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Temperature dependence of de Gennes narrowing and transport properties of liquid rubidium:
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Recent neutron scattering results [F. Demmel ef al., Phys. Rev. B 73, 104207 (2006)] on the temperature
dependence of de Gennes narrowing in liquid rubidium have stimulated a molecular dynamics (MD) study in
the same temperature and density range. At the k value of the first peak of S(k), the MD results agree very well
with experimental data of Sk, @=0), F(kyay.=0), and longitudinal viscosity 7 (kyax>@=0). Other trans-
port properties, such as self-diffusion and shear viscosity, are also accurately reproduced. At k=0, on the other
hand, the MD results significantly underestimate the experimental values of bulk viscosity and thermal con-
ductivity. For the latter, this is a well known deficiency of models which do not explicitly take into account the
electronic contribution to thermal exchanges. However, the large difference between MD and macroscopic
experimental data for bulk viscosity casts some doubts on its indirect calculation from sound absorption data.
This contradictory result, which presumably extends to all alkali metals, is discussed in the light of various

theoretical models.
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I. INTRODUCTION

In the last 30 years, many theoretical,? experimental,>*
and computer simulation studies’™ have been devoted to the
dynamics of liquid metals. In particular, recently the inelastic
x-ray scattering of synchrotron radiation'® has been intro-
duced and the first-principles and ab initio computational
approach’® has been applied in the simulation of liquid met-
als, to overcome the limitations of pseudopotentials® and em-
bedded models.® Moreover, very recently the ab initio ap-
proach, much more time expensive than the standard
simulation methods, has been used for liquid rubidium near
the critical density,!' to study the variation of atomic and
electronic structures in a wide region of the coexistence
curve and to identify the presence of clusters (especially
dimers) and bound states. Ab initio simulations have recently
also been used in the study of transport properties of some
liquid metals.>'? Even if the physical time span and the num-
ber of atoms are significantly smaller than for typical classi-
cal simulations, these papers prove that this kind of calcula-
tion is feasible for liquid metals. On the other hand, from the
experimental point of view, the tendency is to extend the
temperature range of the data for the phonon dispersion
curves, the diffusion processes, and the k-w dependence of
the transport coefficients. Along this line, Demmel et al.'3
have measured the coherent structure factor §(k, ) in a wide
range of temperature with neutron scattering (NS) techniques
at k. the k value corresponding to the maximum of S(k)
(de Gennes narrowing range). This way, also information on
the temperature dependence of the generalized longitudinal
viscosity 7;(kn.x) has been obtained. Later on,'* the same
authors extended the measurements to a wide k range
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(4 nm™' <k<25 nm™!) observing as the most striking fea-
ture a frequency change with rising temperature in the inelas-
tic excitations at a momentum transfer of ~4.5 nm™', i.e., the
minimum k value explored (~4.5 nm™!).

The main goal of the present work is to employ molecular
dynamics (MD) simulation methods to analyze these phe-
nomena in the same temperature range and, in particular, to
extend the study of their temperature dependence to other
transport properties and the whole k-w range. In Sec. II we
report the simulation details and discuss the features of the
potential used. In Sec. Il A we compare the NS and MD
results for the k,,,, value. Section III B is devoted to a com-
parison of the MD self-diffusion results with the correspond-
ing experimental data and to an analysis of the deviation
from Fick’s law for this potential. Section III C addresses
thermal conductivity, whose deviation from experimental
data can be readily traced back to the missing electronic
contributions entailed by the model interactions adopted. On
the other hand, a more extensive discussion of the behavior
of shear, bulk, and longitudinal viscosities is necessary (Sec.
III D). This seems to indicate that, in the case of bulk vis-
cosity, the experimental values might significantly be over-
estimated. Finally, the most important conclusions are col-
lected in Sec. IV.

II. SIMULATION DETAILS

The effective potential adopted for the simulation models
the rubidium atoms as an ensemble of metallic ions interact-
ing with each other through screened Coulombic forces. The
form proposed by Price et al.'> reads
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where Ze is the ionic charge and G(g) contains the bare ion
pseudopotential form factor and the g dependent dielectric
function. This potential is the same as the one employed by
Balucani et al. to show that equilibrium and time dependent
correlation functions become the same for all alkali metals, if
a properly scaled form is adopted.'® A somewhat different
parametrization has been used by Wax et al. in their study of
diffusion as a function of temperature.'’

