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The thermally activated motion of dislocations across fields of obstacles distributed at random and in a
correlated manner, in separate models, is studied by means of computer simulations. The strain rate sensitivity
and strength are evaluated in terms of the obstacle strength, temperature, and applied shear stress. Above a
threshold stress, the dislocation motion undergoes a transition from smooth to jerky, i.e., obstacles are over-
come in a correlated manner at high stresses, while at low stresses they are overcome individually. This leads
to a significant reduction of the strain rate sensitivity. The threshold stress depends on the obstacle strength and
temperature. A model is proposed to predict the strain rate sensitivity and the smooth-to-jerky transition stress.
Obstacle clustering has little effect on strain rate sensitivity at low stress �creep conditions�, but it becomes
important at high stress. It is concluded that models for the strength and strain rate sensitivity should include
higher moments of the obstacle density distribution in addition to the mean density.
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I. INTRODUCTION

The motion of dislocations across fields of obstacles was
studied extensively in the past in connection with solid solu-
tion hardening. The first studies were dedicated to the pre-
diction of the critical resolved shear stress for a population of
identical obstacles randomly distributed in the glide plane.
The classical result for this problem is due to Friedel1 who
showed that the critical stress scales with the obstacle
strength, fc, to power 3/2, while the mean spacing between
obstacles in contact with the dislocation line scales with the
applied stress to the −1/3 power. The scaling was confirmed
by models developed by Morris and Klahn,2 Hanson and
Morris,3 Labusch4 and others, and by computer
simulations.5–7 These analytic models were developed under
rather restrictive assumptions of no temporal and spatial cor-
relations of obstacle failure events for given dislocation.
Early models also required that the mean angle made by the
dislocation line with the glide direction is 90° on the scale of
the mean obstacle spacing. This restriction was relaxed by
Labusch,4 which led to a significant improvement of the
agreement between the analytic and numerical results.

It has been suggested that these assumptions and models
are adequate for distributions of weak obstacles which are
overcome mostly by the “unzipping” mechanism. In this
context, unzipping refers to the mechanism by which bypass-
ing an obstacle of a stable dislocation configuration leads to
bypassing the entire set of obstacles in contact with the dis-
location at the respective time. Under these conditions, the
dislocation line remains almost straight. As the obstacle
strength increases, the spatial fluctuations of the obstacle
density have a stronger influence on the dislocation motion
and shape. If the critical angle made by dislocation segments
at a given obstacle at failure becomes smaller than approxi-
mately 100°, the dislocation shape becomes rather rough and
loops may be left behind on the glide plane. It is difficult to
capture this type of motion in analytic models.

Several studies addressed the thermally activated motion
across fields of random obstacles. In this problem, each ob-
stacle is characterized by an activation enthalpy �which may

or may not be the same for all obstacles� and it is sought to
determine the free enthalpy of activation for dislocation mo-
tion. In general, it turns out that the dislocation motion may
indeed be characterized by an Arrhenius-type rate equation,
but the activation enthalpy is a complicated function of
stress, temperature, and obstacle density and strength. The
problem was approached analytically by Landau and
Dotsenko8 and Schlipf9 for systems with random identical
obstacles and by Arsenault and Cadman,10 Zaitsev and
Nadgordnyi,11 and Schoeck12 for distributions of obstacles
with two different strengths and activation enthalpies. These
studies used various simplifying assumptions of which the
most important is disregarding spatial correlations between
obstacle failure events along given dislocation. The approach
of Schoeck12 is aimed at relaxing this limitation, but eventu-
ally leads to asymptotic predictions only. Several computer
simulations of thermally activated dislocation motion were
also performed.13,14

The effect of obstacle distribution on the strength and
strain rate sensitivity �SRS� of the material was studied by
Olivares and Sevillano15 and, more recently, by Pretorius and
Nembach.16 The first group considered several obstacle dis-
tributions in the form of cells and channels representing dis-
location cell structures. They concluded that the random ob-
stacle distribution leads to the largest SRS of all cases
studied. The second group presented a study of the influence
of obstacle randomness on the critical resolved shear stress
and claimed that evidence exists that this parameter increases
with increasing the degree of randomness.

