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Density-functional calculations are used to investigate hydrogen diffusion in the solid-state proton conductor
BaZrO3. Activation energies and prefactors for the rate of proton transfer and reorientation are evaluated for a
defect-free region of this simple cubic perovskite-structured oxide. Both semiclassical over-barrier jumps and
phonon-assisted tunneling transitions between sites are considered. It is found that the classical barriers for the
elementary transfer and reorientation steps are both of the order of 0.2 eV. The quantum-mechanical zero-point
motion effects are found to be sizable, to effectively reduce the barrier heights, and to make the prefactors
similar for the transfer and reorientation steps. The Flynn-Stoneham model �Phys. Rev. B 1, 3966 �1970�� of
phonon-assisted tunneling yields an activation energy of around 0.2 eV and a very small prefactor for proton
transfer, whereas the corresponding adiabatic model gives a similar activation energy but a much larger
prefactor. It is suggested that the effect of other defects such as dopants has to be included for a proper
description of hydrogen diffusion in this material.
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I. INTRODUCTION

Many perovskite-structured oxides exhibit significant pro-
ton conductivity at elevated temperatures1 and are potential
candidates for use in a wide range of electrochemical
applications.2 From a more fundamental point of view, these
materials are also interesting as model systems for fast pro-
tonic transport in solids.3 Experimentally, the mobility of
protonic defects in oxides is usually found to decrease with
decreasing temperatures following an Arrhenius behavior,4

with activation energies and prefactors that are mainly con-
sistent with a semiclassical description of hydrogen hopping
between neighboring oxygen sites in the lattice.5 Neverthe-
less, for a light interstitial such as H, diffusion can be ex-
pected to take place primarily via a quantum-mechanical tun-
neling mechanism at sufficiently low temperatures.6,7 Indeed,
the dielectric relaxation data for hydrated BaNdxCe1−xO3, x
=0.05, by Kuskovsky et al.8 show a transition to a near
temperature-independent rate for T�85 K that was inter-
preted as a tunneling process.

Several theoretical studies have previously addressed the
preferred sites, transition states, and conduction pathways for
hydrogen impurities in various perovskite oxides using first-
principles calculations with a static lattice9–14 or a
molecular-dynamics15–18 approach. However, neither of these
takes directly the quantum nature of the motion of the light
hydrogen atom into account. For instance, using embedded
cluster Hartree-Fock-type calculations, Cherry et al.9,10 in-
vestigated proton transfer between two neighboring oxygen
atoms in LaAlO3. They found a very low classical activation
barrier for this process and suggested that proton transfer
may take place via a “barrierless” or nonclassical �tunneling�
mechanism where fluctuations of the surrounding lattice are
required to produce a configuration where the environments
of two neighboring oxygens become equivalent before
proton transfer can occur. It has also been suggested19–21

that the “small-polaron” theories of phonon-assisted
hopping22–24—which have been widely used to interpret the
anomalous isotope dependence of the diffusion coefficient

for hydrogen in bcc metals at low temperatures25–27—might
be applicable for H in perovskites, but so far no direct evalu-
ation of the activation energies from first principles has been
attempted.

In the present work, we have used density-functional cal-
culations to investigate classical �over-barrier� and quantum
�tunneling� diffusion of protonic defects in a perovskite-
structured oxide. Activation energies and prefactors are given
for the two elementary migration steps, O-H¯O transfer and
O-H reorientation, in a defect-free region of cubic BaZrO3.
Particular emphasis is placed on the role of lattice relaxations
and vibrational properties of the system.