Simulation runs have been carried out on systems of 864
particles arranged in a cubic box whose size has been ad-
justed to the desired density, which was kept fixed. Hence the
simulation conditions correspond to that of a microcanonical
ensemble. This choice has been made not to affect the par-
ticle dynamics through the velocity rescaling required to fix
the temperature at a specified value. The cutoff distance is
larger than three times that of the first node of the force,
while the integral that enters the expression of the potential
has been calculated with a Gauss-Legendre quadrature for-
mula. Each run spans a physical time of at least 0.5 ns after
equilibration, with a time step of 5 fs. The temperatures ex-
plored ranged from around melting (315 K) to 625 K.

III. RESULTS AND DISCUSSION

A. de Gennes narrowing: Neutron scattering and
molecular dynamics results

Very recently Demmel et al.'® have investigated in a co-
herent inelastic neutron scattering experiment the tempera-
ture dependence of de Gennes narrowing in liquid rubidium.
In particular, the authors found that at the k value of the first
peak of the structure factor (k,,,,) the width of the quasielas-
tic line shows a nearly linear temperature dependence with
no significant evidence of a changing slope. This result is
confirmed by the MD results reported in Fig. 1, which agree
very well with the experimental data. In Fig. 1 two types of
results are shown: the first is obtained from the effective

width at the 1/2 value of §(kmax,w=0); the second one by
fitting the long time tail of F(kp,,f) with an exponential,
exp(=I'r). The second method seems to suggest a decrease of
the slope I'(7T) at low temperature. As a consequence, the

temperature dependence of the amplitude §(kmax,w=0), as-
sociated with the decay of density fluctuation on the long
time scale, decreases in a nonlinear manner indicating a
change in dynamics at about 1.57,, (melting temperature). As
Fig. 2 shows, this effect is also present in the MD results.
Also the values of F(ky,y,t=0) = S(kn,) agree well with the
experimental results (see Fig. 2). However, as far as the
width behavior is concerned, the temperature dependence of

S(kypay) is much more linear compared to S(k,,y, @=0). The

difference between MD and experimental data for §(kmax,
w=0) near the melting point could be related to not well
resolved deconvoluted experimental data. MD and experi-
mental values of generalized longitudinal viscosity are com-
pared in Fig. 3 for k,,,. They are obtained from the follow-
ing relation:
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FIG. 1. Full width at half maximum of the experimental and
simulation data of g(kmax,w): the black triangles and squares are the
IN3 and FRM results, respectively (Ref. 13); the white thombi are
our MD results, obtained from the abscissa corresponding at 1/2 of
§(kmax, ®=0) and the white circles are obtained from an exponential
fit of the long time behavior of F(ky,y,1).

kT S(k,w=0)

(k) =p—

M Sk)? M

In this expression of the generalized longitudinal viscosity
the temperature-density contribution is neglected [see, for
example, Egs. (2) and (5) of Ref. 18]. Equation (1) differs for
a factor 7 from Eq. (3) of Ref. 13 due to a different defini-
tion of the Laplace transform. The approximation of neglect-
ing the second term of Eq. (5) of Ref. 18 is verified at all
simulation temperatures. MD results show a monotonic in-
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FIG. 2. S(kyax,@=0) as a function of temperature: the black
symbols show experimental results obtained by neutron scattering
(Ref. 13); the white crossed squares are our MD results (scale on
the left); S(ky.,) as a function of temperature: the black circles are
experimental data from Ref. 13 and the white squares our MD
results (scale on the right).
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FIG. 3. Generalized viscosities of liquid rubidium at k=k,y
=15 nm™!: the black squares are experimental results (taken from
Ref. 13) and the white thombi are MD results of longitudinal vis-
cosity, 7r; the white circles are MD results of shear viscosity; 7g;
the white crossed squares are MD results of bulk viscosity, 7p; and
the continuous lines through 7¢ and 7, are only a guide to the eyes.

crease when 7 approaches the melting point while experi-
mental data exhibit a little maximum. The same figure also
reports the results of the generalized shear viscosity calcu-
lated with the standard relation
ns(k) = p%%- (2)
Crlk,0=0)

This definition is the same as that of Egs. (4) and (8) of Ref.