In this work we revisit some of these issues in order to
gain further insight into the effect of obstacle strength and
spatial distribution on the SRS of the material. In particular,
we are interested in the regime of large stress to which cur-
rent analytic models are not immediately applicable. This is
the regime in which dislocations are expected to overcome
obstacles in a correlated manner.

The motivation for this analysis is provided, in part, by
our recent experimental results on the SRS of dilute Al-
5%Mg alloys.17 Although the phase diagram of this alloy
predicts the separation of the Al3Mg phase at temperatures
below �200 °C, precipitation is sluggish and solute remains
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largely in solid solution. However, solute structures �clusters�
are expected. It has been shown that if these structures are
dissolved by a short annealing treatment before testing, the
strain rate sensitivity measured at low temperatures is sig-
nificantly larger �less negative� than that obtained from
samples that were not annealed. The strength of the alloy is
not affected by annealing. This indicates that, in addition to
the nature of the obstacles, their distribution has an influence
on the SRS. It should also be noted that Al-Mg alloys exhibit
negative SRS at room temperature, which leads to heteroge-
neous deformation and reduced ductility. If dynamic strain
aging �DSA� is active, the total SRS is given by the positive
component associated with the interaction of dislocations
with obstacles and the negative contribution from DSA.
Hence, if one aims to improve the overall rate sensitivity of
the material, increasing the positive component is an option
that should be explored.

II. MODEL AND SIMULATION PROCEDURE

A. Model

Let us consider a random distribution of obstacles of den-
sity �0. The density yields a characteristic length scale lc

=1/��0. The obstacles represent small solute clusters or
small precipitates and lc is assumed to be much larger than
the size of these entities. This is quite adequate for our pur-
poses since the interaction with strong, long range barriers
such as forest dislocations leads to the athermal component
of the flow stress. The dislocation is modeled as a flexible
string of line tension �=1/2Gb2 regardless of its type �the
isotropic line tension model�, where G is the material shear
modulus and b is the Burgers vector length. Note that lc
should be sufficiently large compared to the size of the ob-
stacle for the model of the dislocation behaving as an elastic
string of constant line tension to be adequate.

A dislocation segment pinned by two obstacles bows out
into an arc of dimensionless radius as follows:

r* = 1/2�*, �1�

where the applied shear stress �* is normalized by the
Orowan stress Gb / lc,

�* =
1

2r* =
�lcb

2�
=

�lc

Gb
. �2�

The force applied by the dislocation on the respective ob-
stacle may be computed from the line tension as

F = 2� cos��

2
� , �3�

where � is the angle made by the two branches of the dislo-
cation impinging against the obstacle. In dimensionless form
it becomes

f =
F

2�
= cos��

2
� , �4�

while the obstacle strength, fc, can be expressed in a similar
notation: fc=cos��c /2�.

The interaction between the dislocation and an obstacle is
described in terms of an activation energy �G=2�d�G*,
where d is a characteristic interaction range �or “size” of the
obstacle� which is small compared to the mean obstacle
separation lc. The normalized activation energy is written
�G*=�fc�g�f*�, with f*= f / fc being the reduced
dislocation-obstacle interaction force. �g is a monotonically
decreasing function of f*. It vanishes at the maximum re-
duced force f*=1, when the dislocation is mechanically ac-
tivated, and equals one when there is no mechanical work
done by the dislocation and obstacle bypassing is purely
thermally activated. The function must be convex or linear
for the energy barrier to be a single valued function of the
perturbation �a linear function �g�f*� corresponds to a rect-
angular energetic barrier�. The activation energy �G* is pro-
portional to the nondimensional obstacle strength, fc, and �
is a numerical constant.