II. METHODS

A. Basic formalism

We will consider the hopping of a hydrogen atom between
two adjacent interstitial sites separated by a potential energy
barrier. In the regime of purely over-barrier motion, a simple
transition state theory �TST�28 expression for the hop rate �
is

� =
kBT

h

Z‡

Z
, �1�

where kB is the Boltzmann constant, h is Planck’s constant,
and Z and Z‡ denote the classical partition functions of the
initial and transition states, respectively. Within a harmonic
approximation, the vibrational properties of the solid can be
expressed in terms of the N normal modes ���i�i=1

N of the
system at the potential minimum and the �N−1� normal
modes ���i

‡�i=1
N−1 at the saddle point. Equation �1� then pre-

dicts an Arrhenius behavior for the hop rate,29

� = �0
cle−�E/kBT, �2�

where the activation energy �E is equal to the classical mi-
gration barrier Vm, i.e., the difference in potential energy
between the saddle-point and minimum configurations, and
the prefactor
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is often interpreted as a characteristic “attempt frequency.”
Due to the small reduced mass of a protonic defect, the vi-
brational energy levels become discrete and widely spaced.
As discussed by Kehr,30 a simple modification of the TST
that includes this effect can be obtained by replacing the
classical partition functions in Eq. �1� by their quantum-
mechanical analog. The activation energy is then be given by

�E = Vm +
1

2 �
i=1

N−1

��i
‡ −

1

2�
i=1

N

��i, �4�

which is a sum of the classical migration barrier and a vibra-
tional zero-point energy �ZPE� correction, whereas the pref-
actor becomes

�0
qm =

kBT

h

�
i=1

N

�1 − e−��i/kBT�

�
i=1

N−1

�1 − e−��i
‡/kBT�

. �5�

In the limit of high temperatures �kBT����, Eq. �5� reduces
to the classical result of Eq. �3�, whereas at low temperatures
�kBT	���, a general prefactor kBT /h appears that is inde-
pendent of isotope mass and host lattice properties.

A hydrogen may also tunnel quantum mechanically
through the barriers separating adjacent sites. For a light in-
terstitial coupled to the vibrational modes of the host lattice,
the Flynn-Stoneham model23 of phonon-assisted hopping
predicts a thermally activated hop rate,

� = 	 �

4�2EckBT

1/2

J0
2e−Ec/kBT. �6�

Here, J0 is the “bare” tunneling matrix element for hydrogen
and Ec is the so-called coincidence energy; it is the energy
required to bring the relaxed host lattice into a configuration
where the hydrogen levels on the two neighboring sites be-
come equivalent and tunneling can take place. The use of Eq.
�6� requires that the temperature is sufficiently high that
many phonons are excited. The Flynn-Stoneham model is
based on a nonadiabatic picture, i.e., the probability for tun-
neling is small during the time scale for coincidence. On the
other hand, if the tunneling probability is large, an adiabatic
picture is more relevant. The hop rate is then given by31

� = �De−Ea/kBT, �7�

where the activation energy Ea becomes similar to the clas-
sical barrier height adjusted for the ZPE and the prefactor �D
is related to the inverse period of the lattice vibrations. At
lower temperatures, lattice vibrations are frozen out, and the
diffusion of hydrogen would take place predominantly via a
zero-phonon tunneling mechanism which gives a much
weaker temperature dependence for the hop rate compared

with the thermally activated behavior predicted by Eqs. �2�,
�6�, and �7�.31

B. Computational details

Our density-functional calculations are performed using
the plane-wave pseudopotential method as implemented in
the Vienna ab initio simulation package �VASP�.32,33 For the
exchange-correlation functional, we use a generalized gradi-
ent approximation �GGA� due to Wang and Perdew.34 Such
functionals are known to describe hydrogen bond strengths
with an accuracy comparable to that of explicitly correlated
quantum chemistry techniques,35 although the accuracy for
proton transfer barriers has been questioned.36 The electron-
ion interaction is described by the projector augmented wave
method.37 A plane-wave basis set with a cutoff energy of
400 eV was used in all calculations. Brillouin zone sampling
was performed using a 6
6
6 k-point grid for the five-
atom primitive cell. This gives an equilibrium lattice con-
stant a0=4.25 Å for pure BaZrO3 in good agreement with
experimental data.38

