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During recrystallization, dislocation-poor grains grow and invade the heavily deformed dislocation-rich
matrix. In this work, we develop a coupled dislocation density and phase-field method to model the isothermal
recrystallization process as a phase transformation, driven by the stored elastic energy. Dislocations are rep-
resented in two spatial dimensions in terms of a continuous Burgers vector field, and their contribution to the
elastic energy density is explicitly incorporated. A key feature of our approach is that the driving force for grain
growth becomes nonlocal in space due to the presence of long-ranged dislocation strain fields. We employ the
model to examine the influence of various spatially heterogeneous dislocation distributions �random, cellular,
and algebraically correlated� on the growth morphology of an isolated recrystallized grain. Our results show
that grain growth can be highly anisotropic and irregular in cellular dislocation networks, in agreement with
recent experiments. The source of this anisotropy is related to the anisotropy of the underlying dislocation
network as well as the long-ranged dislocation stress fields. We also discuss how to extend this method to three
spatial dimensions by invoking the full dislocation density tensor.
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I. INTRODUCTION

Upon undergoing a severe plastic deformation, many met-
als and alloys display interesting microstructural evolution
processes involving collective motion of dislocations at el-
evated temperatures.1 The elastic energy stored during cold
working is released on annealing via three main processes:
recovery, recrystallization, and grain coarsening. Recovery is
the process during which dislocations rearrange to form
lower energy configurations, while recrystallization refers to
the subsequent formation and migration of high-angle grain
boundaries. Upon impingement of the recrystallized grains,
grain coarsening takes over. These processes, driven by the
relief of deformation stresses, affect several important micro-
structural features, including grain size and orientation �tex-
ture�. Fundamentally, we would like to develop quantitative
models which would predict the resulting post-
recrystallization microstructure from the knowledge of the
plastic deformation and material properties. From a theoret-
ical perspective, this is a tall order: Any physically based
description of the recrystallization phenomenon necessarily
involves a seamless integration of processes across a multi-
tude of length and time scales, ranging from the motion of
isolated dislocations on the atomic scale up to the mesoscale
dynamics of interacting dislocation ensembles. The aim of
this paper is somewhat less ambitious in that our goal is to
develop a mesoscale framework, which incorporates several
key microscopic features of the process, for studying this
collective phenomenon. In particular, our focus is on eluci-
dating the growth morphologies of an isolated grain and re-
lating them to the spatial features and heterogeneities in the
dislocation network.

On the experimental side, several investigations have
been carried out to describe the recrystallization kinetics in a
variety of industrial and model alloys.2–9 Modeling of the
recrystallization has traditionally been based on microstruc-
tural representations of the cell/subgrain structure or the dis-

location density. Fundamental interest in recrystallization has
led to analytical models which could predict overall recrys-
tallization kinetics and textures.10–15 A model for recrystalli-
zation kinetics based on several physical parameters, such as
grain-boundary mobility, average dislocation density, and
grain size for interstitial-free steel, was proposed by Ye et
al.16 This model could capture the effect of the percentage of
cold working on recrystallization kinetics. However, the ab-
normal growth seen in the recrystallization process and the
irregular growth were not captured by this model. Indeed, the
in situ experiments of Schmidt et al.5 have clearly demon-
strated that the growth morphology of an isolated grain can
be highly irregular due to heterogeneities in the local dislo-
cation density. Zurob et al.17 proposed a model which could
predict the recrystallization incubation time and the critical
strain. It is noteworthy that the models discussed above are
mean-field type in the sense that they do not explicitly track
the morphology of evolving grains or the spatially heteroge-
neous dislocation distribution.

Microscopically, plastic deformation and concomitant dis-
location motion have been studied at different levels of spa-
tial and temporal resolutions. At the highest resolution, dis-
location motion in pure metals and alloys has been
elucidated by means of molecular dynamics simulations.18–26

These studies have yielded a plethora of information regard-
ing, e.g., dislocation core structure, the mobility of isolated
dislocations, and the interaction between a relatively small
number of dislocation loops. By integrating out the atomic
degrees of freedom away from the dislocation core, a wide
range of models for the overdamped motion of isolated dis-
location lines and loops have been proposed over the years.
Long-range interactions between dislocations are taken into
account through linear elasticity theory, and short-range
�core� interactions are incorporated through a set of consti-
tutive relations for local dislocation reactions. Notable ex-
amples in this category include the recently introduced level-
set method for studying dislocation interactions with
particles,27 kinetic Monte Carlo simulations of screw dislo-

PHYSICAL REVIEW B 76, 094109 �2007�

1098-0121/2007/76�9�/094109�13� ©2007 The American Physical Society094109-1

http://dx.doi.org/10.1103/PhysRevB.76.094109


cation motion in bcc metals,28 massive dislocation dynamics
simulations of plasticity in metals and misfitting thin films,29

and the phase-field methods of Refs. 30 and 31 for modeling
individual dislocation loops as misfitting platelets. A feature
shared by all these methods is that they resolve individual
dislocation lines. These models have, in turn, contributed to
an improved understanding of, e.g., work hardening and
dislocation-precipitate interactions. Further decreasing the
spatial and temporal resolution, Rickman and co-workers
have investigated spatially extended systems with large dis-
location densities by invoking a spatially coarse-grained dis-
location density tensor.32 As will be discussed in detail be-
low, the work described in this paper builds on and extends
the coarse-grained dislocation density description introduced
by Rickman and co-workers.

Coarse-grained computational models have also been em-
ployed to investigate recrystallization and grain growth phe-
nomena. Kinetic Monte Carlo simulations of the Potts
model,33–35 cellular automata models,36–38 and phase-field
simulations of grain growth39 have yielded a wealth of infor-
mation about the kinetics of grain growth and coarsening
during recrystallization. A common feature of these models
�as well as of the analytical models discussed above�, how-
ever, is that they do not explicitly incorporate the long-
ranged dislocation stress fields; in fact, the local driving
force for grain growth is taken to be proportional to the local
dislocation density. While this feature is not crucial in cases
where the dislocation strain fields are effectively screened,
there are cases where the long-ranged dislocation strain fields
have a strong influence on the morphology of the growing
grains prior to impingement, as we will demonstrate below.

