect-
ing to the small closure domains with magnetization pointing
along the y direction, as shown in Fig. 2. If the magnetization
in the Néel cap is parallel to that of the closure domain, these
regions can be connected to each other smoothly. Otherwise,
a vortex with a core perpendicular to the surface is formed at
the intersection.’® Since the two Néel caps on the top and
bottom surfaces have opposite orientation® [see Fig. 3(c)]
but the closure domain magnetization direction is the same
on either surfaces, the vortices on the top and bottom surface
are always located on opposite ends of the Néel wall.

The exact locations of the vortices on both surfaces of the
60-nm-thick sample are shown in Fig. 4(a). Thinking about
two separate vortices can however be misleading. In fact, the
structure could rather be considered as one stretched vortex,
which is a distinct 3D effect. This can be seen from Fig. 4(b),
which displays an isosurface with constant m, (0.7 is chosen
here).?° Inside the volume defined by this surface, m. has a
larger value. The vortices on the surfaces are thus connected
by a region with large m, inside the asymmetric Bloch wall.
Obviously, different regions with perpendicular magnetiza-
tion, namely, the central, Bloch-like part of the asymmetric
domain wall and the cores of the vortices at the surface are
directly connected. Therefore, a helpful and simpler alterna-
tive interpretation is to regard the entire tubelike region
shown in Fig. 4(b) as a single, distorted vortex core. This
interpretation is consistent with the feature of the asymmetric
Bloch wall as discussed before. A minimum value of the
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FIG. 4. (Color) (a) Vortex core positions on the top and bottom
surface in equilibrium; indicated by the red spots (sample thickness:
60 nm). (b) Isosurface displaying the area of constant m, value
equal to 0.7.

sample thickness is required to sustain such an asymmetric
structure. In our calculations, we find that such a structure is
formed in the 60-nm-thick sample, while a 50-nm-thick
sample of the same aspect ratio yields vortices on the top and
bottom that are almost overlapping. In this case, the ground
state becomes similar to a symmetric closure domain pattern
as is known in 2D systems. The aforementioned isosurface of
m, then evolves towards a short tube oriented parallel to the
7 axis, located in the center of the sample.

V. THREE-DIMENSIONAL VORTEX CORE DYNAMICS

The lowest-frequency mode is a relatively simple oscilla-
tion of the stretched vortex core region, which is closely
related to the usual gyrotropic motion of the vortex core in a
2D system. This mode is labeled as mode V, in Fig. 1. In
thin-film elements, a displaced vortex core rotates with a
characteristic frequency around its original location (usually
the center of the system, but not in this case) due to a restor-
ing force given by*

- - dR (R
F=G><——¥, (4)
dt JR

where G is the gyrovector with the same direction as the

polarization of the vortex core (+z), R is the location of the
vortex core, and w is the potential energy of the system.
From this equation, it can be seen that the displaced vortex
should rotate counterclockwise if the vortex core is pointing
in the positive z direction. For disk-shaped thin-film elements
with symmetric vortex structure, the gyrotropic frequency
was shown to depend only on the aspect ratio of the
sample.*!

Surprisingly, we found three variants of this gyrotropic
mode occuring at different frequencies in our thick, 3D
samples, unlike the previously reported singular gyrotropic
mode in 2D cases, which occurs at only one well-defined
frequency. The splitting of the gyrotropic mode into variants
with different frequencies is therefore a genuinely three-
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FIG. 5. (Color online) Schematic representation of three variants
of the gyrotropic vortex mode in thick ferromagnets. The solid line
indicates the vortex core position at a given time; the dashed line
shows its position after half of the oscillation period. (a) Fundamen-
tal gyrotropic mode (V,), where the vortex core is rotating in the
sample without variations along the sample thickness. (b) First-
order mode (V), characterized by a rotational core oscillation with
a node in the center of the sample. (¢) Second-order mode with two
nodes (V,). In all cases, the vortices rotate in the same direction on
both the top and the bottom surface.

dimensional effect. The occurrence of these new vortex
modes can be easily understood by regarding the stretched
vortex as an oscillating entity, which—contrary to the 2D
case—contains interior degrees of freedom.