Hydrogen interstitials were introduced in periodically re-
peated supercells consisting of 2
2
2 or 3
3
3 primi-
tive cells with the number of k points in each direction re-
duced accordingly. This corresponds to a hydrogen
concentration c=1/8 and c=1/27, respectively. To simulate
the presence of hydrogen in the +1 charge state �H+�, an
electron was removed from the hydrogen loaded supercells
and the resulting electronic charge was neutralized by the
standard means of including a uniform “jellium”
background.39 Structural optimizations were performed at
constant volume until all residual forces were smaller than
0.05 eV/Å. Vibrational frequencies for protonic defects in
various fixed lattice configurations were calculated within a
harmonic approximation by evaluating and diagonalizing a
dynamical matrix using the smaller supercell. All calcula-
tions in the present study were performed non-spin-
polarized.

III. RESULTS AND DISCUSSION

A. Stable sites and migration paths

For a hydrogen atom in the +1 charge state, the equilib-
rium position in BaZrO3 is close to an oxide ion, with
the O-H distance equal to 0.98 Å and with the O-H axis
oriented along the bisector of two oxygen-oxygen connecting
lines. There are thus four equivalent interstitial sites around
each oxygen in the lattice, as shown in Fig. 1. Similar con-
figurations of protonic defects have been found in several
different perovskite oxides, both experimentally40 and
theoretically.9,10,13,14 The hydrogen interstitial interacts
strongly with the host lattice, which results in a pronounced
displacement of the equilibrium positions of the surrounding
atoms �see Fig. 1�. Correspondingly, the localization or “self-
trapping” energy �defined as the change in total energy Vst
associated with allowing the host lattice to relax around an
interstitial at the stable site� is large for H in BaZrO3: We
find Vst=−1.14 eV �−0.90 eV� for c=1/27 �c=1/8�. Due to
the strong lattice polarization and deformation of the ionic
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BaZrO3 crystal, this is considerably larger than the self-
trapping energies previously obtained for hydrogen/metal
systems, which are around −0.19 eV for H in bulk Nb and Ta
�Ref. 41� and only −0.03 eV for H on a Cu surface.42

To investigate the local motion of a self-trapped protonic
defect, we have calculated the harmonic frequencies of vi-
bration for a hydrogen atom at the stable site with the host
lattice ions held rigidly in their relaxed positions. This gives
a high-frequency O-H stretch mode ��1=435 meV and two
lower frequency O-H wag modes ��2=110 meV and ��3
=75 meV. The calculated frequencies are consistent with in-
frared spectroscopy data, which typically show a broad ab-
sorption band around in the range 2500–3500 cm−1 �corre-
sponding to ��=310–430 meV� for hydrated acceptor-
doped BaZrO3.43

The long-range protonic transport in perovskite oxides oc-
curs via a so-called Grotthuss mechanism, consisting of a
sequence of O-H¯O transfers �transitions between sites co-
ordinated to different oxygens� and O-H reorientations �tran-
sitions between different sites coordinated to the same
oxygen�.3 As a consequence of the high symmetry of the
cubic BaZrO3 lattice, all protonic sites in a dopant-free re-
gion of the material have the same energy �see Fig. 1�. More-
over, all transfer and reorientation barriers are symmetric and
mutually equivalent. Determining the potential energy along
the preferred protonic pathway thus reduces to mapping out
one barrier of each kind.

B. Over-barrier motion

We first consider proton migration via an over-barrier
mechanism. Two different saddle-point configurations, corre-
sponding to proton transfer and reorientation, have been in-
vestigated. These were determined by restricting the hydro-
gen position to a plane perpendicular to the path connecting
the initial and final states, while relaxing the remaining ionic
coordinates of the supercell. At the transition state of the
transfer step, the proton is located at the center of a slightly
bent O¯H¯O configuration. The initial O-H bond is mark-
edly elongated to 1.23 Å, whereas the O¯O separation con-
tracts to 2.42 Å. These results are in good agreement with
previous molecular-dynamics simulations,17 indicating that
proton transfer is facilitated via the formation of transient
hydrogen bonds.3 For the transition state of the reorientation
step, we instead find that the O-H bond is contracted to
0.97 Å, whereas the O¯O separation increases to 2.99 Å
�which is close to the corresponding distance in the unper-
turbed lattice; see Fig. 1�.

