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Size effects on static and dynamic properties of ferroelectric nanoparticles
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Ferroelectric nanoparticles are described by a microscopic model which enables one to find the macroscopic
polarization as well as the excitation energy of the soft mode and its damping with dependence on the
temperature and the size of the particles. The constituents of the material are arranged in shells, and their
interaction depends on both the coupling at the surface and within the bulk. A Green’s function technique in
real space is applied to analyze the Ising model in a transverse field, which is modified in such a manner as to
be able to study also spherical nanoparticles. Furthermore, we investigate the influence of size effects on the
critical temperature. Whereas the excitation energy is lowered significantly with decreasing particle size, the
damping is enhanced. Additionally, we consider the influence of defects on the excitation spectrum. The

theoretical results are compared with experimental data.
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I. INTRODUCTION

Although the influence of surface and size effects on
phase transitions in ferroelectrics has been known since the
1950s,"2 there is a renewed and distinct interest in studying
such effects. One reason for that is due to the great progress
in the preparation of ferroelectric (FE) thin films and small
FE particles as well as a broad variety of practical
applications.® The experimental effort was closely connected
with a theoretical modeling. Apart from the analytical ap-
proaches we are interested in, first-principles techniques play
a decisive role in finding out the different dielectric proper-
ties of small FE particles or thin films. In particular, such ab
initio methods have been improved since the 1990s, even for
analyzing ferroelectric properties (for a recent review, cf.
Ref. 4). Nowadays, a common method is the density func-
tional theory (DFT).> The application of DFT to ferroelectric
oxide nanostructures is also reported in Ref. 4. Due to the
limitation of the number of atoms and the restriction at zero
temperature, a microscopic effective Hamiltonian approach®
was applied. The generalization for describing ferroelectric-
ity was given by Zhong et al.” The involved parameters in
that expansion are calculated via linear-response theory and
the total energy within DFT. Other approaches are shell-
model calculations® or a phenomenological model to simu-
late Pb(Zr,Tr)O; structures by chemical rules from DFT.?
Recently, the ground-state polarization of BaTiO; (BTO)
nanosized films and cells is studied using an atomic-level
simulation approach on a shell model with parameters ob-
tained from first-principles calculations.'?

Whereas the application of analytical and ab initio meth-
ods, respectively, is mainly focused on a microscopic under-
standing of the ferroelectric nanomaterial, the former studies
have been directed at the macroscopic properties like the
shift of the phase transition temperature as a function of the
size and at the existence of a critical particle size.">!'~!° The
experiments have been performed by applying x-ray and
electron diffraction, specific heat measurements, and Raman
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scattering on particles of various sizes (see Ref. 17). Other-
wise, the macroscopic behavior is directly triggered by the
microscopic quantities such as the elementary excitations
and their damping. Thus, evidence for the occurrence of a
soft-mode behavior has been given by Refs. 16 and 17. Us-
ing x-ray or Raman-scattering methods in PbTiO5 (PTO) fine
particles, a soft-mode behavior was detected, designated as
E(1TO), which is shifted toward a low-frequency region
with decreasing temperature. The damping associated with
the excitations of, e.g., SrBi,Ta,0y (SBT)?*" or BTO?! nano-
particles of various sizes increases with decreasing particle
sizes. Further, the lattice vibration of smaller particles be-
comes softer than that of larger ones, because the soft-mode
frequency at an arbitrary temperature decreases as the size
decreases. In addition, this result implies a lowering of T,
with the shrinking of the particles. Diverse experiments re-
port the existence of a critical size, which is still discussed
controversially.'*!> Referring to this, smaller particles offer
no ferroelectric hysteresis loop or peak in the dielectric con-
stant. The occurrence of vacancies, dislocation, and defects
in nanoparticles has a strong influence on the static and dy-
namic properties; for a study of the dielectric properties of
Fe-ion-doped BTO nanoparticles, see Ref. 22.

Concerning the analytical access to the description of fer-
roelectricity, the Landau-type phenomenological theories are
still successful. By applying a Landau theory, the extrapola-
tion length of a FE particle should be size dependent.?>>*
The influence of the size on the dielectric behavior of thin
films, cylinders, and spheres is discussed in Refs. 25 and 26,
where a size-driven phase transition in thin films was found.
A study of the surface polarization enhancement and switch-
ing properties of small FE particles by using a time depen-
dent Ginzburg-Landau model is given in Ref. 27. The influ-
ence of size effects and depolarization fields on the phase
diagram of cylindrical FE nanoparticles is discussed in Ref.
28 using a variational method. Conservation and enhance-
ment of FE properties in nanorods and nanowires are pre-
dicted.
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The Ising model in a transverse field (TIM) is a promising
candidate to figure out ferroelectric properties based on a
microscopic Hamiltonian. Although the application of the
TIM is mainly limited to ferroelectrics of order-disorder
type, it has been used to find the size dependence of the
mean polarization, the Curie temperature, and the suscep-
tibility.?*-3! Recently, the Ising model in a transverse field
was applied successfully to obtain the hysteresis of spherical
ferroelectric particles.>> The influence of size and doping as
well as surface effects on the ferroelectric loop and the criti-
cal temperature was shown. In the majority of theoretical
investigations, the influence of size effects on the mean po-
larization, the phase transition temperature 7., and the sus-
ceptibility has been considered. On the other hand, the un-
derlying dynamical properties, such as elementary
excitations and damping effects, are not discussed adequately
until now. Therefore, it is the purpose of the present paper to
study the dynamical properties of FE particles and to discuss
the influence of size effects on thermodynamic quantities.
The analysis is based on the TIM, which is treated with the
method of real-space Green’s functions.