The specific functional form of �g depends on the physi-
cal nature of the obstacle. This quantity can be determined
from atomistic simulations of the specific interaction
considered.18 In this study, the functional form used for the
activation energy in Ref. 18 was selected:

�g = �1 − f*�2. �5�

This allows us to compare the results with the analytic model
presented in this reference.

The probability that the dislocation overcomes an obstacle
is given by the usual Arrhenius form

p = exp�−
2�d�G*

kT
� = exp�− ��G*� , �6�

where the dimensionless temperature 1/�=kT /2�d is used.
Since the effect of line tension � and the characteristic inter-
action distance d are lumped into parameter �, increasing the
temperature is equivalent to decreasing the line tension � or
the interaction distance d.

The strain rate sensitivity parameter, m, is evaluated based
on the computed dislocation velocity, �, under given stress as

m =
� log �*

� log �* , �7�

where the velocity is normalized as �*=� / lc	, with 	 being
the attempt frequency for overcoming obstacles �1/	 is the
only implicit time of the problem�. Inertia was not consid-
ered and the transition time between consecutive stable dis-
location configurations was neglected compared to the wait-
ing time spent at each stable configuration. Note that the
activation volume of the dislocation glide process is given by

V = kT
� log �

��
=

kT

m�



1

m��
. �8�

B. Simulation procedure

The “circle-rolling procedure” devised by Foreman and
Makin19 was modified to implement thermally activated dis-
location motion. In each simulation, arrays of approximately
10 000 obstacles were generated and a single dislocation was
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moved across. The model is large enough to prevent strong
effects due to the periodic boundary conditions used in the
direction perpendicular to the glide direction.6,7 All obstacles
have the same strength and activation enthalpy.

At a given stress, each dislocation segment bows out until
it meets a new obstacle, equilibrium at one of the two pin-
ning obstacles is lost, or the equilibrium radius r* is reached.
A mechanically stable configuration is obtained by verifying
these conditions for all obstacles currently in contact with the
dislocation, until every dislocation segment reaches equilib-
rium. The critical resolved shear stress may be identified as
the minimum stress at which no stable configuration can be
found.

Once a stable configuration is identified under the applied
stress �*, the time is incremented by a small increment dt*

=	dt. For every time increment, a random number generator
is used to mimic the local activation process according to Eq.
�6� for all obstacles in contact with the dislocation. The dis-
location is advanced to the next stable configuration by re-
leasing all activated obstacles. This process is repeated and
the glide distance l*= l / lc during the total simulation time t*

is measured. The nondimensional dislocation velocity is
computed as �*= l* / t*. The strain rate sensitivity parameter is
evaluated with Eq. �7� and by subjecting the sample, in sepa-
rate simulations, to shear stresses �* and �*+d�*, with d�* on
the order of 0.01�c

*, where �c
* is the athermal critical resolved

shear stress. This procedure allows for multiple obstacles to
be activated in the same time interval d�* and hence corre-
lated activation events are permitted.

In arrays with large obstacle strength, dislocation loops
are left behind in the glide plane. The effect of the loops is
not considered as the array is continuously regenerated in
front of a moving dislocation. The field-mediated interaction
of dislocation segments is neglected, and the mechanics is
controlled by the line tension only.

A large number of replicas of same obstacle density ��0�,
strength �fc�, and distribution were generated by using dif-
ferent random seeds and the results were obtained by aver-
aging over all these realizations.

In the computer code, all obstacles have a user defined
data structure which includes the obstacle coordinates,
strength, and current state �bypassed by the dislocation, in
contact or not yet in contact with the dislocation�. The dis-
location is represented by a two-way linked list. Each node
in the list stands for an obstacle in contact with the disloca-
tion. Information such as the segment length and angle rela-
tive to the glide direction, and pointers to previous and next
obstacles is also included. This information is dynamically
updated as the dislocation moves through the array.