If we neglect for a moment the bending of the tubelike
vortex core shown in Fig. 4(b), the core can be approximated
simply by a straight line connecting the vortex centers on the
top and bottom surfaces. In this model, the fundamental gy-
rotropic mode V) is a simple circulation of this line around
the central position, as sketched in Fig. 5(a). Higher-order
modes of such a circulating mode are sketched in the other
panels (c), (d). In these modes, the vortex core also oscillates
on a circular orbit on the surfaces, but the amplitude of this
oscillation varies along the thickness. The first order mode
V| contains one node of this oscillation in the center, while
the mode V, is characterized by two such nodes. Obviously,
these higher-order modes can only occur in 3D samples of
sufficiently large thickness to allow for variations of the
magnetization dynamics along the vortex core. This is con-
sistent with the findings of Boust et al.,’® who found that a
higher-order vortex core mode occurs in sufficiently thick
cylindrical permalloy nanodots. Even though in practice the
modes identified as V| and V, have a much more compli-
cated spatial distribution compared with the simple sketch in
Fig. 5, this simple model captures most of the basic features
of the 3D vortex modes which will be described in detail in
the rest of this section.

Figure 6(a) shows a snapshot of both the top and bottom
surface for the V, mode resolved for the 60-nm-thick sample.
The frequency of this mode is 1.1 GHz. Note that what is
shown here is only the dynamic magnetization, i.e., the
change of magnetization from equilibrium. The equilibrium
position of the vortex core is located between the yellow
(bright) and blue (dark) dots shown in Fig. 6(a). The core is
displaced towards the yellow (bright) dot, in the direction
along the line connecting the yellow (bright) and blue (dark)
dots. In the direction opposite to the one the core is displaced
to, there is a region where the z component of the magneti-
zation decreases correspondingly, which appears as a blue
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FIG. 6. (Color online) Illustration of the V,, mode resolved for
the 60-nm-thick sample. Only the variations of the z component are
shown. (a) Snapshot of the dynamical magnetization on the top and
bottom surface. The blue (dark) and white arrow indicate the rota-
tional direction of the blue (dark) and yellow (bright) spot on the
top surface. On the bottom surface, the rotational direction is the
same but with a different phase. (b) Three snapshots of the dynami-
cal magnetization inside the sample. The first one is taken at the
same moment as (a). Two isosurfaces with constant absolute value
of dim_, positive (yellow/bright) and negative (blue/dark), are shown
in each snapshot.

(dark) dot in the figure. The arrows indicate the rotational
direction of the dots, which is counterclockwise in this case.
This is consistent with the prediction of Eq. (4), since here
the core is polarized in positive z direction, as shown in Fig.
4. At the surfaces, this mode is recognized to be the gyrotro-
pic mode of the vortex. A significant difference with respect
to the 2D case can be seen in Fig. 6(a): The vortex core
gyration occurs at different phases on the top and bottom
surface, with the top surface in this case lagging behind by
about 90° with respect to the bottom surface.

The interior profile of this mode is shown in three snap-
shots in Fig. 6(b). Two isosurfaces with positive and negative
constant value of the z component of the dynamic part of the
magnetization om are displayed. Hence, the isosurfaces rep-
resent areas of constant oscillation magnitude. In each of
these snapshots, the yellow (bright) surface describes the re-
gions in which the z component of the magnetization in-
creases by a specific amount, while the blue (dark) surface
shows the regions where it decreases by the same amount. In
the central part of the sample, the V,; mode is located near the
Bloch part of the asymmetric domain wall. In this sense, it
can be considered as a domain-wall oscillation mode. Since
this oscillation is also coupled to the gyrotropic motion of
the vortices on the surfaces, it is more convenient to interpret
this as a coherent gyration of the stretched vortex core shown
in Fig. 4(b). Analogous to the previously described effects on
the surface, where the rotation of the vortex core results in
one spot where m, increases and a second one where it de-
creases, a displacement of the stretched vortex core leads to
two “tubes” in this isosurface representation, one of which
denotes the increase and the other the decrease of m.. Thus,
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FIG. 7. (Color online) Illustration of the V; mode resolved for
the 60-nm-thick sample. (a) Snapshot of the dynamic magnetization
on top and bottom surfaces. (b) Three snapshots of the dynamic
magnetization inside the sample with the first one at the same mo-
ment as (a). Two isosurfaces with constant absolute value of &m.,
positive (yellow/bright) and negative (blue/dark), are shown in each
snapshot.