18 with p the liquid density and Gy 7(k,0)=Cy(k,0)/
C;(k,0) the spectra of the normalized transverse current,
with Cplk,1=0)=kzT/M.

We refer the reader to Ref. 18 for a discussion of the
generalized bulk viscosity behavior. In the same paper [see
Egs. (3), (6), and (7)] details on how to obtain the MD values
of ng(k) at finite k are provided. Conversely the k=0 data are
calculated by Green-Kubo integration of the relevant time
correlation functions. We wish to remark that negative values
of bulk viscosity would be obtained using the relation
nB(k) = nL(k)_4/3 77S(k) at kma)v being nS(kmax) > nL(kmax)
(see Figs. 1 and 2 of Ref. 18). Qualitatively, the results of
Fig. 3 are similar to that obtained for argon, also at k,,, and
close to its melting point, i.e., 88 K (see Fig. 2 of Ref. 18). In
fact 77L(kmax) = nB(kmax) and 77S(kmax) is 1arger by
~60% —70%. However, the viscosities increase as tempera-
ture decreases much more clearly in rubidium then in argon,
where they seem constant or slightly decreasing as tempera-
ture decreases (see Fig. 2 of Ref. 18). Probably, the latter
effect is related to a different behavior of density: in fact, for
argon the density at 88 K (p=1.3 g/cm?) is lower than at
200 K (p=1.4 g/cm?®), while for liquid rubidium p
=147 g/cm® near melting point, T=315K, but p
=1.35 g/cm? at higher temperature, T=624 K.

Though in the past many papers have dealt with dynamic
properties of liquid rubidium and alkali metals, both from the
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FIG. 4. Self-diffusion coefficients as a function of temperature:
the black squares and continuous line are experimental results of
Refs. 28 and 29; the white crossed squares show the Enskog self-
diffusion of Fig. 5 of Ref. 13 derived from the width of the experi-
mental structure factor; the white squares and white circles our MD
results of Dgg and D2, respectively; the white rhombi MD results
of Bretonnet (Ref. 30); the white crosses from the long time behav-
ior of the self-part of the intermediate MD scattering function,
Fy(kpax»1), see text.

experimental'>??> and MD simulation points of view,?3?’

still many issues deserve further study. So far, we compared
experimental and MD results at k,,,, i.e., the value where the
maximum of S(k) is found. This corresponds to the range of
distances where positional correlations among the system
particles are strong and slow down the decay of density fluc-
tuations (de Gennes narrowing). In the following, we extend
to k=0 the comparison with the corresponding experimental
results of various dynamic properties for liquid rubidium,
with particular emphasis on viscosities.

B. Self-diffusion

Experimental data®?° and MD results of self-diffusion
coefficients are reported in Fig. 4 as a function of tempera-
ture. Our MD results, either obtained from the velocity cor-
relation function via the standard Green-Kubo formula, Dgg,
or from the mean square displacement, D,2, agree well with
that computed by Bretonnet®® adopting a slightly different
potential 3! Overall, all sets of MD results satisfactorily re-
produce the experimental values and their temperature de-
pendence. Figure 4 also includes derived Enskog self-
diffusion Dy, coefficients (see Fig. 5 of Ref. 13), calculated

from the width of the experimental S(k,w) at the structure
factor maximum. Kinetic theory showed that the width of the
coherent scattering law at the structure factor maximum is
related to the self-diffusion coefficient. In the Enskog ap-
proximation only uncorrelated binary collisions of hard
spheres are treated and collective influences are neglected,
which results in too large diffusion constants near the melt-
ing point. From the long time behavior of the self-part of the
calculated intermediate scattering function, Fg(ky,y¢) diffu-
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sion coefficients have been obtained by the relation (strictly
valid in the k— 0 limit)

dIn[F(k,1)]

K*or ®)