In this paper, we consider a system which is already in a
recovered state, and a germ nucleus is present, which subse-
quently grows. We have considered several different spatial
dislocation distributions, including uniformly random con-
figuration, square and rectangular cell structures, and alge-
braically correlated distributions, and have studied the effect
of the dislocation distribution on the growth kinetics and
morphologies of the isolated recrystallized nucleus. It is
noteworthy that the average dislocation density was kept
constant, and thus the changes in the growth morphologies
were due to the distinct spatial dislocation arrangements. The
uniformly random distribution of dislocations corresponds to
low stacking fault energy �SFE� materials in which the dis-
locations do not organize into subgrains and the nucleation
site is visualized in terms of a relatively dislocation-free re-
gion in the vicinity of a grain boundary. In high SFE mate-
rials, on the other hand, dislocations align to form more or-
dered cellular structures, which we approximate as
collections of rectangular dislocation walls. The nucleation
site in this case is simply a subgrain which has a lower stored
energy than the neighboring subgrains.17 The nuclei then
grow preferentially into the neighboring grains because they
benefit from very mobile high-angle boundaries. Finally,
while algebraically correlated dislocation structures are usu-
ally observed only at very low temperatures40 and thus are
not as relevant at elevated temperatures, it is of fundamental
interest to study the interplay between the long-ranged dis-
location strain fields and the correlated dislocation structure
with regard to the growth kinetics.

The paper is organized as follows. Sec. II presents the
theoretical approach based on the coarse-grained dislocation
density and phase-field methods employed in this study,
while Sec. III examines the growth morphologies of a recrys-
tallized grain in uniformly random, cellular, and algebra-
ically correlated dislocation networks. Sec. IV presents the
results for recrystallization rate kinetics and Avrami coeffi-
cients, while Sec. V contains a brief discussion and conclu-
sions. Finally, the Appendix outlines an extension of our ap-
proach to three spatial dimensions.

II. THEORETICAL APPROACH

In this work, we employ the phase-field method �PFM�,
together with a coarse-grained dislocation density descrip-
tion, to simulate the growth of an isolated recrystallized
grain within a cold-worked matrix in two spatial dimensions.
We begin by introducing the coarse-grained dislocation de-
scription.

A. Elasticity theory and coarse-grained dislocation description

From a thermodynamics perspective, the driving force for
the growth of the recrystallized grain is the reduction of the
local elastic energy. Microscopically, this energy can be writ-
ten as a sum of two terms, one arising from the smooth
long-ranged elastic strains �treated here within linear elastic-
ity theory� and another from the dislocation cores:

FD =
1

2
� d2r��ij

s �ij
s + �

i=1

N
Gb� i

2�r�i�
c

. �1�

Here, �ij
s denotes the two-dimensional �2d� stress tensor, �ij

s

is the corresponding strain tensor, G is the shear modulus,

b� i�r�i� is the Burgers vector of the ith dislocation located at
r�=r�i, and c is a constant related to the dislocation core en-

ergy Eb=
Gb� i

2

c .
Rather than resolving individual dislocations, we employ

a coarse-grained dislocation density approach where we av-
erage the local microscopic dislocation density over a small
coarse-graining area ��2,

b��r�� = �−2�
j

b� j�r� j� . �2�

Here, the restricted sum is over those dislocations j for
which �r�−r� j��� /2. By construction, for a uniform disloca-

tion distribution, b��r��=const, while b��r���0 for a collection
of tightly bound dislocation dipoles. The length � sets the
spatial scale over which the coarse-grained dislocation den-
sity varies. Specifically, setting � comparable to the crystal-
line lattice spacing recovers an atomistically sharp disloca-
tion density, while increasing � leads to progressively coarser
descriptions where more and more of the finer scale details in
the dislocation density have been averaged out. In this work,
� is chosen to be comparable to the width of the diffuse
interface �discussed in Sec. II B� between the recrystallized
grain and the matrix. This choice makes the dislocation den-
sity computationally tractable in the numerical implementa-
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tion of the model. Physically, the effects of dislocation struc-
tures on scales smaller than � cannot be accurately modeled
with this method. Nevertheless, such an approach, pioneered
by Rickman and co-workers,32 allows one to investigate spa-
tially extended systems with large dislocation densities. This
approach has previously been employed by one of us in elu-
cidating stress-driven instabilities in thin film growth and
effects of mobile dislocations on spinodal decomposition in
misfitting binary alloys.41

As is well known, dislocations distort the crystalline lat-
tice and give rise to long-ranged elastic stress and strain
fields.42–44 In what follows, we will relate the spatially het-
erogeneous dislocation density to the elastic stress fields it
generates. We begin by noting that the dislocations can be

characterized based on their Burgers vector b� , which is re-
lated to the elastic displacement field u�s�r�� via the so-called

closure failure ��Sdu�s=�m=1
N b�m, where the integration con-

tour encloses N dislocation cores. Introducing the deforma-
tion tensor � ji	�ui

s /�xj and employing Green’s theorem al-
lows us to rewrite the closure failure as



�S

dui
s = 


�S

� jidxj = �
m=1

N

bm;i �3�

or

�
S

d2R� �kj�k� ji = �
m=1

N

bm;i, �4�

where �ik denotes the 2d antisymmetric tensor with compo-
nents �xx=�yy =0 and �xy =−�yx=1, and the summation over
repeated indices is implied. Upon taking S to be equivalent to
the coarse-graining area �2 centered at r� and defining the
coarse-grained deformation tensor via �2� ji