the two blue (dark) spots and the two yellow (bright) spots
on the top and bottom surfaces are connected naturally by
the yellow (bright) and the blue (dark) pipelike regions. The
third snapshot is taken half a period later, when the oscilla-
tion has the opposite phase with respect to the first snapshot.
The time difference between the first and the third snapshots
is half the period of oscillation, while the second snapshot is
taken at a moment in between. In this representation of the
V, mode, the yellow (bright) and the blue (dark) tubes are
constantly revolving around each other, with the sense of
rotation determined by the core magnetization direction.
For the 60-nm-thick sample, the simulations yield another
mode with a slightly larger frequency of 1.3 GHz. This mode
is labeled V|, and it can be regarded as a variant of the
fundamental gyrotropic mode V,,. At the surfaces, this mode
also appears as a gyrotropic mode, albeit with a phase dif-
ference on the top and the bottom surface. Three snapshots
inside the sample are shown in Fig. 7(b) using an isosurface
representation as was done previously in the description of
the V,; mode. Again, the difference in time between the first
and the third snapshot of Fig. 7(b) is half a period of the
oscillation and the second frame shows the situation at an
intermediate time. It can be seen that the variations of the
surface magnetization [represented by the yellow (bright)
and the blue (dark) spots] extend deep into the sample, simi-
lar to the case of the V; mode. The difference here is that
these oscillating areas are not connecting the opposite sur-
faces, as it was previously the case with the “tubes.” The
oscillating regions are mostly localized around the surface,
and are gyrating about the equilibrium position of the vortex
at the surface. In this mode, the oscillations are most pro-
nounced near the surface, while in the center of the sample
there is a region of small amplitude. These features are con-
sistent with the schematic representation of the mode V, as

PHYSICAL REVIEW B 76, 094407 (2007)

FIG. 8. (Color online) Illustration of the V, mode resolved for
the 80-nm-thick sample. (a) Snapshot of the dynamic magnetization
on top and bottom surface. (b) Three snapshots of the dynamic
magnetization inside the sample with the first one at the same mo-
ment as (a). Two isosurfaces with constant absolute value of dm,,
positive (yellow/bright) and negative (blue/dark), are shown in each
snapshot.

shown in Fig. 5(b). The oscillation amplitude of the V; mode
is much smaller than it is in the V,; mode. In the 60-nm-thick
sample, it is about half as large.

A third mode of the vortex core oscillation is displayed in
Fig. 8. In this case, the 80-nm sample has been chosen to
illustrate the profile of this mode, because it is better re-
solved in particles of larger thickness. This is the second-
order vortex mode V,, and it has a frequency of 1.9 GHz.
Similar to the two previous modes, it appears as the rotation
of the vortex core at the surfaces [see Fig. 8(a)]. In Fig. 8(b),
the same representation with isosurfaces is used to display
the evolution of the mode profile over half an oscillation
period. The mode has a complicated internal structure, which
consists of localized regions with pronounced oscillations
near the surface vortices (as was the case in the mode V)
and a pronounced oscillation of the central region. These
three different regions are separated by areas with oscilla-
tions with low-amplitude and they are gyrating around the
equilibrium position of the stretched vortex core. The central
region oscillates almost with opposite phase with respect to
the surface oscillations. This corresponds to the schematic
representation of this mode as shown in Fig. 5(c). Although
the details of this mode are very complicated, the basic fea-
tures of three strongly oscillating regions separated by two
low-amplitude regions (nodes) are well reproduced by this
simple model.