The classical migration barriers can be calculated as the
difference in total energy of the system when the proton is at
a saddle point and when the proton is self-trapped. These
energy differences are given in Table I. It is seen that the
transfer barrier is slightly higher than the reorientation bar-
rier and that both barriers appear well converged with respect
to the supercell size. These results clearly demonstrate the
importance of taking lattice relaxations into account, as dis-
cussed by Kreuer.3 Previously calculated values of the mi-
gration barriers in BaZrO3 show a significant variation:
Münch et al. found a transfer barrier equal to 0.69 eV from a
static calculation16 and 0.83±0.65 eV from a molecular-
dynamics simulation,17 both based on a “tight-binding”
density-functional theory �DFT� approach. In more recent
studies, Shi et al.13 found a transfer barrier equal to 0.37 eV
close to a dopant atom in In-doped BaZrO3, whereas Gomez
et al.14 reported a transfer barrier of 0.25 eV and a reorien-
tation barrier of 0.14 eV without dopant. Both these studies
include lattice relaxations, and the latter results are in good
agreement with our findings in the present work.

The vibrational frequencies of a protonic defect drasti-
cally change as the system approaches either of the transition
states. At the saddle point of the transfer step, we find for
hydrogen two real modes at 210 and 170 meV and one
imaginary �unstable� mode at 125i meV. It is the high-
frequency O-H stretch mode that gradually softens and be-
comes unstable. As can be expected for a strongly hydrogen-
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FIG. 1. �Color online� The equilibrium position for a hydrogen
interstitial in BaZrO3 �calculated lattice parameter a0=4.25 Å� is
close to an oxide ion, with the O-H distance equal to 0.98 Å and the
O-H axis oriented along the bisector of two oxygen-oxygen con-
necting lines. The protonic defect interacts strongly with the host
lattice, which is manifested as a large self-trapping distortion of the
positions of the surrounding atoms.

TABLE I. Classical transfer and reorientation barriers calculated
for hydrogen in a fixed and in a fully relaxed BaZrO3 lattice using
two different supercells corresponding to a defect concentration c
=1/27 �c=1/8�.

Barrier

Vm

�eV�

Fixed lattice Relaxed lattice

Transfer 1.27 �1.29� 0.21 �0.22�
Reorientation 0.33 �0.33� 0.18 �0.17�
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bonded configuration,44 this is accompanied by a significant
hardening of the wag modes. At the saddle point of the re-
orientation step, we instead find two real modes at 460 and
90 meV and one imaginary �unstable� mode at 70i meV.
Here, it is one of the O-H wag modes that becomes unstable,
accompanied by a slight hardening of the stretch mode and a
corresponding softening of the remaining wag mode. In Fig.
2, we show the total-energy variation and vibrational energy
levels for a hydrogen at different positions in a host lattice in
the unrelaxed, self-trapped, and saddle-point configurations.

The semiclassical activation energies �E for proton trans-
fer and reorientation are evaluated using Eq. �4� and adding
to the classical migration barriers given in Table I the differ-
ence in vibrational ZPE between the transition states and the
self-trapped state. The latter quantities are given in Table II.
In the simplest approximation, only the H frequencies are
assumed to change during a transition, while all other atomic
frequencies remain unaffected. This gives a negative contri-
bution and would lower the migration barriers for proton
transfer and reorientation by −0.12 and −0.04 eV, respec-
tively. For reorientation, the ZPE correction roughly corre-
sponds to the energy of the missing wag mode, whereas for
transfer, the correction is considerably smaller than the en-
ergy of the missing stretch mode as a consequence of the
large change in the remaining modes. Although these very