Dg (kmax) ==
Fick’s law is the basis of the above relation and the long
time behavior delivers smaller diffusion coefficients com-
pared to macroscopic values. For the self-diffusion we also
examined the evolution with increasing wave vector. The
normalized  k-dependent  diffusion  coefficient  A(k)
=Dg(k)/D shows in alkali metals a marked oscillatory be-
havior around 1. Near the melting point, there is a minimum
at k.~ 15 nm™!, followed by a maximum (k~35 nm™)
with a gradual transition to the 1/k behavior typical of the
free particle regime. This behavior is well reproduced by
mode coupling theory (MCT). In fact, at 7=315 K our result
is A(kpa)=0.71 in very good accord with MCT results, see
Fig. 3 of Ref. 32. At T=624 K we obtain A(k,,,)=0.75.

C. Thermal conductivity

The coefficient of thermal conductivity, A, has been cal-
culated according to the Green-Kubo relation, i.e., by time
integration of the energy flux correlation function, F' q(t),33

_pr |7
A= MRTZJO F,(t)dt. (4)

The same formula was used to obtain the thermal conductiv-
ity of hydrogen bonded liquids such as water and hydrogen
fluoride.>* Our MD results at 7=318 K and 7=624 K (\
=0.12+£0.1 W/m K and A=0.11+0.1 W/m K, respectively)
underestimate the corresponding experimental values (\
=344 W/mK and A=31.7 W/m K)* by some 2 orders of
magnitude. This result, however, is not surprising and simply
due to neglecting the electronic conductivity, A, as the
adopted simulation potential and technique only account for
the lattice thermal conductivity, \j,.. The latter has been
shown®® to be around 1% of the total thermal conductivity
for liquid metals near the melting point. As a consequence,
the electronic contribution to the thermal conductivity in this
type of liquids is overwhelming and A, calculated by the
Wiedemann-Franz law, defined by

L,T
)\SI:L, (5)

e

where Ly=2.445X 10" W Q K2 is the Lorenz number and
p. the electric resistivity fits the experimental data well, for
\. In fact, the experimental errors are greater than or of the
order of the ion contribution.’’

In conclusion, to obtain a correct value of thermal con-
ductivity by computer simulation it is necessary to explicitly
describe the electronic dynamics. Recent work with ab
initio'>3%-40 methods indicates that the electronic interactions
can be taken into account to obtain the thermal conductivity
of liquid metals.
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FIG. 5. Temperature dependence of viscosities at k=0: continu-
ous curve mean experimental data of shear viscosity, whose uncer-
tainty, roughly +7%, is also shown around the curve; the white
crossed squares, black circles, and white squares are MD results of
longitudinal, shear, and bulk viscosities, respectively, computed via
Green-Kubo relations, see text.

D. Viscosities

In view of the diverse success of the model potential
when modeling diffusion and thermal conductivity, it is of
interest to extend the comparison to other transport coeffi-
cients, e.g., viscosities. This is depicted in Fig. 5, where we
report the MD results of longitudinal, shear, and bulk vis-
cosities as a function of temperature. We recall that also vis-
cosities at k=0 are computed by Green-Kubo integration of
appropriate time correlation functions. The comparison with
the experimental results shows a quite good agreement for 7
(Ref. 41) and its temperature dependence. A much more im-
pressive result is the very low bulk viscosity, 7, obtained by
MD, which remains small throughout the temperature range,
despite a slight increase with 7, from 24X 10™* P at T
=315 K, t0 4X 107 P at T=623 K. The experimental values
reported in Ref. 35 decrease with 7, from 250X 107* P at
T=315K to 61 X 107* P at T=518 K so that the ratio 7,/ 7
would be 3.73 near the melting point, where the MD result is
0.04. Large values of bulk viscosity are reported by the same
authors for the other alkali metals Na, K, and Cs, see Tables
I, III, and IV of Ref. 35. Their indirect calculation is based
on the relation for ultrasonic absorption as follows:

2 (475 (y= DX
Qoral = 3 <T Yot 773>, (6)
s p
where f is the frequency, c¢, is the velocity of sound, y
=C,/C,, and C, and C, are the heat capacity at constant
pressure and volume, respectively.
The sum of the first two terms is defined as @, gica= s
+ a, while the third term, @eycess= Frotal— Xelassical = ¥ 15 the
bulk viscosity contribution. Kim et al.?> rewrote the second
term utilizing the thermodynamic relation
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cf,BzT
C, ’

(y-1= (7
where B=-dp/pdT is the volume expansion coefficient. Un-
fortunately, as remarked by the authors, the thermal contri-
bution is dominant and the excess absorption for liquid ru-
bidium with the data used in Ref. 35 is ~14% near the m.p.
and ~4% at T=518 K. Hence, even a small error in the
experimental quantities, especially 8 and A, lead to a large
error in bulk viscosity, ~60% for liquid rubidium at the m.p.,
and increasing with temperature. Moreover, the above rela-
tion is bound to increasing the error, as the density is accu-
rately known [~(1£2)%], but 82 is scattered by as much as
40%—-50%. The calculation of (y—1) from the data of Ref. 35
and adopting Eq. (6) delivers 0.091 at T=316 K. The values
reported in the literature range from 0.097 to 0.150.34>%3
0.097 corresponds to 75/ 7g=2.23 and 0.150 to a;> @y, aS
(y—1)=0.121 would yield 75=0. In any case, the results are
much different from 7/ 73=3.73 of Table III of Ref. 35.
Applying Eq. (6) to other alkali metals leads to the same
inconsistency. For liquid cesium, e.g., we obtain for y—1
=0.0878, to be compared with experimental values 0.099,
0.102,% and 0.16.* For liquid potassium, we obtain 0.105 vs
0.102, 0.105, and 0.11.3 Finally, for liquid sodium, we obtain
0.096 against 0.091, 0.11, and 0.12.3 For the latter liquid,
more accurate data of \, B, c¢,, and 7y (Ref. 45) and a recal-
culation of 7/ ng of Tables I and V of Ref. 35 yield in a
value ~20% lower at 373 K and ~33% higher at 516 K.
Note that for sodium there is another sound absorption
result***” that gives 7=0. Conclusive from this survey is
that the dominant part in the ultrasound absorption, the ther-
mal contribution, has already a too large spread in experi-
mental values to provide reliable results for the bulk viscos-
ity. Apparently this issue is still unsettled and actually the
only experimental route to bulk viscosity is through acoustic
absorption measurements, improved by ultrasonic and Bril-
louin scattering techniques,*® in all cases resorting to Eq. (6).
To our knowledge, the only other experimental method is the
shock-wave thickness technique,49 which, so far, did not pro-
vide estimates of 7.

In the literature we have found only another calculation of
viscosities by the Green-Kubo expression and practically the
same potential,’> but with a smaller particle number (N
=108), to model liquid sodium and potassium.’® In this case,
np/ 1g=0.9 at 393 K and 1.4 at 573 K for sodium, and 0.18
and 0.125 for potassium, at the same temperatures. These
values further decrease at higher temperature. The only other
paper we are aware of on liquid metals is on liquid iron>' at
high temperature, approximately that of Earth’s outer core
(~5000-8000 K, m.p. is 7,,=1808 K). The authors, using
an embedded-atom potential, found that 7/ 75~ 0.065 at
lower and 0.1 at higher temperature, in complete disagree-
ment with previous estimates.

A possible way to explain the low value of MD bulk
viscosity would be to assume that, as in the case of thermal
conductivity, the electron and the lattice contribution are of
the same order. This hypothesis has been tested from a the-
oretical point of view in the past by various authors.’>* In
all papers, adopting an ion-electron plasma approach, the
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authors have concluded that the electronic contribution to
longitudinal viscosity, and hence to bulk viscosity, is com-
pletely negligible in liquid metals.