A. Comparison of the vortex modes

All three modes discussed above are related to the rota-
tion of the vortex core, at least from a view on only the top
and bottom surfaces. The V; mode has the lowest frequency
and the simplest structure inside the sample. This mode is
analogous to the gyrotropic mode occurring in 2D systems
and can be considered as the rotational mode of the stretched
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FIG. 9. (Color) Perspective view on the internal oscillations of
(a) the Vy mode, (b) the V| mode, and (c) the V, mode with isos-
urface representation. In addition to the regions of strong variations
in m, shown as previously with yellow and blue surfaces, the isos-
urfaces om,=0 are displayed in green.

vortex core in 3D prisms. The two other modes V; and V,,
have higher frequencies and acquire more complex structures
inside the sample. These modes have been interpreted as
higher-order modes according to the sketch in Fig. 5.

In one-dimensional (ID) and 2D systems, higher-order
modes are often characterized by the existence of nodes or
nodal lines. A straightforward extension of this concept to
the 3D case is the introduction of nodal planes, i.e., the iden-
tification of surfaces inside the volume, which are located
between the oscillating regions, and which describe areas,
where the magnetization remains constant in time and space
for a specific frequency. However, we found that such nodal
surfaces could not be identified in our simulations, at least
not in the strict sense as it is applicable in simpler systems.
Although surfaces with zero fluctuation dm=0 can be easiliy
determined at any point in time for each mode, it is found
that these curved surfaces constantly change their position
and shape. Therefore, no region can be found, where the
magnetization remains exactly constant over the entire oscil-
lation period. As a result, the isosurfaces dm=0 obtained in
each simulated frame cannot be defined—strictly
speaking—as nodal surfaces of the mode. It is nevertheless
helpful to display these isosurfaces with dm=0, since they
represent at least a good approximation to nodal surfaces.
This is shown in Fig. 9, where snapshots of the dm,=0 iso-
surfaces are displayed for the three vortex modes.

The “nodal” surfaces dm,=0 separate the oscillating re-
gions with positive variations from those with negative
variations. It is evident that with increasing order (i.e. from
the mode V|, to the mode V,) the number of &m.=0 isosur-
faces separating such regions increases. In this sense, the
situation is analogous to the well-known 2D case. The in-
crease in the number of nodal surfaces is consistent with the
observed increase of the mode frequency. This effect has also
been observed in studies of higher-order excitation modes in
2D disks.>!¢ The isosurface representation of Fig. 9 helps
localizing the approximate position of the nodes and thereby
corroborates the applicability of the simple “string” model of
Fig. 5.

B. Thickness dependence

Finite-size effects are decisive for the formation of the
magnetic flux-closure patterns. We can thus expect that the
particle size and shape also influence the dynamic behavior
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of the magnetization. In particular, the thickness dependence
of the observed modes and their frequencies is important
when 3D effects of the magnetization dynamics are to be
studied. For this purpose the various modes have been ana-
lyzed in three different samples of the same material and
aspect ratio, but different size. The size dependence is in this
case effectively a dependence on the thickness, since the
in-plane part of the magnetic flux closure pattern is largely
invariant in the three samples. On the other hand, variations
of only the thickness while keeping the in-plane sample size
constant would correspond to a change of aspect ratio. This
would lead to differences between the ground-state configu-
rations of the different samples, thus making it much more
difficult to directly compare the respective modes in the dif-
ferent samples. We hence kept the aspect ratio constant and
varied only the size. The thickness of the three samples is of
60, 70, and 80 nm.

The V, mode is observed in all three samples. In the pre-
vious section, the V; mode has been identified as the 3D
counterpart of the gyrotropic vortex mode known from 2D
thin-film elements. Remarkably, the frequency of this mode
is the same for the three samples (1.1 GHz). This is consis-
tent with previous studies'’'84142 of this mode in the 2D
case, where it has been shown that the gyrotropic motion
depends on the aspect ratio of the elements.