C. Generation of nonrandom obstacle arrays

Generating obstacle arrays with predefined obstacle distri-
bution is not trivial. The distribution is specified by imposing
the radial pair distribution function, g�r�. This function rep-
resents the density of obstacles in an annulus of thickness dr
located at distance r from a specified obstacle, normalized by
the mean obstacle density. For proper comparison of the re-
sults, the mean density �0=1/ lc

2 was kept constant in all
simulations.

To generate the obstacle array, a procedure commonly
used to derive potentials of mean force from known radial
distribution functions was used. It is based on the iterative
Boltzmann inversion method.20 If one desires to develop an
atomistic model with desired pair distribution function,
gtarget�r�, a potential of mean force is inferred as

U0�r� = − kT log�gtarget�r�� . �9�

This potential is then used to perform a molecular dynamics
simulation in two dimensions. After equilibration, this pro-
duces a pair distribution function g1�r�, which is different
from the target radial distribution function gtarget�r�. The po-
tential is then corrected and the procedure is repeated until
the convergence of the distribution function to the targeted
one. The correction of the potential in the n-th iteration
�based on gn�r�� is given by

Un+1�r� = Un�r� + kT log	 gn�r�
gtarget�r�
 , �10�

If the target radial distribution function has a simple func-
tional form, the procedure converges in several iterations. A
different method for generating pair potentials that would
lead to prespecified ground state configurations was devel-
oped in Ref. 21.

Once the potential is determined, many sets of obstacles
with desired gtarget�r� may be generated by simply running
molecular dynamics in two dimensions and saving configu-
rations. The “atom” positions define the obstacle array.

III. RESULTS AND DISCUSSION

Results for the random and correlated obstacle distribu-
tions are presented in Secs. III A and III B, respectively. The
variation of the normalized SRS with the obstacle strength,
fc, the temperature, �, and the normalized applied stress,
�* /�c

*, is studied. A simple model that assists data interpreta-
tion is presented and comparisons are made with relevant
experimental and theoretical results.

A. Random obstacle distributions

The critical resolved shear stress �c
* at which dislocations

glide through in the absence of thermal activation has been
evaluated theoretically and numerically.2–4,19 A square lattice
distribution of obstacles gives �c

*= fc. Friedel’s result for a
random distribution of point obstacles is �c

*= fc
3/2, which

holds for weak obstacles of strengths below approximately
fc=0.5. At larger fc, Friedel’s relation overestimates the criti-
cal stress. This error is encountered in all theoretical deriva-
tions that make the assumption that obstacle failure events
are spatially uncorrelated. The results of the present analysis
are shown in Fig. 1 along with computer simulation results
for the same system by Foreman and Makin.19 These critical
stresses are used below as a reference.

The variation of the inverse SRS parameter, 1 /m�, with
the obstacle strength is shown in Fig. 2. The data are ob-
tained for two applied stresses, �*=0.5�c

* and 0.9�c
* to repre-

sent small and large stress conditions, respectively. In Fig. 2,
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�* is different for the various points along the curves, since
�c

* is a function of fc. It results that at low stress, 1 /m� is
proportional to fc, i.e., the SRS parameter m is proportional
to the temperature and inversely proportional to the obstacle
strength. The same relationship was found in Refs. 7, 13, and
15 and seems to agree with experimental data.22

When the applied stress is large and for obstacles with
fc�0.6, 1 /m� does not follow the same scaling, rather, m is
independent of the obstacle strength fc in this range. When
fc�0.6, the linear scaling of 1 /m� with fc is recovered. To
understand this behavior, let us consider an Arrhenius rela-
tion for the nondimensional dislocation velocity as follows:8

�* = 
��*�exp�− ��G*�f*�� . �11�

This expression is postulated based on previous theoretical
work and numerical results.7,13 It was proven only in the

context of weak obstacles, situation in which the assumption
of uncorrelated obstacle failure holds. Under these condi-
tions it can be shown that the activation enthalpy for the
entire dislocation is identical to that for overcoming an indi-
vidual obstacle. 
 represents the average distance �normal-
ized by the mean obstacle separation lc� a dislocation ad-
vances from a stable configuration to the next as a result of a
single activation event.