CG�r��
	�Sd2R� � ji�r�−R� �, we finally obtain the sought-after relation

between � ji
CG and b��r��, namely,

�kj�k� ji
CG = bi�r�� . �5�

Since the characteristic rate of grain growth during recrystal-
lization is very small compared to the speed of sound, it is
safe to assume that elastic stresses equilibrate essentially in-
stantaneously, thus becoming slaved to the slowly evolving
dislocation distribution. In 2d, the mechanical equilibrium
equations are fulfilled automatically if the stress tensor is
written as

�ij
s = �ik� jl�k�l� , �6�

where ��r�� is the so-called Airy stress function.45 Within
linear elasticity, the strain �ij

s is related to the stress via

�ij
s =

1

2�
�ij

s −
�

4��� + ��
	ij�kk

s . �7�

Here, Young’s modulus is related to � and � via Y2= 4B�
B+� , the

Poisson ratio �2= B−�
B+� , and the bulk modulus B=�+�. Now,

substituting for the Young’s modulus, Poisson ratio, and bulk
modulus in Eq. �7�, we obtain

�ij
s =

�2 + 1

Y2
�ij

s −
�2

Y2
	ij�kk

s . �8�

Substituting Eq. �6� in Eq. �8� yields

�ij
s =

�2 + 1

Y2
�ik� jl�k�l� −

�2

Y2
	ij�

2� . �9�

Finally, applying �ik� jl�k�l on either side of Eq. �9� and em-
ploying the relation �ij

s = �� ji
CG+�ij

CG�/2 yields

1

Y2
�4� = �ik�ibk�r�� = �xby�r�� − �ybx�r�� . �10�

For a given b��r��, solving the biharmonic equation above thus
yields the Airy stress function ��r��, which can then be dif-
ferentiated as in Eq. �6� to yield the components of the elas-
tic stress tensor.

Written in terms of ��r��, the stored elastic energy due to
dislocations is given by

FD =
1

2Y2
� d2r���2��2 +� d2r��Gb�2

c
+ e0
 . �11�

Here, a constant elastic energy of magnitude, e0, is added to
the total energy to account for the presence of tightly bound
dislocation dipoles, which exist within the coarse-graining
area. Additionally, we have cast the elastic energy in Eq. �11�
in a nondimensional form by measuring spatial lengths in
units of L �to be specified later�, gradients and derivatives in
units of L−1, the Burgers vector density in units of b0 /�2, and
the Airy stress function in units of L3b0Y2 /�2. Consequently,
the elastic energy in Eq. �11� is measured in units of
L4b0

2Y2 /�4, while the dimensionless shear modulus is given
by G�2 / �L2Y2�.

B. Phase-field method

Several excellent papers exist on the application of the
PFM to various microstructural evolution problems; see, e.g.,
Refs. 46–48. As usual, we introduce a scalar order parameter
�OP� 
�r��, which distinguishes between the recrystallized
phase �
=1� from the matrix �
=−1�. The interface �i.e.,
grain boundary� is identified with the level set 
=0. Within
the phase-field formalism, the total free energy of the system
is now written as

F = F
 +� d2r�� ��2��2

2Y2
+

Gb�2

c
+ e0�g�
�r��� , �12�

where

F
 =� d2r��1

2
W2��
�2 −


2

2
�1 −


2

2

� . �13�

Here, the functional form for g�
� is dictated by the require-
ment that the equilibrium OP values are not shifted by the
coupling to the dislocation elastic energy, implying that
�dg /d
�
=±1=0.49 A mathematically convenient choice

adopted in this work is g�
�=
3 /3−
; other choices are also
possible. W is a parameter related to the thickness of the
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interface and the surface tension between the two phases.
The dynamical equation for the order parameter is given by

�
�r�,t�
�t

= − �
	F�
�r���

	
�r��
= − ��W2�2
 + 
 − 
2 − g��
�fel� ,

�14�

where

fel 	
��2��r���2

2Y2
+

Gb�2�r��
c

+ e0 �15�

denotes the local �dimensionless� elastic energy density.
Here, � denotes the order parameter mobility �related to the
mobility of the interface between the recrystallized and the
cold-worked material �see below��, which, in principle, can
be obtained from, e.g., molecular dynamics simulations.50 In
this work, we will consider an isotropic mobility in order to
elucidate the effect of spatially heterogeneous dislocation
distributions on grain growth; extension to an anisotropic �
is straightforward and will be considered in a separate
publication.51 Typically, a Gaussian noise term consistent
with the fluctuation-dissipation theorem is added to Eq. �14�
to guarantee that the system approaches a thermodynamic
equilibrium asymptotically. While such a noise term is cru-
cial to facilitate nucleation, it has little effect on the subse-
quent growth of the grain. Thus, we have not included it in
this work. Finally, the equations of motion for the dislocation
densities are given by

�bx�r�,t�
�t

= �mg�x
2 + mc�y

2�
	F

	bx
− �1 + 
�bx,

�by�r�,t�
�t

= �mc�x
2 + mg�y

2�
	F

	by
− �1 + 
�by , �16�

where mg and mc denote dislocation glide and climb mobili-
ties, respectively. The terms involving spatial gradients in
Eq. �16� account for the glide and climb dynamics of the
dislocation network in response to the long-ranged Peach-
Koehler forces between the dislocations,41 while the relax-
ational terms account for the dislocation–grain-boundary in-
teractions, as discussed below. Since we are interested in the
recrystallization and not the recovery phase, we will assume
that dislocation cell wall formation has proceeded to its
completion and therefore set mg=mc=0. Hence, the equa-
tions of motion for the dislocation densities become