low barriers ��0.1 eV for both proton transfer and reorien-
tation� are consistent with the observation of a rapid local-
ized motion for protonic defects in perovskite oxides,45 they
are significantly smaller than the activation energies typically
obtained from conductivity measurements �0.43–0.50 eV
depending on the choice of dopant�.46 This might be due to a
tendency of standard DFT approaches to underestimate pro-
ton transfer barriers. In particular, test calculations on small
model systems have shown that the barrier height given by
ordinary GGA functionals is of the order of 0.10–0.15 eV
lower than that given by more sophisticated quantum chem-
istry techniques.36 However, another explanation would be
that protons are “trapped” near dopant atoms in the material
as suggested from muon spin relaxation and quasielastic neu-
tron scattering experiments by Hempelmann et al.40,45,47 The
observed activation energies would then be roughly equal to
the sum of the migration barriers in the “free” state �investi-
gated in the present work� and an additional energy required
to form mobile protons �which may amount to a few tenths
of an eV based on the DFT results of Islam et al.12,18 for
various zirconates�. A more accurate treatment would require
that the proton barriers are mapped out in the vicinity of
dopant atoms.48

The calculated prefactors of proton transfer and reorien-
tation are given in Table II. At very high temperatures, the
classical limit becomes valid and the prefactors can be esti-
mated using �0

cl as given by Eq. �3�. For the reorientation
step, this gives an effective frequency that roughly corre-
sponds to the missing wag mode ��0.1 eV or 25 ps−1�, but
for the transfer step, the result is considerably smaller than
that of the missing stretch mode ��0.4 eV or 100 ps−1�. The
latter is a direct consequence of the hardening of the O-H
wag modes that occur for the strongly hydrogen-bonded
saddle-point configuration. Finally, both prefactors decrease
with decreasing temperatures, which can be seen by taking
energy discretization into account and using the more general
�0

qm as given by Eq. �5�.

C. Quantum tunneling

We next consider proton transfer by a tunneling mecha-
nism. The Arrhenius parameters of the hop rate may then
deviate significantly from the classical or semiclassical
behavior.31

Due to the self-trapping lattice distortion, periodicity is
destroyed so that if the hydrogen is moved to a neighboring
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FIG. 2. �Color online� Schematic illustration of �a� over-barrier
O-H¯O transfer and �b� O-H reorientation in BaZrO3. Filled
circles indicate data obtained from DFT calculations, whereas the
dashed lines are a guide for the eye that illustrate the total-energy
variation for different positions of the hydrogen in a relaxed and an
unrelaxed lattice, respectively. Vibrational excitation energies ��
for the proton at various positions are also indicated.

TABLE II. Over-barrier proton transfer and reorientation in cu-
bic BaZrO3: Quantum-mechanical zero-point energy corrections to
the migration barriers �ZPE, corresponding prefactors �0

qm calcu-
lated at T=300 K and T=600 K, and the purely classical prefactors
�0

cl valid in the high-temperature limit.

Process
�ZPE
�eV�

�0
qm

�ps−1�
�0

cl

�ps−1�T=300 K T=600 K

Transfer −0.12 5.8 8.9 24.8

Reorientation −0.04 6.0 10.2 20.9
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site, without allowing the lattice to readjust, the total energy
of the system would be higher �see Fig. 2�. The nearest-
neighbor site energies thus become shifted by Vnn=1.04 eV
�0.87 eV� for c=1/27 �c=1/8�. At zero temperature, this
large asymmetry effectively prohibits tunneling between the
sites. However, at finite temperatures, thermal fluctuations of
the lattice may occasionally produce a configuration where
the sites become equivalent and a transition may take place.