Since under these conditions the dislocation line is almost
straight, the average force acting on an obstacle may be ex-
pressed in terms of the applied shear stress as

f* =
l*�*

fc
�

��*�1−n

fc
. �12�

The second part of the equation results by using the expres-
sion l*�����*�−n relating the distance between obstacles
along the dislocation line to the applied stress,1,3,4 ����1�.
This expression is valid under the same assumptions as
Friedel’s relation, but it fits numerical results over a broad
range of obstacle strengths and applied stress. The exponent
n=1/3 for randomly distributed obstacles and n=0 for the
square lattice distribution �l*=1�.

Substituting Eq. �11� in Eq. �7� and using Eq. �12� one
obtains

FIG. 3. Schematic representation of two successive dislocation
configurations �shown by solid and dashed lines� used to derive the
critical stress �̄�c

* at which the dislocation motion mechanism
changes from unzipping to jerky.

FIG. 4. Variation of the normalized SRS 1/m� with the tem-
perature �1/�� for arrays of weak and strong obstacles subjected to
large resolved shear stress.

FIG. 1. Normalized critical resolved shear stress �c
* in the ab-

sence of thermal activation plotted as a function of the obstacle
strength, fc. The results from the present simulations are shown
together with numerical results from Ref. 19 and with predictions of
Friedel’s model.

FIG. 2. Variation of the inverse SRS parameter with the obstacle
strength at small and large applied stresses and at two different
normalized temperatures.
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1

m
=

� log 


� log �* − ��1 − n�
d�G*

d ln f* . �13�

With the normalized activation energy given by Eq. �5�, the
inverse SRS parameter results

1

m
=

� log 


� log �* + 2��1 − n��fcf*�1 − f*� . �14�

The reciprocal strain rate sensitivity has two components:
one defined by the stress dependence of 
, and the other
proportional to the obstacle strength and the normalized in-
verse temperature, �. Referring to the data shown in Fig. 2, it
results that at low applied stress ��*=0.5�c

*�, the first term has
no contribution to 1/m �
 is a constant proportional to the
average obstacle spacing, lc� and 1/m� results proportional
to fc. This is also supported by the fact that the two curves
corresponding to different � collapse. Interestingly, although
the assumptions used to derive Eq. �14� are rather restrictive
and considered to hold only for weak obstacles, the model
fits well the numerical result even for large fc. The interpre-
tation of this observation will be discussed later in this sec-
tion.

At large applied stress and low obstacle strength, 1 /m� is
independent of fc and proportional to 1/� which indicates
that the second term in Eq. �14� contributes little to SRS.
This is interpreted as a manifestation of the stress depen-
dence of 
. As fc increases, 
 becomes stress independent
and the second term dominates just as in the case of low
applied stress. The slope turns out to be smaller than that
obtained for �*=0.5�c

*, which can be also justified based on
the second term of Eqs. �14� �by using Eq. �12� and the
numerical relationship between �c

* and fc shown in Fig. 1�.
To gain insight into the origin of these dependencies it is

useful to look at the mechanism by which the dislocation
moves. At low stresses the dislocation moves by unzipping.
When the stress increases, the motion becomes jerky, i.e., the
dislocation advances through a series of large jumps and ob-
stacles are overcome in a correlated manner. The magnitude
of the jumps depends on the applied stress and is not deter-
mined by the length scale lc. A similar result was obtained by
Mohles and Ronnpagel23 when using a stress of �*=0.9�c

*.
This transition may be observed in our animations of the
simulated glide process. Jerky motion of dislocations was
also reported in some models of thermally activated disloca-
tion glide24,25 and is commonly observed by electron micros-
copy.