The V, mode is also observed in all three samples, but
with varying frequency. For the 80-, 70-, and 60-nm-thick
samples, the frequencies are 1.9, 2.2, and 2.9 GHz, respec-
tively. This size dependence of the frequency can be attrib-
uted to the different length of the antinodal segments along
the vortex core. The length of the domain wall [or the length
of the tube shown in Fig. 4(b)] should be approximately
proportional to the length of the sample. A shorter wall
length in a smaller sample will cause larger exchange energy,
thus higher frequency, with the same number of nodes. This
is in agreement with the simple string model of Fig. 5, where
a reduction of the layer thickness is intuitively expected to
increase the frequency. The decrease of frequency of a
higher-order vortex core mode with increasing thickness has
also been reported by Boust et al.?® who performed similar
3D micromagnetic simulations on a somewhat simpler mag-
netic object with vortex configuration.

The V| mode is observed in the 60-nm- and in the
70-nm-thick sample, but not in the 80-nm-thick one. The
frequency decreases from 1.3 GHz in the 60-nm sample to
1.2 GHz in the 70-nm sample. It can be assumed that the
mode also occurs in the 80-nm sample, but its frequency is
probably too close to the V; mode to be resolved properly in
the simulations. Similar difficulties in separating almost de-
generate modes have been reported also in related experi-
mental studies on 2D systems.>!® Note that the amplitude of
the oscillations found in the V,, mode is always significantly
larger than the amplitude of the oscillations found in the V;
mode. Therefore, a superposition of these two modes in the
case of almost identical frequency might not be detectable. A
systematic study on the size dependence would obviously
require the analysis of a larger number of samples. However,
such a systematic analysis is difficult to obtain numerically.
Since a high spatial resolution (discretization density) is nec-
essary throughout the sample to obtain accurate and well-

094407-7



YAN, HERTEL, AND SCHNEIDER

resolved results, the number of required discretization points
increases approximately with the third power of the size
(edge length). Thus, the size of the three-dimensional objects
which can be calculated is limited by the drastically increas-
ing requirements of computer resources, and we currently
cannot go significantly beyond size of the 400X200
X 80 nm?* sample for high-resolution simulations as they are
required in this study.

It is also worthwhile to point out that in our calculations,
all three gyrotropic modes can be excited by both in-plane
and out-of-plane pulse. This differs from the situation in 2D
symmetric vortex structures, in which the gyrotropic mode
can only be excited by an in-plane pulse, as an out-of-plane
pulse cannot displace the vortex core.'” In our samples, how-
ever, due to the intrinsic asymmetry of the ground state, even
a homogeneous out-of-plane pulse can exert a torque to the
vortex core.