�b��r�,t�
�t

= − �1 + 
�b� . �17�

At this point, we assume that the dislocations are simply
incorporated into the moving grain boundary, and do not
consider the microscopic features of this process in more
detail. In particular, as soon as the grain boundary “sweeps”
past a dislocation located at r� �implying a change, 
�r��=
−1→
�r��=1�, it becomes incorporated �i.e., absorbed� into
the grain boundary and no longer contributes to the overall
elastic energy. This model is in accordance with recent ex-
perimental results, which demonstrate that “random” grain
boundaries are capable of absorbing swept dislocations effi-
ciently, while the migration of special boundaries �e.g., sym-
metric tilt boundaries� can be retarded by the presence of
dislocations, not yet absorbed, being “dragged” along by the
grain boundary �GB�.52 It is noteworthy that molecular dy-
namics simulations can be employed to elucidate the atomic
scale processes occurring during dislocation-GB
interactions.53,54

t=62.5

t=2500.0

t=62.5

t=4687.5

t=2500.0

t=4687.5

FIG. 1. �Color online� Snapshots of the growing recrystalliza-
tion grain and �initially� uniformly random spatial distribution of
dislocations. The figures on the left correspond to the evolution of
the recrystallized grain, and those on the right correspond to the
dislocation distribution. �Note that the dislocation plot correspond-
ing to time t=62.5 shows the dislocation distribution for the entire
system, while the subsequent dislocation plots display only the top
quadrant for clarity.� In the morphology plots, yellow �gray� corre-
sponds to the growing grain and blue �black� to the matrix. In the
dislocation plots, red and pink correspond to bx=1 and bx=−1, and
light blue and light green correspond to by =1 and by =−1,
respectively.
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To summarize, the OP evolves according to Eq. �14� and
the dislocation density according to Eq. �17�, and the elastic
fields relax instantaneously; they are obtained by solving Eq.
�10�.

Interface equation of motion. It is instructive to derive the
equation of motion for a gently curved interface via projec-
tion techniques. Following Ref. 46, we adopt a local �u ,s�

coordinate system, where u and s denote coordinates normal
and tangent to the interface located at 
=0, respectively. For
a gently curved interface ��W
1, where � denotes the local
interface curvature�, 
�
eq�u−Vt�, where 
eq�x�=
−tanh�x /W�2� and V denotes the local interface normal ve-
locity. The Laplacian in this limit, written in terms of u and s
becomes �2��2 /�u2+�� /�u+�2 /�s2.46 Hence, Eq. �14� be-
comes

− V
d
eq

du
= ��
eq − 
eq

3 + W2d2
eq

du2 �
+ ��W2�

d
eq

du
− g��
eq�fel� , �18�

where fel denotes the local �dimensionless� elastic energy
density. By construction, 
eq−
eq

3 +W2d2
eq /du2=0. Now,
multiply both sides by the sharply peaked function d
eq /du
and integrate over u to yield

− V� = ��W2� −
4

3
�fel;int �19�

or

V = − ��W2� −
4

3�
fel;int� , �20�

where �	��
�du�d
eq /du�2=2�2/ �3W�. In the above equa-

tions, we have employed the fact that �g���eq�d
eq /du
=4/3. Physically, Eq. �20� states that the interface moves in
response to two thermodynamic forces—curvature � and lo-
cal elastic energy density at the interface fel;int. As the inter-
face propagates, dislocations are eliminated and their elastic
fields no longer contribute to fel. In our formulation, it is also
evident that the driving force is truly nonlocal, as the singu-
lar stress fields are obtained by solving the biharmonic equa-
tion for the Airy stress function. It is noteworthy that the
above analysis breaks down for sharply curved interfaces for
which �W=O�1�, and the local normal velocity of the inter-
face is no longer proportional to the curvature. Even in this
limit, however, the phase-field model provides a physically
reasonable �albeit qualitative� description of the interface dy-
namics.

We now explore this model for the recrystallization pro-
cess. To this end, we begin with a small nucleus of the re-
crystallized phase �as it is indicated in experiments that a
cell/subgrain which is already present in the cold-worked
material acts as the nuclei� about 0.3% the size of the system,
which is a uniform grid of 512�512 with grid spacing �x
=1.0. Time is measured in units of �−1, while length scales

were measured in terms of the interface width Ŵ such that

W=Ŵ /L=1. Explicit Euler integration is used with the �di-
mensionless� time step �t=0.01. Spatial derivatives were ob-
tained using finite differencing, and the Airy stress function
� was resolved in Fourier space. A total of 57 344 �about
21%� dislocations were used, and the magnitude of the Bur-
gers vector density was taken to be 1.0. The Burger’s vector
direction of the dislocations were taken to be either along the
x axis or the y axis, as specified below. The total number of

t=125.0t=125.0t=125.0t=125.0 t=125.0t=125.0t=125.0t=125.0

t=1625.0t=1625.0t=1625.0t=1625.0
t=1625.0t=1625.0t=1625.0t=1625.0

t=3375.0t=3375.0t=3375.0t=3375.0
t=3375.0t=3375.0t=3375.0t=3375.0

t=4375.0t=4375.0t=4375.0t=4375.0 t=4375.0t=4375.0t=4375.0t=4375.0

FIG. 2. �Color online� Morphological evolution for square cell
structure and the corresponding dislocation distribution. Figures on
the left correspond to the growing recrystallized grain, and those on
the right to the dislocation distribution. In the morphology plots,
yellow �gray� corresponds to the growing grain and blue �black� to
the matrix. In the dislocation plots, red and pink correspond to bx

=1 and bx=−1, and light blue and light green correspond to by =1
and by =−1, respectively. �Note that the first dislocation plot shows
the dislocation distribution for the entire system, while the subse-
quent dislocation plots display only the top quadrant for clarity.�
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dislocations was kept constant in the simulations in order to
assess the role of spatial dislocation distribution on growth
morphologies. The following parameters were employed in
all the simulations reported here �unless stated otherwise�:
c=1.0, G=0.075, e0=0.04, and Y2=1.25. The specific values
for these three parameters were chosen such that the core
energy term and the long-ranged elastic part contribute ap-
proximately equal amounts to the free energy in Eq. �11� for
an isolated dislocation of magnitude bx/y = ±1. Second, the
value of e0 was chosen to be sufficiently large so as to drive
the slow growth of the grain in the case where the coarse-
grained dislocation density is set equal to zero. Finally, if we

take Ŵ=�=100 nm, the effective dislocation density be-
comes ��1014 m−2 for these choices of parameters. While
the quantitative results are affected by the specific choice of
parameters, the growth morphologies reported below were
found to be insensitive with regard to the parameters.