The critical stress at which this transition occurs requires
some discussion. Let us consider a dislocation segment
pinned at O, P, and Q �Fig. 3�. If the dislocation moves by
unzipping, as the segment is released from P, a new equilib-
rium configuration OP’Q is reached; bypassing obstacles O
and Q is independent of the event at P. Then, 
 is propor-
tional to the mean area per obstacle �1/�0� and is indepen-
dent of the applied stress. As the applied stress increases, a
critical stress is reached �denoted here by �̄�c

*, �̄�1� at
which this mechanism ceases to be valid. To determine this
threshold, the condition that release at P implies release at O
and/or Q is written �the condition for correlated obstacle re-

lease�. The limit situation is that in which Q is released when
the dislocation reaches configuration OP’Q. The condition of
critical state at Q reads

(a)

(b)

(c)

FIG. 5. Variation of the normalized SRS parameter with stress in
random �circles� and square lattice-type arrays �squares� of ob-
stacles with �a� fc=0.1, �b� fc=0.5, and �c� fc=1. The thick curves
represent predictions of Eq. �16� for the two types of arrays �solid
line for the random arrays�. The thin solid and dashed lines in �a�
are predictions of the model in Ref. 8 for the two extreme tempera-
tures considered here, �=30 and 80, respectively. The dotted lines
in �a� are simply guide to the eyes for the data points corresponding
to the random array in the regime ���̄.
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cos�1

4
�� − �� +

1

2
�a cos	2�̄�c

*l* sin��

2
�
 + a cos��̄�c

*l*�
�
= fc, �15�

which provides an equation for �̄ in terms of the obstacle
strength fc .�c

* and � are themselves functions of fc .� has a
narrow distribution in the neighborhood of � for weak ob-
stacle, while for strong obstacles the width of the distribution
increases. As we are considering the limit of unzipping, the
expression l*�����*�−n=����̄�c

*�−n can be used. Also, the
distribution of � is replaced by its mean, i.e., by �=�. Equa-
tion �15� leads to �̄=0.57 for fc=0.1. As fc increases, �̄
increases monotonically such that for fc=1, �̄�1. Hence,
obstacles of large strength stabilize the unzipping mecha-
nism. Of course, obstacles of strength fc�1 are probably too
strong to represent realistic situations; this limit is considered
in this work in order to have a complete physical picture.

Returning to the discussion of the data in Fig. 2, it results
that the validity of Eq. �14� with constant 
 is not condi-

tioned by the obstacle strength per se; rather, it is associated
with the unzipping mechanism �uncorrelated obstacle by-
passing�.

The variation of 1 /m� with temperature �1/�� is shown
in Fig. 4. As discussed, at low stress �creep conditions�, the
second term in Eq. �14� dominates and 1/m� is independent
of temperature.7,13 At large stresses relative to the critical
resolved shear stress �CRSS�, 1 /m� �and the activation vol-
ume� is approximately proportional to the temperature for
both weak and strong obstacles. This is in general agreement
with experimental results.26

Let us consider now the effect of stress on the SRS pa-
rameter. Figure 5 shows simulation results for 1 /m� versus
the normalized applied shear stress, �=�* /�c

* for random ar-
rays with fc=0.1, 0.5, and 1.0 representing weak, intermedi-
ate, and strong obstacles. To assist data interpretation, let us
consider Eq. �14� with f* given by Eq. �12�. At low stress
�creep conditions�, when 
 is essentially independent of
stress, this leads to

1

m�
= 2�1 − n��fc

���c
*�1−n

fc
	1 −

���c
*�1−n

fc

 . �16�

This equation can be used for random distributions �n
=1/3� and for the square lattice arrangement �n=0� and
leads to very good agreement with the numerical data for
���̄ �shown by thick solid and dashed lines in Fig. 5, for
n=1/3 and n=0, respectively�. The equation was derived
under restrictive conditions: no spatial and temporal correla-
tions between obstacle release events, the dislocation line is
almost straight, and the relation l*�����*�−n holds. These
conditions have been associated in the literature with weak
obstacle. The results presented in Figs. 2 and 5 indicate that
the model can be used for strong obstacles too, provided the
dislocation moves by unzipping ����̄�.