C. Relative phase of the vortex gyration at the surfaces

An interesting feature of the 3D vortex modes is that the
vortices generally rotate with a different phase on the top and
bottom surfaces. In the case of the V;, mode in the 60-nm
sample, the rotation of the core on the top surface is approxi-
mately 90° behind that of the bottom one (defined as a phase
difference of +90°). Such a phase difference is also observed
in the same sample for the V; mode, but the relative phase of
the vortex rotation on the top and bottom surface is different.
As shown in Fig. 7(a), the top surface is now approximately
90° ahead of the bottom surface in this mode. Hence, the
relative phase of the oscillations in the V;, and in the V| mode
changes by about 180°. This is in agreement with the inter-
pretation according to the simple model shown in Fig. 5,
where the phase difference of the oscillations at the surfaces
increases by 180° in the V; mode with respect to the V,
mode. In this case, the variations of the phase shift with
increasing order are rather well reproduced by this simple
model. In spite of this qualitative agreement, it appears that
the phase relation between the vortex rotation on the top and
bottom surface is in fact very complicated. For example, we
have found different relative phases for different variants of
the V, mode. This mode is resolved in six different cases
(two for each sample: one from the in-plane pulse and an-
other from the out-of-plane pulse), each of which displays
different phase relations even though the mode profile inside
the wall is similar for all those modes. Three of them have a
phase difference close to 90°, one a difference of about 45°,
another one a difference of about 30° and yet another one a
difference close to 130°. In principle, the frequency of those
modes should vary with the relative phase change, but the
small frequency difference might be below our numerical
resolution (0.1 GHz). In the case of the V| mode, the relative
phase difference of the core rotation is about —60° in the
70 nm sample, while a phase difference of about 130° is
found in the case of the V, mode in the 80 nm sample. The
relative phase difference of the core rotation on the top and
bottom surfaces certainly plays an important role for adapt-
ing the two surfaces to the inner structure of the modes.
Unfortunately, not enough data are collected for a quantita-
tive analysis.
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The phase difference of the vortex gyration at the surface
observed in the simulations of the individual 3D vortex
modes can obviously not be fully explained by the simple
model of Fig. 5. Even though this model can greatly help in
understanding some basic features of these new 3D gyrating
vortex modes, it is important to keep its limitations in mind.
The model can be justified by the fact that—in the static
structure—the vortex cores directly connect to the Bloch part
of the asymmetric wall. Hence, the vortex motions on the
two surfaces are not independent. However, the magnetic
structure in the center of the sample has features, which dif-
fer quite significantly from those of an ordinary vortex core.
Thus, the interpretation of the tubelike region as a single
vortex core can be regarded as a drastic simplification of the
actual magnetic structure. The model completely neglects the
asymmetry of the domain wall in the central part of the
sample (as shown in Fig. 3). In fact, the amplitude of the
oscillation on opposite sides of the domain wall is different
for all the vortex modes, as can be seen by the different
shape of two isosurfaces with the same absolute value and by
the curved nodal planes shown in Fig. 9. This is not surpris-
ing, because the magnetization distribution of the wall in
equilibrium is asymmetric. The vortex modes can alterna-
tively be considered as oscillation modes of the asymmetric
Bloch wall, the frequency of which is determined by the
internal structure. In this picture, the vortex oscillations on
the surfaces merely occur as a result of the domain wall
oscillation.

VI. HIGHER-FREQUENCY MODES: EDGES, CORNERS
AND CLOSURE DOMAIN WALLS

In addition to the vortices and the asymmetric Bloch wall,
other regions of inhomogeneous magnetization such as the
corners and the 90° domain walls display distinct dynamic
properties. This is also known from previous studies on 2D
systems, for example, in vortex structures found in thin
square elements.>* Similar to the simulation results reported
for square thin elements with vortex configuration,’* some
characteristic modes mainly localized at corners and 90° do-
main walls are observed in our 3D samples as well. These
three-dimensional modes, however, have features differing
from the 2D case regarding both the amplitude and phase.

Figure 10 shows the profile of the mode marked E|,
which has a frequency of 3.6 GHz for the 60-nm-thick
sample. In Fig. 10(a), an isosurface representation of the am-
plitude of the variations of the z component is displayed,
regardless of the phase. This mode is mainly localized along
the four short edges of the prism. The oscillations at these
edges have different amplitude, although the tipping pulse
used to excite this mode is applied homogeneously in space
(along the z direction in this case). Such differences in am-
plitude in the four corners are not surprising, given the over-
all asymmetry of the ground state magnetization pattern.
Moreover, already the static structure removes the degen-
eracy of the corners. As the magnetization in soft-magnetic
materials tends to align parallel to surfaces and edges in or-
der to minimize surface charges, the magnetization partially
also aligns with the short edges along the z axis. This align-

094407-8



CALCULATIONS OF THREE-DIMENSIONAL MAGNETIC...