In the adiabatic picture, the lowest symmetric configura-
tion of this kind can be obtained by freezing the lattice at the
classical saddle-point geometry �O¯O separation of 2.42 Å
as discussed in Sec. III B� and then optimizing the proton
position at one of the two neighboring oxide ions.9,10 This
results in an elongation of the initial O-H bond to 1.07 Å.
The energy needed to form this equivalence environment—
where the proton can easily tunnel between the two oxide
ions—from the self-trapped state is Va=0.19 eV �0.19 eV�
for c=1/27 �c=1/8�. This value is only slightly less,
0.02 eV �0.03 eV�, than the classical migration barrier Vm.
We note that Cherry et al.9,10 have previously estimated this
quantity for LaAlO3 from a combination of first-principles
calculations and atomistic simulations, but they obtained a
value of 0.69 eV, which is considerably larger than what we
find for BaZrO3. Furthermore, the ZPE corrections should be
comparable to those of the over-barrier hopping. Thus, the
activation energy Ea in Eq. �7� is close to the semiclassical
�E �see Sec. III B� and will have a similar, pronounced,
isotope dependence. The prefactor �D, on the other hand, is
expected to be essentially isotope independent.31 It can be
approximated with the frequency of the O-Zr-O bending
mode, which is of the order of 6 ps−1 in BaZrO3,49,50 and is
hence similar to the prefactor �0

qm obtained for the protonic
over-barrier hopping.

In the nonadiabatic picture, the equivalence configuration
can be determined by using a weighted sum of forces when
relaxing the ions, as discussed elsewhere.51 In the resulting
geometry, the initial O-H bond is slightly elongated to
1.03 Å, whereas the O¯O separation contracts to 2.59 Å.
The energy required to create this “coincidence” configura-
tion from the self-trapped state is Vc=0.19 eV �0.17 eV� for
c=1/27 �c=1/8�. This is considerably larger than for hydro-
gen in metals �for instance, the coincidence energy is only
around 0.02 eV for H in Nb and Ta �Refs. 41 and 51� and
0.01 eV for H on a Cu surface �Refs. 42 and 51��, indicating
a strong coupling to the lattice for the diffusing proton.
Moreover, the ratio Vc /Vnn is smaller than the 1/4 expected
for a purely harmonic lattice.52 This indicates a slight anhar-
monicity, which may be due to the strong lattice coupling
and the correspondingly large ionic displacements involved
in the transfer process. Tomoyose et al.21 have previously
reported an activation energy for phonon-assisted tunneling
equal to 0.56 eV using a model calculation for a general
cubic perovskite oxide. We note that this result is also con-
siderably larger than the coincidence energy obtained for hy-
drogen in BaZrO3 in the present study.

In Fig. 3, we show the total-energy variation as a function
of the hydrogen position for the self-trapped and coincidence
configurations of the host lattice. The harmonic frequencies
of vibration for H in the coincidence configuration are quite

similar to the H frequencies in the self-trapped state, which
means that ZPE corrections will only give a small contribu-
tion to the activation energy in Eq. �6� and thus Ec�Vc. To
determine the prefactor, we must also calculate the tunneling
splitting for hydrogen in the symmetric potential of the co-
incidence configuration. A simple one-dimensional Wentzel-
Kramers-Brillouin estimate is

J0 = 	��

2�

exp−

1

�
�

−x0

+x0
�2m�v�x� − E�dx� , �8�

where m is the particle mass, E its energy, � the vibrational
frequency at the potential minimum, and the turning points
±x0 defined by v�±x0�=E. We approximate v�x� by a smooth
interpolation of the remaining barrier for hydrogen in the
coincidence configuration �which has a width of 0.92 Å and
a height of 0.41 eV; see Fig. 3� and take the three-
dimensional character of the problem into account by setting
E=1/2��=the difference in ZPE when hydrogen is at the
potential minimum and when it is at the barrier top �around
0.13 and 0.09 eV for H and D, respectively�. Numerical
quadrature of the integral in Eq. �8� gives J0=0.3 �0.9

10−2� meV for H �D�. Due to these narrow tunneling ma-
trix elements, the preexponential factor in Eq. �6� is several
orders of magnitude smaller than the TST prefactors and, in
addition, highly isotope dependent.