The predictions of the formulation developed by Landau
and Dotsenko8 are also shown in Fig. 5�a� �valid for weak
obstacles only� by thin solid and dashed lines corresponding
to �=80 and 30, respectively.

For ���̄, 1 /m� is independent of temperature and hence
the curves corresponding to simulations performed with dif-
ferent � overlap. It is also interesting to note that the
Cottrell-Stokes law, i.e., the stress independence of 1 /m�, is
not exactly fulfilled for any obstacle strength and applied
stress. However, for weak obstacles and low levels of stress
����̄�, 1 /m� depends weakly on stress ���.

At large stresses, ���̄, the predictions of Eq. �16� remain
a good match to the numerical results for the square lattice
distribution, but do not follow the data for the random ob-
stacle distributions. As discussed, this is due to the fact that

 becomes stress dependent and the dislocation motion be-
comes jerky �correlated obstacle bypassing�. The SRS pa-
rameter m decreases very fast with increasing applied stress
and becomes dependent on temperature. Increasing the tem-
perature leads to a more pronounced reduction of m. The
critical stress �̄ at which the upturn of 1 /m� is observed
depends strongly on the obstacle strength �Eq. �15��. For the
strongest obstacles �fc=1�, 
 is independent of stress and the

FIG. 6. Pair distribution functions for two obstacle distributions
considered in this study.
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dislocation moves by unzipping at all stresses ��̄�1�; the
temperature has no influence on the plot �m varies as 1 /��.

These results indicate that the mechanism by which the
dislocation moves �correlated vs uncorrelated obstacle by-
passing� is controlled by both the applied stress and the ob-
stacle strength. In fields of weak obstacles, correlated ob-
stacle bypassing �jerky motion� associated with reduced SRS
is observed at relatively small normalized stresses. This phe-
nomenon does not depend on the physical nature of the ob-
stacles, as long as their size d is sufficiently small compared
to the interobstacle spacing.

Figure 5 also indicates that the SRS parameter m is larger
when the obstacles are weaker, as expected. The random dis-
tribution leads to larger m compared to the square lattice
distribution of the same obstacle density. This difference is
more pronounced for strong obstacles. In Ref. 15 it was also
reported that the random distribution leads to the largest SRS
parameter out of several random and nonrandom obstacle
distributions considered. This issue is revisited in Sec. III B.

In experiments it is observed that the activation volume
�Eq. �8�� decreases continuously with stress 26,27. The data in
Ref. 27 can be mapped to a curve with a weak maximum at
intermediate stresses. Although in agreement with the
present results, a quantitative comparison with the experi-
ments is not possible due to the simplicity of the model.

The transition from smooth to jerky dislocation motion at
�= �̄, and estimates of �̄ are not reported, to our knowledge,
in previous works. Altintas et al.13 discussed that the defor-
mation is markedly inhomogeneous at low temperatures and
becomes homogeneous at low stresses as the temperature
increases, while at high stresses, the deformation remains
inhomogeneous at all temperatures. In Ref. 13, a set of par-
allel independent glide planes is considered and what they
refer to as heterogeneous deformation is caused by variabil-
ity from plane to plane, i.e., from realization to realization of
the array of obstacles. In Ref. 23, jerky motion is observed
but the dependence of the mechanism on the applied stress is
not discussed since the study is performed at fixed �*.

B. Correlated obstacle distributions

Let us consider next distributions of obstacles character-
ized by additional �larger� length scales. The fundamental
length scale associated with the mean obstacle density, lc

=1/��0, is kept constant and longer wavelength density fluc-
tuations are introduced.

To demonstrate this effect, two types of distributions are
considered, corresponding to two imposed pair distribution
functions, g�r�. These are shown in Fig. 6 and are denoted as
configurations 1 and 2. The figure also shows g�r� for the
random obstacle distribution, which is a constant of r. In
configuration 1, the obstacles are clustered, with an addi-
tional length scale defining the mean distance between clus-
ters of about 3lc. No long range order exists beyond this
scale. Configuration 2 approaches the long range order of the
two-dimensional closest packed structure �the triangular lat-
tice�, with little or no clustering.