III. SIMULATION RESULTS: GROWTH MORPHOLOGIES

A. Uniformly random dislocation distribution

In the case of low stacking fault energy materials, the
dislocations at the end of the recovery phase do not form
well-defined cell/subgrain structures and are approximately
uniformly randomly distributed. To study grain growth in
such systems, numerical simulations were carried out for
cases with dislocation Burgers vectors along the x axis and
also along both x and y axes. In the case where dislocation
Burgers vectors along the x axis were used, the number of
dislocation with positive and negative Burgers vectors was
set to 28 672 each. On the other hand, when dislocations
with Burgers vectors along both x and y axes were used,
14 336 dislocations were used for each of the different kinds,
namely, dislocations with Burgers vectors along the positive
and negative x axes �bx= ±1� and Burgers vectors along the
positive and negative y axes �by = ±1�. Figure 1 shows the
growth of the recrystallized phase when dislocations whose
Burgers vector is along both the x and y directions were
distributed in a uniformly random fashion. The snapshots in
the left panel of Fig. 1 correspond to the morphology of the
growing recrystallized phase, while the snapshots in the right
hand panel correspond to the instantaneous dislocation dis-
tribution. From the snapshots, we can see that dislocations
are removed from the growing recrystallized grain, resulting
in a dislocation-free material. Note that the dislocation plot
corresponding to time t=62.5 shows the dislocation distribu-
tion for the entire system, while the subsequent dislocation
plots display only the top quadrant for clarity. As the dislo-
cations are randomly distributed in this case, the recrystal-
lized nucleus experiences similar driving forces in all direc-
tions, and hence the growth is isotropic �i.e., circular�. It is
also interesting to note that if the dislocation of one type and
sign were employed, say, bx=1, the morphology of the grow-
ing grain remained isotropic.

B. Cellular structures

Optical measurements done with aluminum and high
stacking fault systems7,55 have shown that dislocations can

t=125.0t=125.0t=125.0t=125.0 t=125.0t=125.0t=125.0t=125.0

t=1875.0t=1875.0t=1875.0t=1875.0 t=1875.0t=1875.0t=1875.0t=1875.0

t=2750.0t=2750.0t=2750.0t=2750.0
t=2750.0t=2750.0t=2750.0t=2750.0

t=4000.0t=4000.0t=4000.0t=4000.0 t=4000.0t=4000.0t=4000.0t=4000.0

FIG. 3. �Color online� Morphological evolution for square cell
structure whose walls are made up of dislocations with Burgers
vector bx= ±1. Figures on the left correspond to the morphology of
the growing recrystallized grain and those on the right to the dislo-
cation distribution. In the morphology plots, yellow �gray� corre-
sponds to the growing grain and blue �black� to the matrix. In the
dislocation plots, red and pink correspond to bx=1 and bx=−1.
�Note that the first dislocation plot shows the dislocation distribu-
tion for the entire system, while the subsequent dislocation plots
display only the top quadrant for clarity.�
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evolve to form well-defined cells and cell walls; these cells
may have either definite or irregular shapes.40 In order to
investigate the effect of ordered dislocation walls on grain
growth, we carried out simulations with dislocations ar-
ranged to form both square and rectangular cells.

1. Square cell structures

In the square cell distribution, we have employed four
dislocations to form the wall segments around a mesh of
28�28 dislocation-free grid points, so a complete square
cell consists of a total of 32�32 grid points. This was re-
peated for the entire system of 512�512. The dislocations
with identical Burgers vectors, bx=1, is stacked together to
form a wall of the cell structure, and the wall on the opposite
side is formed by stacking dislocations with Burgers vector
bx=−1. The other two walls of the square cell are made by
stacking by =1 for one wall and by =−1 for the other wall.
The number of dislocations of each kind employed to form
walls is 14 336, and the total number of dislocation with all
four types is 57 344. While the net local Burgers vector in
any region along the walls �other than the junctions� is non-
zero, the overall Burgers vector for the entire system �as well
as each individual square� is zero. Hence, the dislocation
stress fields remain unscreened within a single cell, and they
become effectively screened beyond this point. It is also
noteworthy that the dislocations in this arrangement corre-
spond to dislocation pileup segments rather than effective
small-angle grain boundaries.

Figure 2 shows the morphological evolution of the recrys-
tallized grain in an environment where dislocations were ar-
ranged as discussed above. In this case, we find that the
growth morphology is still approximately isotropic despite
the presence of regular dislocation pileups, which provide a
larger driving force along the cell wall directions. In contrast,
irregular �i.e., anisotropic� growth is observed if all disloca-
tions comprising the walls have a Burgers vector bx= ±1.
This is shown in Fig. 3, where a highly anisotropic growth
pattern emerges. In this case, the dislocations are arranged in
such a way that while the net Burgers vector is zero, all cell
wall segments are made up from dislocations with the same
Burgers vector �bx=1 or bx=−1�; successive cell wall seg-
ments correspond to opposite bx. Thus, the walls aligned in
the x directions correspond to dislocation pileups, while the
walls in the y direction can be viewed as grain boundaries.
Although the effective dislocation density is the same in the
x and y directions, the elastic driving force for growth in the
x direction is much more pronounced than that in the y di-
rection, and anisotropic growth ensues.