A different approach has been chosen by Zuckerwar and
co-worker.”® Applying a macroscopic phenomenological ap-
proach to the translational relaxation in gases, the authors
obtain the following relation:

m_3yy-D1

s 4 CP Pr

. (8)

where C,, is the heat capacity, expressed in units of the gas
constants, R, and P.=ng C,/ M\ is the Prandtl number, the
ratio between the kinematic viscosity and thermal diffusivity.
For real liquid metals P, is very small’® (P,<0.01) and it is
0.01, 0.0075, 0.007, and 0.008 for the alkali metals Na, K,
Rb, and Cs, respectively. Taking into account the MD values
of 7¢ and the heat capacity C,,, which are well reproduced in
the experimental data, and the simulated thermal conductiv-
ity A, the Prandtl number of rubidium should be ~300 times
higher than the experimental value. Thus, for liquid rubidium
at m.p. we obtain from Eq. (8) #g/ns~2 and #z/ 5
~0.007 using experimental and MD thermal conductivities,
respectively. The contrasting result from the two approaches
(gaslike and plasmalike) stems from the fact that the bulk
viscosity in Eq. (8) is proportional to thermal conductivity,
while in plasmalike approaches it is practically independent.
This apparent contradiction could be resolved considering
that Eq. (8) has been derived neglecting the electron contri-
bution and, as a consequence, this relation can be used for
simple nonmetallic liquids. In our case, it would predict re-
sults in reasonable accord with the MD results (75/ 73<<1)
and would support the conjecture that the electronic contri-
bution to the bulk viscosity is negligible. Many authors have
proposed various approaches to the computation of bulk vis-
cosity in the fluids’’° and some of these are discussed in
Ref. 55. Some of them®”$! are based on effective pair distri-
bution g(r) obtained either by computer simulation or from
experimental S(k). As the latter is well reproduced by simu-
lation, these methods are bound to yield low value of 7.

All these considerations seem to support the conclusion
that it is not possible to identify the electron contribution to
np, With these methods.

In principle, a straightforward solution would be to adopt
an ab initio computer simulation method, thus including the
electron contribution to viscosity. Many simulations of this
kind can be found in the literature, focusing on the dynamics
of alkali metals®? and, in particular, rubidium.®® However, no
viscosity results are reported. In Ref. 64 shear viscosity data
for liquid aluminum, selenium, and Fe-S under Earth’s core
conditions have been obtained by Green-Kubo first-
principles simulation, but again not for longitudinal and bulk
viscosities. Some years ago mode coupling theory was ap-
plied to describe liquid dynamics of simple classical fluids
and, in particular, liquid rubidium.®> Within this description,
neglecting the thermal contribution, an expression for the
ratio of the bulk to shear viscosity was derived:
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FIG. 6. (Color online) C,, according to the left side of Eq. (10)
by experimental data of transport properties of liquid metals at the
melting point, black squares; the horizontal lines correspond to Cy,,
from the right side of Eq. (10) for 7/ 7s=0,1,3 and 74/ 75=0,
respectively.

=- —-. 9
Mg 4 C%— 3 ( )

s 3<ci—ct2h)2 4
Herein are c; the high frequency sound velocity and ¢ the
transverse sound velocity, which are both related to the sec-
ond derivative of the potential. All values are applied in the
k=0 limit. Inserting c¢;=1570 m/s, c;=842 m/s,” and the
isothermal sound velocity clh=c3/y1/2=1260%/1.11/2 (Refs.
3 and 44) we get a ratio of 0.22, which is more than an order
of magnitude smaller than the ultrasound derived ratio.
Hence, the extrapolation of MCT also predicts much smaller
bulk viscosity values, in agreement with our MD and NS
results.

Finally, we would like to discuss a solidlike approach,
based on a particular view of the dynamics of cold dense
fluids, due to Zwanzig.®® Applying the normal mode ap-
proach to the GK formula for the self-diffusion and introduc-
ing the longitudinal and transverse contributions, the author

obtains

D v\13

ﬂ(—) —af 2+ B) = ¢y, (10)
kBT N s

where the term in parentheses on the left hand side is the
volume per particle v=V/N, and ay=(3/4m)"3/37
=0.065 82. Being 7, =ny+4n4/3, it turns out that 0.1316
<(Cyz,<<0.181, where the extreme values correspond to
ns/ =0 and 7/ ns=0, respectively. Other authors have
analyzed the liquid metals’ transport properties with this type
of approach,®”-%® but recent papers on the transport coeffi-
cients permit a deeper study. Here, the analysis of experi-
mental data of self-diffusion®®7! and shear viscosity’®’? in
liquid metals is carried out in the light of various models and
theory, in particular, the scaling law of Dzugutov’® and
Rosenfeld.”*