IV. SUMMARY AND CONCLUSIONS

To summarize, we have used density-functional calcula-
tions to determine the prefactors and activation energies for
H+ diffusion in a defect-free region of a perovskite-
structured oxide. In the highly symmetric BaZrO3 system,
there are only two different migration barriers for a hydrogen
interstitial, corresponding to the elementary O-H¯O transfer
and O-H reorientation steps.3
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FIG. 3. �Color online� Schematic illustration of phonon-assisted
tunneling via a symmetric coincidence configuration for hydrogen
in BaZrO3. Filled circles indicate total energies obtained from DFT
calculations, whereas the dashed lines are a guide for the eye. Vi-
brational excitation energies �� for the proton at various positions
are also indicated.
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We first consider a purely classical diffusion mechanism.
Although our calculated barriers �0.21 and 0.18 eV for pro-
ton transfer and reorientation, respectively� are in general
agreement with previous theoretical DFT results,14,17 they
are at least a factor 2 smaller than the activation energies
obtained experimentally from conductivity data.46 Based on
a quantum-mechanically modified TST that takes into ac-
count that the vibrational levels of light interstitials are dis-
crete and widely separated,30 the temperature dependence of
the jump rates is investigated in some detail. We find that
quantum effects imply considerably smaller prefactors than
what is expected from a purely classical rate theory at real-
istic temperatures �T=300–600 K�. We also find that the re-
sults are quite similar for the two different processes, the
transfer and reorientation steps. This is a consequence of a
strongly hydrogen-bonded transition state for the proton
transfer step, which increases the frequencies of the remain-
ing modes and gives a prefactor that is approximately an
order of magnitude smaller than the anticipated frequency of
the missing O-H stretch mode. For the activation energies,
we find a negative vibrational ZPE contribution that tends to
lower both migration barriers even further. While this is con-
sistent with the rapid localized motion that has been ob-
served experimentally for protonic defects in perovskite
oxides,45 it also suggests that the long-range protonic trans-
port in these materials is not rate limited by the elementary
transfer and reorientation steps �in defect-free regions�, but
rather by some other mechanism such as trapping
diffusion.40,45,47

Another interesting aspect is the possibility of tunneling.
Within the Flynn-Stoneham model23 for phonon-assisted tun-
neling in BaZrO3, we find an activation energy of 0.19 eV
that is significantly larger than that for H in metals.41,42,51

Since, in addition, the hydrogen tunneling matrix elements

are found to be small, it is likely that the Flynn-Stoneham
model23 for hydrogen diffusion can be excluded in the
present system. Instead, the adiabatic picture of thermally
activated tunneling appears to be more relevant. This model
gives a prefactor and an isotope dependent activation energy
very similar to those obtained for the over-barrier hopping
mechanism. It might therefore be difficult to experimentally
distinguish between these two processes.

In conclusion, we find barriers for the elementary transfer
and reorientation steps of proton migration in defect-free re-
gions of BaZrO3 to be considerably less than what is found
experimentally from conductivity data. Although an uncer-
tainty is associated with the use of DFT, and too low barriers
can be obtained using standard generalized gradient
approximations,36 this effect seems to be too small to solely
account for the discrepancy between our calculated migra-
tion barriers and measured activation energies. Therefore, we
argue that the effect of other defects, such as dopants, has to
be included to get a proper description of proton diffusion.
Furthermore, the quantum-mechanical zero-point motion ef-
fects are found to be sizable, effectively reduce the barrier
heights, and make the prefactors similar for the transfer and
reorientation steps. Quasielastic neutron scattering studies of
the proton motion in the present model system would be
highly desirable.53,54
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