It is interesting to note that if the cell walls are con-
structed from dislocation dipoles, the growth morphology
becomes isotropic �i.e., circular�, as in the uniformly random
case. Additionally, the growth rate of the grain was smaller
than that in the uniformly random case for the same average
dislocation density. These observations can be rationalized
by recognizing that the effective elastic driving force for re-
crystallization is greatly reduced in the dipole cell wall case
as the dislocation strain fields effectively cancel at very short
distances. This reduced driving force, together with surface
tension, promotes circular growth.

2. Rectangular cell structures

In light of the observation of irregular growth in the
square cell wall system, we have investigated the effect of
increased anisotropy in the dislocation distribution on grain
growth by arranging the dislocations to form the cell walls of

t=125.0t=125.0t=125.0t=125.0 t=125.0t=125.0t=125.0t=125.0

t=1000.0t=1000.0t=1000.0t=1000.0 t=1000.0t=1000.0t=1000.0t=1000.0

t=2000.0t=2000.0t=2000.0t=2000.0 t=2000.0t=2000.0t=2000.0t=2000.0

t=3500.0t=3500.0t=3500.0t=3500.0 t=3500.0t=3500.0t=3500.0t=3500.0

FIG. 4. �Color online� Morphological evolution of the recrystal-
lized grain with dislocations stacked to form a rectangular cell
structure. Figures on the left correspond to the growing recrystal-
lized grain and those on the right to the dislocation distribution. In
the morphology plots, yellow �gray� corresponds to the growing
grain and blue �black� to the matrix. In the dislocation plots, red and
pink correspond to bx=1 and bx=−1, and light blue and light green
correspond to by =1 and by =−1, respectively. �Note that the first
dislocation plot shows the dislocation distribution for the entire sys-
tem, while the subsequent dislocation plots display only the top
quadrant for clarity.�
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a rectangular mesh of 60�12 dislocation-free grid points.
The walls are again made up of four dislocations stacked
together such that the local net Burgers vector is nonzero,
while the overall Burgers vector equals zero. For this con-
figuration, the anisotropic growth is even more pronounced,
as can be clearly seen in Fig. 4. Here, the initially circular
nucleus evolves into an overall elongated structure. This
mode of growth arises from the anisotropic elastic driving
force, which favors growth along the two cell wall direc-
tions, leading to an anisotropic growth pattern. This is clearly
seen by inspecting snapshots of the stored elastic energy in
the system in Fig. 5, which show that the driving force is the
largest along the two cell wall directions of the rectangular
cell, with the largest driving force per unit interface length
occurring in the y direction. Based on these results �as well
as the interface equation of motion in Eq. �20��, we expect a
recrystallized grain with an isotropic surface tension to pref-
erentially grow in the direction�s� along which the stored
elastic energy density per unit interface length is the largest.

In the case of the rectangular cell dislocation configura-
tion, it is worthwhile to consider the effect of cell walls
comprised of dislocation dipoles. For the same overall dislo-
cation density, the recrystallized grain did not show any mor-
phological heterogeneities but instead grew approximately as
a circular grain, as in the square cell case. The changes in the
cell structure, therefore, do not significantly affect the growth
of recrystallized grain when the walls are made of disloca-
tion dipoles. Again, this can be understood as a consequence

of a reduced elastic driving force due to the cancellation of
the dislocation strain fields; this reduction in fel, together
with surface tension, promotes more isotropic growth.

3. Checkerboard dislocation pattern

The studies of square and rectangular cell structures on
the growing morphology of the recrystallized grain discussed
above motivated us to investigate the effect of dislocation
distribution made up of a combination of the above two cel-
lular configurations. The specific configuration we chose,
shown in the left panel of Fig. 6, consists of square cells
where dislocations with by = ±1 were aligned either along the
x axis �to form short grain-boundary segments� or the y axis
�to form short pileup segments� in successive squares; such a
configuration implies that the maximum driving force per
unit interface length alternates in direction as the grain
grows. The following parameters were employed for this
simulation: c=1.0, G=0.03, e0=0.025, and Y2=1.5. In this
case, the interface of the recrystallized grain evolves in a
highly anisotropic and irregular manner, as shown in the
right panel of Fig. 6. During the initial stages of growth, the
recrystallized grain has the largest driving force approxi-
mately along the diagonal, and hence the growth is very fast
in that direction. Once the localized dislocation aggregate
ahead of the interface has been consumed, the largest driving
force per unit length switches direction and is now found
approximately along the other diagonal; hence, the interface
displays a growth “spurt” in this direction.

Beyond some point, different parts of the growing inter-
face experience a maximum driving force along different di-
rections, and hence the growth proceeds in a highly irregular
manner. It is interesting to note that during the initial stages,
we have observed that protrusions from the growing inter-
face sometimes shrink back once the driving force is locally
exhausted at the interface. These observations bear a striking
resemblance with the in situ experimental observations of
irregular growth of an isolated growing grain in Ref. 5.

C. Algebraically correlated dislocation distribution

Finally, we will consider the effect of algebraically corre-
lated dislocation distributions on recrystallization kinetics.
Indeed, during plastic deformation at low temperatures, dis-
locations often form self-similar dislocation-rich cell walls
separating dislocation-depleted cell interiors. To quantify the
resulting spatial dislocation structures, Hahner et al.40 em-
ployed the so-called box counting method to estimate the
fractal dimension of the micrographs of the dislocation pat-
terns formed in Cu single crystals. To this end, the number
N��x� of boxes with edge length �x containing at least one
pixel of a cell wall was determined, and a relation N��x�
��x−DB was established. Here, DB is the so-called box
counting dimension, which is obtained from the slope m of
the double logarithmic plot of N��x���x2 vs �x as DB=2
−m. Hahner et al.40 found that DB increased with applied
stress. For example, for an applied stress of 68.2 MPa, DB
�1.78±0.04, while for a higher stress of 75.6 MPa, DB
�1.85±0.06.