In the following it is convenient to define (as Rosenfeld
suggested) the adimensional self-diffusion constant and shear
viscosity:
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FIG. 7. (a) Cy,, of liquid rubidium as a function of temperature:
the black squares from MD results of 7,/ 7s [see right hand side of
Eq. (10)]; the white squares and circles from the left side of Eq.
(10) with MD values of Dgk, D,2, and 7s, respectively; the white
crossed square at the melting point is from the left side of Eq. (10)
with experimental values of D and #s and the thick continuous line
is the temperature dependence corresponding to the same set of
data; (b) the black symbols are values of 7,/ 7s calculated directly
from the MD data; the white symbols are calculated from Eq. (10)
by MD values of Dgk (squares), D,2 (circles), and s.
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7 = 75

where v'”3 is a length per particle.

The advantage lies in the fact that the product, Cz,
=pW® ngR), is equal to the left side of Eq. (10) and a direct
comparison of D®) and 77(SR) is possible for all liquid metals.
In Fig. 6 we report this product for many liquid metals cal-
culated with the values of D, 7g, p, and T,, of Refs. 69-72.
The values Cy,, scatter around the value for which 7/ 7y
~0, in fact, we obtain D®=0.0337, 7=537, and Cy,,
=0.181+0.02 as mean values that correspond for Eq. (10) to
1! Mg=0. The values of D and 7y used in Fig. 6 are experi-
mental values, smoothed by physical consideration of the
models used and the scattering of the real experimental val-
ues is in some cases high, but not enough to affect the con-
clusion of this figure: if the Zwanzig relation is valid, the
value of 7 is surely much lower than 7%;, close to the m.p.
for the liquid metals and particularly for the alkali metals,
where the experimental error is lower. A way to check the
validity of Eq. (10) is to use the data obtained from our
simulation of liquid rubidium. In this case it is possible to
calculate, in addition to self-diffusion and shear viscosity,
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FIG. 8. (a) Cy,, of liquid argon as a function of temperature with
the data of Ref. 75: results from the right (white symbols) and left
(black symbols) sides of Eq. (10) are compared at p"
=0.7,0.75,0.8,0.85; (b) the black symbols are values of 77;/ 775*
calculated directly from the data of Ref. 75; the white symbols
calculated from Eq. (10). The arrow on the abscissa of part (b)
marks the value T;~O.7 of liquid argon (p:n~0.8).

also the right hand side of Eq. (10), by means of the derived
values of longitudinal and bulk viscosities. The results are
reported in Fig. 7 and it is apparent that the Zwanzig relation
works well at the melting point while at higher temperatures
it tends to overestimate the values of bulk viscosity.

In this figure, also the temperature dependence of Cy,, is
shown for real liquid rubidium. Cy,, as temperature in-
creases, decreases slowly from the value at the m.p. reported
in Fig. 6. The accuracy of Zwanzig’s formula around the
melting point is further supported by the results of Fig. 8.
Here we show the results of a comprehensive study of trans-
port properties of the Lennard-Jones fluid, in a wide range of
thermodynamic states, from the triple point to low density
gaseous states.” Using these data, the two values that result
from the left and the right hand sides of Eq. (10) tend to
converge at the melting point [see Fig. 8(a)]. Note that the
melting point of liquid argon corresponds to pZZO.S and
T, =0.7 in reduced unit for a Lennard-Jones model. In that

case, C,~0.155 and, as a consequence, 7/ 75~ 1.5.