FIG. 10. (Color online) Illustration of the E; mode resolved for
the 60-nm-thick sample. (a) Power distribution of the mode regard-
less of the phase. (b) Three snapshots of the dynamical magnetiza-
tion inside the sample. Two isosurfaces with constant absolute value
of &im,, positive (yellow/bright) and negative (blue/dark), are drawn
in each snapshot. Note that (a) and (b) use a different color bar
(gray scale). The coordinate system applies to both (a) and (b).

ment can be either in the positive or in the negative z direc-
tion, giving rise to a large number of almost degenerate
ground-state configurations, unlike in the 2D case where the
magnetization is always aligned in the xy plane even at the
corners. Different orientations of the z component at the
edges are expected to affect the relative phase of their oscil-
lation modes. A detailed analysis of these effects, however, is
going beyond the scope of this study.

The E| mode not only shows a variation of amplitude, but
also a phase decoherence of the four edges, as can be seen
from the three snapshots of this mode shown in Fig. 10(b).
The four corners exhibit a complex phase relation among
them, instead of being all in phase as would be the case in
square thin film element with a symmetric vortex structure
excited by a short, homogeneous field pulse.?*

For the same sample, we also found at least one further
mode of the same type as the E| mode, with a slightly dif-
ferent frequency (3.7 GHz for the 60-nm sample) and with
different relative phases of the four edges. This phase depen-
dence of the frequency can be attributed to dipolar interac-
tions between the edges.

Figure 11 shows a different edge mode (E,) with a con-
siderably higher frequency (5.7 GHz for the 60-nm-thick
sample). Although this mode displays oscillations at the
edges, similar to the E£; mode, the power of this mode also
extends into the four 90° short domain walls of the closure
domains, as shown in Figs. 11(a) and 11(c). Again, an asym-
metry among the four corners is observed. Three snapshots
of this mode are shown in Fig. 11(b). To describe this mode,
it is sufficient to focus on the short perpendicular edge on the
left-front part of the sample. In the first snapshot, the nega-
tive region (blue/dark) is mainly located at the lower corner
and the positive region (yellow/bright) is mainly at the upper
part of the 90° domain wall. In the second snapshot, the
negative region has shifted towards the upper corner of the
edge, and the positive region to the lower part of the wall.
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FIG. 11. (Color online) Illustration of the E, mode resolved for
the 60-nm-thick sample. (a) Power distribution of the mode regard-
less of the phase. (b) Three snapshots of the dynamic magnetization
inside the sample. Isosurfaces with constant absolute value of dm,,
positive (yellow/bright) and negative (blue/dark) are drawn in each
snapshot. Note that (a) and (b) use a different color bar (gray scale).
The in-plane distribution of the oscillating regions is shown with a
top view in frame (c).

The third snapshot is a half period after the first one, and it
therefore displays the situation at opposite phase. In this
mode, the corner and its neighboring wall seem to form a
circuit inside the sample along which they exchange their
phase. This circuit connects the lower and the upper corner
of the edge with the upper and the lower part of the adjacent
90° domain wall. The other perpendicular edges show simi-
lar behavior. This way of connecting pulsating regions is
made possible by the increased number of degrees of free-
dom resulting from the non-negligible thickness of the
sample. Indeed, for a similar mode observed in a 2D square
vortex, each of the four corners and its neighboring wall
have been found to oscillate with exactly opposite phase,
forming a well-defined nodal line in-between.?* In our 3D
case, however, the corners and the walls are oscillating with
a more complicated phase relation. It appears that in the 3D
case, the “circulating” phase has lower exchange energy as
compared to the situation where the corners and its neighbor-
ing 90° domain wall are oscillating with exactly opposite
phase.