t=125.0 t=2000.0

t=1000.0 t=3500.0

FIG. 5. �Color online� Stored elastic energy �logarithmic scale�
for the dislocation distribution from Fig. 4. Blue �black� is the re-
gion with lower elastic energy. �Note that the first dislocation plot
shows the dislocation distribution for the entire system, while the
subsequent dislocation plots display only the top quadrant for
clarity.�
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We have investigated the effect of such correlated net-
works by constructing dislocation distributions whose pair
correlation function asymptotically satisfies G�r� ,r��
= �bi�r��bj�r����	ij ��r�−r��−�	ij, where �=2−DB in 2d; specifi-
cally, we have considered the correlation coefficient value
�=0.20, which corresponds to DB=1.8. The spatially corre-
lated dislocation distributions were generated by adapting the
algorithm proposed by Makse et al.56 to generate a sequence
of random numbers with long-range algebraic correlations.
Using the sequence of such algebraically correlated random
numbers, we distributed 14 336 dislocations each with Bur-
gers vectors bx= ±1 and by = ±1, for a total of 57 344 dislo-
cations.

Figure 7 shows snapshots of the morphology of the grow-
ing grain in a correlated dislocation distribution and the cor-
responding dislocation distribution. For these parameter val-
ues, the growing grain shows some heterogeneities, while the
overall morphology remains isotropic. This is somewhat sur-
prising in the light of the strongly heterogeneous elastic driv-
ing force, displayed in Fig. 8. Specifically, the observed het-
erogeneities are not sufficiently strong to induce anisotropic
growth. Not surprisingly, if the nonlocal strains are elimi-
nated, the resulting growth rates were smaller compared to
the case with nonlocal strains. For a correlation coefficient in
the range of 0.1–0.35, the growth rate is the same, while the
morphology of the growing grain becomes rougher for cor-
relation coefficients above �0.25. For very high correlations,
i.e., above 1.0, the distributions are similar to the uniformly
random distribution discussed above, and the growth mor-
phologies become isotropic again. We have not explored the
effect of a correlation coefficient in the range of 0.7–1.0.

IV. SIMULATION RESULTS: RATE KINETICS AND
AVRAMI COEFFICIENTS

To quantify the effects of the spatial dislocation distribu-
tion on recrystallization kinetics, we have measured the area
fraction of the recrystallized phase versus time for the differ-
ent dislocation distributions discussed above. This is shown
in Fig. 9, and it displays several important features. First, all
curves show two distinct regions, the first region where the
growth rate is slow and the second one where a substantial
amount of the cold-worked phase recrystallizes in a short
time. The latter stage is characterized by grain coarsening,
which is similar to the kinetics of normal grain growth. Sec-
ond, the overall growth rate is much faster in the case of
cellular structures �square and rectangular� than in the uni-
formly random and algebraically correlated distributions.
This is due to the presence of effective dislocation pileups in
the vicinity of the growth front, which provides a large driv-
ing force along specific directions, leading to faster local
interface growth. On the other hand, a comparison of the
uniformly random and algebraically correlated systems re-
veals that their growth rates are the same, even though for
the algebraically correlated case, dislocation stress fields are
not screened as effectively as they are in the uniformly ran-
dom case.

A useful way to analyze the data is to try to fit it to the
well-known Kolmogorov-Johnson-Mehl-Avrami
equation10,57,58

�A = 1 − exp�− Btk� , �21�

where B and k are constants. To this end, the time dependent
parameter �A �for the intermediate region of Fig. 9�, which is
the recrystallized area, is plotted in Fig. 10 using the Avrami
format where −ln�1−�A� is plotted as a function of time on
log-log coordinates. As we begin with a heterogeneous
nucleus being present, we have extracted the Avrami con-
stant k from the data between 0.02��A�0.30; the different
k values are listed in Table I. In the case of a heterogeneous
nucleation with constant radial growth, k2D=2. Not surpris-
ingly, k�2 for the uniformly random and algebraically cor-

t=725.0 (a)

(b)

FIG. 6. �Color online� �a� Checkerboard dislocation network. �b�
Sequence of interface positions during displaying irregular growth
morphologies.
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related dislocation distributions, as well as for cellular cases
where dislocation dipoles were used to form the cell walls.
Indeed, the growth morphology was observed to be isotropic
in these cases, similar to experimental growth morphologies

during aluminum recrystallization.59 However, in the cellular
cases where dislocations of the same Burgers vector were
stacked together to form the walls, the effective Avrami con-
stant k was in the range of 1.50±0.07–1.74±0.07, the lower
values correspond to that of a rectangular cell structure. This
difference in the growth kinetics can be attributed to the
anisotropic growth of the recrystallized phase. The stored
energy in these configurations are also highly anisotropic,
and hence they influence the rate of growth of the recrystal-
lized phase. More quantitatively, constant needlelike growth
along one of the coordinate directions �L1� t� would yield
k=1, while slower growth along the other axis �L2� t��
would lead to k=1+�. Here, we suspect that the effective
Avrami coefficient k�2 is a manifestation of the small grain
size compared to the dislocation cell size. Physically, we
expect that the cellular wall cases would also lead to k=2
asymptotically once the grain size becomes much greater
than the cell size. On the other hand, one may also speculate
that the algebraically correlated dislocation distributions may
lead to k�2 asymptotically, as the dislocation strain fields
remain unscreened asymptotically and thus provide an effec-
tive grain size-dependent driving force. We plan to explore
this scenario in future work.