The critical resolved shear stress ��c
*� for the two distribu-

tions is shown in Fig. 7 as a function of the obstacle strength,
fc. The curve that corresponds to the random distribution
�Fig. 1� is also shown. For weak obstacles, fc�0.5, all three
distributions give the same critical shear stress. Clusters of
weak obstacles in configuration 1 tend to be stronger than

FIG. 7. Normalized critical resolved shear stress �c
* in the ab-

sence of thermal activation plotted as a function of the obstacle
strength, fc, for the random array and for the two distributions
shown in Fig. 6.

(a)

(b)

FIG. 8. Variation of the normalized SRS parameter with the
resolved shear stress for random arrays �circles� and for the two
configurations shown in Fig. 6, with �a� fc=0.1 and �b� fc=1. The
curve represents the predictions of Eq. �16� for the random array.
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individual obstacles due to the small obstacle separation
within each cluster. At the same time, the mean distance
between clusters is much larger than lc, which should lead to
a smaller �c

*. These two effects balance each other in the case
of weak obstacles. In the case of strong obstacles, the second
effect dominates in configuration 1. �c

* for configuration 2 is
identical to that of the random lattice for all obstacle
strengths.

The strain rate sensitivity analysis of the two distributions
is shown in Fig. 8 for weak �fc=0.1� and strong �fc=1� ob-
stacles. Interestingly, for weak obstacles the SRS parameter
is identical for the two configurations and identical to that of
the random distribution. This is also observed in arrays of
strong obstacles �fc=1�, for which all curves are similar at
low stress. However, important differences are observed in
the presence of stronger obstacles at large stress. Under these
circumstances, the additional length scales associated with
the obstacle distribution become important. The threshold
ratio �̄ appears to be sensitive to the nature of the distribu-
tion. For configuration 1, �̄�0.5, for configuration 2, �̄
�0.8, while for the random distribution and fc=1, �̄�1.

The presence of obstacle clusters leads to substantially
smaller m at large stresses. Furthermore, configuration 2
leads to a SRS parameter m larger than that obtained for
random distributions.

These results show that under creep conditions the SRS is
only weakly influenced by the distribution of obstacles. At
large stresses, the obstacle distribution becomes important.
This is actually expected since at large stresses the disloca-
tion bypassed obstacles in a correlated manner �jerky mo-
tion� and its motion should be influenced by how obstacles
are distributed. These observations also indicate that charac-
terizing the strength and SRS by a single parameter, i.e., the
mean obstacle density, is insufficient and that higher mo-

ments of the obstacle density distribution must be also con-
sidered.

IV. CONCLUSIONS

The study presented in this paper shows that the analysis
of the effect of obstacles on the critical resolved shear stress
and strain rate sensitivity can be divided into two parts func-
tion of the mechanism by which dislocations move. If the
motion is smooth and takes place by unzipping, the strain
rate sensitivity is proportional to the temperature and in-
versely proportional to the obstacle strength. Its variation
with the applied stress is predicted by a simple model which
also captures several other features of the overall behavior. A
threshold stress is identified �and predicted by the model� at
which a transition to jerky dislocation motion is observed.
During the jerky motion the dislocation bypasses obstacles in
a correlated manner. The transition stress increases with the
obstacle strength indicating that strong obstacles stabilize the
unzipping mode. If the dislocation moves in a jerky fashion,
the strain rate sensitivity decreases and becomes rather in-
sensitive to the obstacle strength.

The strain rate sensitivity is greatly affected by spatial
correlations introduced in the distribution of obstacles, espe-
cially when the dislocation motion is jerky. This parameter is
affected more than the critical resolved shear stress. Hence,
models aimed at predicting these global measures should ac-
count for higher moments of the obstacle density distribu-
tion, in addition to the mean density.
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