IV. CONCLUSIONS

By MD simulation, we have obtained a good agreement
with neutron scattering results of S(k) at k=k,,,, (Sec. Il A)
in the whole temperature range. As this agreement extends to

S(kppax» @=0) and to the linewidths we can assume that the
time dependence of the dynamic structure factor around the
de Gennes narrowing zone is correctly accounted for. More-
over, also the longitudinal viscosity behavior is well repro-
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FIG. 9. (k) of liquid rubidium at T=315 K: the white (MD)
and black (NS) squares are obtained from Eq. (1). The white square
at k=0 is the MD value of 7, calculated via Green-Kubo relation,
while the black circle at k=0 is the value obtained from the ultra-
sonic absorption measurements of Ref. 35. The figure also shows
the estimated errors (note that, as reported in Ref. 35, the error on
the ultrasound data may be greater than 50%).

duced, except for a small difference at the lowest tempera-
ture. Our MD simulation yields a generalized shear viscosity
larger than the longitudinal and bulk viscosities at k== k.
Shear and bulk viscosities, however, share a similar tempera-
ture dependence, with a decrease of ~30% as temperature
increases. On the other hand, the longitudinal viscosity de-
pends weakly on temperature [(10+15) % ]. The good results
mentioned above have suggested extending the comparison
with experimental data of other dynamical properties. The
self-diffusion coefficient (Sec. III B) also turns out to be in
good accord with the measured values and the results de-
duced from the long time part of the intermediate MD scat-
tering function Fg(ky,y,?) show a deviation from Fick’s law
in quantitative agreement with that observed for other alkali
metals and predicted by mode coupling theory.

Calculated and experimental thermal conductivity values
are very different, the MD value being lower than the experi-
mental one by a factor of ~300 (Sec. III C), as expected due
to the lack of the electronic contribution in our potential
model. This may be corrected adopting an expanded model
or ab initio molecular dynamics as shown in Refs. 12 and
38-40.

The other collective dynamical properties we focus on are
the longitudinal, shear, and bulk viscosities, whose k=0 val-
ues are discussed in Sec. III D. There is a good agreement
with the experiment for the shear viscosity and also for the
temperature dependence of this quantity. On the contrary, the
MD bulk viscosity, derived from the Green-Kubo relation, is
much smaller than the experimental values obtained from
ultrasound measurements.® This unexpected strong dis-
agreement cannot be traced back to the missing electronic
contribution, which is completely negligible in liquid metals,
according to an ion-plasma-like approach.’?>-3* The applica-
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tion of the Zwanzig approach® to almost all liquid metals
(see Fig. 6) supports our point of view that the large values
of the bulk viscosity for the alkali metals may be a conse-
quence of the large error in the calculation by Eq. (6) from
the data of ultrasound measurements.

This large difference of bulk (and consequently longitudi-
nal) viscosity is by no means a minor effect, as we demon-
strate in Fig. 9, where we compare the k-dependent longitu-
dinal viscosity, 7;(k), from very recent NS results'* to the
corresponding MD values. Both sets of results have been
obtained according to Eq. (1), at a temperature slightly above
melting (T=315 K). The simulation data show a small maxi-
mum, due to a maximum in the k dependence of the bulk
viscosity, and seem reasonably well connected with the
Green-Kubo k=0 value. The NS results, on the other hand,
are in good agreement with the simulation results up to the
minimum k value accessible by NS (k~4 nm™'). An exten-
sion to smaller k values for the experimental data points
would be desirable. Our MD and NS values near the struc-
ture factor maximum agree very well with results from Ref.

PHYSICAL REVIEW B 76, 094204 (2007)

13. Included in the figure is a longitudinal viscosity value
obtained from ultrasound absorption measurements,> which
deviates distinctly from the MD result by about a factor of 3.
We argue that the MD and NS & dependence of 7; suggests
a much smaller longitudinal viscosity and hence also a much
smaller bulk viscosity.

In conclusion, our suggestion is that the high value of the
experimental bulk viscosity is an artifact produced by the
large contribution to the error in its calculation from all of
the quantities used in Eq. (6). In particular, the second term
in parentheses is dominant for liquid metals, although prac-
tically negligible in nonmetallic liquids. As a consequence,
in alkali metals, and probably in most liquid metals as well,
bulk viscosity may be much lower than shear viscosity. From
the computational point of view, we suggest to extend the ab
initio simulation to bulk viscosity recently applied for the
calculation of shear viscosity® in iron-sulfur and aluminum,
in order to confirm the negligible contribution of the elec-
trons to bulk and longitudinal viscosities.

*Author to whom should be addressed.
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