For the same sample a further, similar mode with even
higher frequency (6.7 GHz) is resolved and shown in Fig.
12. By comparing the power distribution on the surface [Fig.
12(a)] to Fig. 11(a), this mode can be categorized as a corner
mode (C;, not shown in the spectrum of Fig. 1) rather than
an oscillation of the edges and domain walls. Especially by
looking at the two front edges, a nodal area seems to exist in
the middle between the upper and the lower part of the
edges. The mode also extends into the region of the 90° wall,
similar to the E, mode, but with a smaller relative amplitude.
The oscillations of the 90° domain wall are localized in the
interior part of the sample, instead of the surface regions of
the 90° walls as in the case in the E, mode. Figure 12(b)
shows three snapshots of this mode. In the first snapshot—
again only focusing on the left-front edge—the upper and
lower parts are oscillating with different phase, but not com-
pletely opposite. The upper part has stronger amplitude than
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(b) =

FIG. 12. (Color online) Illustration of the C; mode resolved for
the 60-nm-thick sample. (a) Power distribution of the mode regard-
less of the phase. (b) Three snapshots of the dynamical magnetiza-
tion inside the sample with emphasis only on the left-front corner.
Two isosurfaces with constant absolute value of dm,, positive
(yellow/bright) and negative (blue/dark), are drawn in each snap-
shot. Note that (a) and (b) use a different color bar (grayscale).

the lower part. In the second snapshot, the oscillation is
mainly located in the inner part of the 90° wall. It should be
noted that compared with the previous modes, the C; mode
does not appear to be perfectly resolved in the simulations,
which is probably due to a superposition of modes which are
almost degenerate. In a first approximation, this mode can be
regarded as a corner mode in which a standing wave is
formed along the thickness direction. However, it displays
more complicated features. Similar to the £, mode shown in
Fig. 11, this mode also has a circulating phase, which
changes along a path between the corners and the adjacent
90° domain wall. The difference here is that the path is
shorter, connecting the corners directly to the central part of
the domain wall region without passing through the sample
surfaces. The upper and lower part of the corner exchange
their phase in a circular way via the central part of the 90°
domain wall instead of oscillating with opposite phase,
which again lowers the exchange energy. The special phase
relation observed in the modes E, and C,; is yet another
direct consequence of the 3D character of the system studied
here.

The list of 3D modes reported in this work is certainly not
complete. As can be seen in Fig. 1, a number of further peaks
can be detected in the power spectrum, e.g., in the frequency
range between the E; and the E, mode. The oscillations at
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these frequencies are much more complicated than the
modes described previously. They appear to be complex,
coupled oscillations involving the edges, the central domain
wall, and the domain walls of the closure domains, which
oscillate with nontrivial phase relations. Many of these addi-
tional oscillations can thus be regarded as hybrid modes con-
sisting of combinations of the abovementioned modes.

VII. CONCLUSIONS

In conclusion, we presented micromagnetic simulations of
magnetic normal modes in 3D Permalloy prisms with asym-
metric vortex-state configurations. Spatially resolved Fourier
analysis of the complicated dynamics has enabled us to iden-
tify various characteristic modes in the 3D magnetic struc-
tures. The particular role played by the three-dimensionally
distorted vortex core (or, equally, by the asymmetric Bloch
wall) has been studied in detail. Our simulations anticipate
the existence of previously unreported higher-order modes of
the gyrotropic vortex excitation. Specific predictions are
made concerning the variations in frequency of these modes
with changing particle size. While the frequency of the fun-
damental gyrotropic mode V|, does not depend on the sample
size, the higher-order modes V; and V, show a significant
increase in frequency in smaller samples. This behavior of
the peaks in the power spectrum should be rather easily ob-
servable in experiments, e.g., by FMR measurements, while
an experimental verification of the calculated complex inter-
nal oscillation patterns might be much more challenging. In
addition to the vortex modes, we found higher-frequency os-
cillations of the sample edges and corners and of the 90°
closure domain walls. Although these modes share some ba-
sic characteristics with the previously reported correspond-
ing 2D modes, they have several new features and differ-
ences which arise from the increased degrees of freedom
along the sample thickness. Our studies on rectangular bars
clearly show that the transition from 2D to 3D micromag-
netic configurations is not straightforward and has a strong
influence on the dynamic behavior. The asymmetric micro-
magnetic ground state in the 3D system introduces particular
complications, which will require further in-depth analyses.
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