V. DISCUSSION

In this work, we have developed a coupled dislocation
density and phase-field method to model the isothermal re-
crystallization process as a phase transformation driven by
the stored elastic energy in two spatial dimensions; in the
Appendix, we demonstrate how to extend this method to
three spatial dimensions by invoking the full dislocation den-
sity tensor. In the present work, dislocations are represented
in two spatial dimensions in terms of a continuous Burgers
vector field, and their contribution to the elastic energy den-
sity is explicitly incorporated. A key feature of our approach
is that the driving force for grain growth becomes nonlocal
in space due to the presence of long-ranged dislocation strain
fields. We have employed the model to examine the influence
of various spatially heterogeneous dislocation distributions,
including uniformly random, cellular, and algebraically cor-
related ones on the growth morphology of an isolated recrys-
tallized grain. In all three cases, the overall average disloca-
tion density was kept constant, allowing us to assess and
quantify the effect of spatial dislocation distribution on the
growth morphologies.

t=125.0t=125.0t=125.0t=125.0 t=125.0t=125.0t=125.0t=125.0

t=2500.0t=2500.0t=2500.0t=2500.0
t=2500.0t=2500.0t=2500.0t=2500.0

t=4000.0t=4000.0t=4000.0t=4000.0 t=4000.0t=4000.0t=4000.0t=4000.0

t=5500.0t=5500.0t=5500.0t=5500.0 t=5500.0t=5500.0t=5500.0t=5500.0

FIG. 7. �Color online� Morphologies for the growing grain for
the algebraically correlated dislocation distribution and the corre-
sponding dislocation distributions. Figures on the left correspond to
the growing recrystallized grain and those on the right to the dislo-
cation distribution. In the morphology plots, yellow �gray� corre-
sponds to the growing grain and blue �black� to the matrix. In the
dislocation plots, red and pink correspond to bx=1 and bx=−1, and
light blue and light green correspond to by =1 and by =−1. �Note
that the first dislocation plot shows the dislocation distribution for
the entire system, while the subsequent dislocation plots display
only the top quadrant for clarity.�

TABLE I. Avrami growth coefficient for various dislocation dis-
tributions. The error bars are estimated from exponential fits from a
single run.

Dislocation distribution Avrami constant Error

Random 2.05 0.03

Square cell 1.74 0.07

Square cell dipoles 2.09 0.03

Rectangle cell 1.50 0.07

Correlated 1.93 0.05
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With regard to recrystallization, the results presented in
this paper clearly establish the fact that the morphology of
the growing recrystallized grain is strongly affected by the
spatial features of the underlying dislocation network. In the
uniformly random case, the growth morphology was found
to be isotropic, reflecting the rather isotropic elastic driving
force. However, in the case of cellular dislocation networks,
the growth morphologies were anisotropic, similar to those
observed in experiments. Here, the degree of anisotropy was
related to the detailed structure of the walls: In cases where
the walls comprised of dislocations with the same Burgers
vector, the growth was markedly anisotropic, while in cases
where the walls comprised of dislocation dipoles, more iso-
tropic growth was observed. Thus, the degree of anisotropy
could be traced to the local elastic driving force, which is
sensitive to the degree by which nearby dislocations do or do
not screen each other’s stress fields. Finally, in the case of
algebraically correlated dislocation networks, varying de-
grees of irregularity in the growth morphology were ob-
served. In the case where dislocations of both types �bx
= ±1 and by = ±1� were employed, the growth was fairly iso-
tropic. Interestingly, numerical experimentation has shown
that when only dislocations with bx= ±1 or by = ±1 are em-
ployed, the growth morphology becomes much more irregu-
lar. In future work, it will be of great interest to introduce an
anisotropic interface mobility and/or surface tension and in-

vestigate the interplay between heterogeneous dislocation
structures and anisotropic interface properties on growth
morphologies. Specifically, we will investigate the interplay
between statistically stored and geometrically necessary dis-
locations on growth morphologies. As a final note, we hope
that the approach and results presented in this paper will
catalyze more detailed experimental and theoretical studies
into the effects of grain-boundary mobility and dislocation
heterogeneities on grain growth.
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APPENDIX: MODEL IN THREE SPATIAL DIMENSIONS

The extension of our model to three spatial dimensions is
straightforward. Instead of the two-component Burgers vec-
tor, we invoke the full dislocation density tensor �ij�r��, where
i and j denote the dislocation line and Burgers vector direc-
tions, respectively, coarse grained over a volume �3 centered
at r�. Given an instantaneous dislocation configuration in an
elastically isotropic and homogeneous material, the resulting
stress tensor �in Fourier space� is explicitly given by

�̂ij�q�� = Kijlk�q���̂kl�q�� , �A1�

where the tensor Kijkl is given by42

Kijlk�q�� = −
ıGqm

q2 ��ilm	 jk + � jlm	ik +
2�klm

1 − �
�qiqj

q2 − 	ij
�
�A2�

and where ı	�−1. The driving force for recrystallization is
again given by the stored elastic energy

t=125.0 t=4000.0

t=2500.0 t=5500.0

FIG. 8. �Color online� Stored elastic energy �logarithmic scale�
for algebraically correlated dislocation distribution from Fig. 7.
Blue �black� regions correspond to regions of lowest elastic energy.
Red regions represent the maximum stored energy, and light blue
and yellow stand for intermediate values of stored energy. �Note
that the first dislocation plot shows the dislocation distribution for
the entire system, while the subsequent dislocation plots display
only the top quadrant for clarity.�
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FIG. 9. �Color online� Area fraction of the recrystallized phase
as a function of time.
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FD =
1

2
� d3r��ij

s �ij
s +� d2r�

G�ij
2

c
. �A3�

The order parameter couples to the stored elastic energy as in
the two-dimensional case, and the OP dynamics are given by
Eq. �14�. The dislocation density tensor evolves according to
the simple relaxational kinetic equation given by

��ij�r��
�t

= − �1 + 
��ij�r�� . �A4�

We are currently investigating the full three-dimensional
growth kinetics of recrystallized grains based on the above
approach and will report on it in a future publication.51
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