II. MODEL AND THE GREEN’S FUNCTION

In this section, we present the calculation scheme to get
the Green’s function for a spherical ferroelectric nanopar-
ticle. The systems under consideration are often character-
ized by locally ordered regimes instead of a global long-
range order. Our study is based on TIM, which is one of the
basic models to analyze ferroelectric materials of the order-
disorder type (see Ref. 33). To some extent, it can also be
used for displacive type ferroelectrics.>* The position of the
hydrogen atom within a double well potential is mapped to
an Ising spin, whereas the tunneling between both minima is
described by the x-component of the spin. The double well
structure is evaluated convincingly by using ab initio
studies.’>3® For an experimental observation of the momen-
tum distribution of hydrogen in potassium dihydrogen phos-
phate (KDP), see Ref. 37. Due to the formulation of the
model in terms of spin operators, we can apply the powerful
technique available also for magnetic materials. Here, the
ferroelectric constituents are characterized by spin operators,
which should not be confused with the real spin of the ma-
terial. Hence, these operators should be denoted as pseu-
dospin operators. In the present paper, the dynamic proper-
ties of a spherical nanoparticle (see Fig. 1 and also Ref. 32)
will be presented. The shells are numbered by n=0, 1,...,N,
where n=0 denotes the central spin and n=N represents the
surface shell of the system.

In this paper, we include actually bulk and surface prop-
erties by specifying the model parameters. For more refined
results, these parameters should be calculated directly by
first-principles calculations. The Hamiltonian of the TIM is
given by

1
H== 221,838 - 2 S, (1)
ij i

where S} and Sj are components of a spin-% operator. The
sums are taken over the internal and surface lattice points,
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FIG. 1. Array of the ferroelectric nanoparticles composed of
different shells. Each sphere represents a pseudospin situated in the
center, where (a) consists of one central spin plus N=1 shell, (b)
N=2, (c) N=3, and (d) N=4.

respectively. J;; is an exchange interaction between spins at
nearest neighbor sites i and j. For the inclusion of surface
and doping effects into the model and the appropriate rota-
tion of spin operators, see Ref. 32.

Macroscopic and microscopic quantities can be calculated
by using the retarded Green’s function, which is defined as

Gy(1) = (87 (1):5,,0))). )

The operators Sj, S, are the Pauli operators in the rotated
system. Using the method introduced in Ref. 38 and modi-
fying it for the real space, we obtain the excitation energy,
occasionally denoted as pseudo-spin-wave energy. In the
generalized Hartree-Fock approximation, the equation of
motion reads

AYG = 2(S]) s

with the matrix

Ay

;=1 fiw—2Q sin 6, - E J,i[cos 0; cos OS?)

1
+ 5 sin 6; sin 6;,((S;S;) + <S:'S,_))] 0y

1
+ Jﬂ{cos 6; cos O(S;S;) + > sin 6, sin @(S?)]

3)

The excitation energy is given by the poles of the Green’s
function, which correspond to the eigenvalues of matrix A. In
the case of a diagonal form, the excitation energy results in

€,=2Q, sin 6, + >, J,; cos 6, cos 04S?)

1
+ 52 Ji sin 6, sin 6.((STS7) +(S7S>)), (4)

where all quantities are defined in the rotated frame. In the
same manner (see Ref. 38), we find the damping of the spin
wave as

094107-2



SIZE EFFECTS ON STATIC AND DYNAMIC PROPERTIES...

Vo= 1—72 Jij(cos 6, cos 6;— 0.5 sin 6, sin ﬂj)zr_zj(l - i)
J

X6(e,—€+€—¢,), (5)

where 72,=(SS7) is the correlation function. It is calculated
via the spectral theorem and by using the excitation energy in
the random-phase approximation [Eq. (4)].

As stressed in Ref. 32, the local rotation angle 6, is de-

fined by (Sf;):O. From here, we conclude
20
E Jm<S;Zq> .

tan 6, =
This relation is valid both above (6=/2) and below the
phase transition temperature 7. The relative polarization of
the nth shell is given by

1 €
o,=(S%) = 2 tanh(ﬁ)cos 6,. (6)
The leading part of the transverse spin-wave energy €,, the
soft-mode energy of the nth shell, is obtained from Eq. (4)
after performing the backward rotation:

€, =20 sin 6, + >, J,, cos 04S%). (7)

All the microscopic entities calculated here will be analyzed
in the following section.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we present the results for spherical FE
nanoparticles. The graphs below are based on the numerical
treatment of Eqgs. (4)—(6), which yield the excitation energy,
its damping, and the polarization. Typically, we use as the
model parameters J,=150 K and ,=10 K, which are char-
acteristically for BTO.? First, let us offer the dependence of
the polarization via the temperature, including surface and
size effects. Due to the different numbers of next nearest
neighbors or by the resulting strain and/or stress of especially
small particles at the surface, the interaction constant at the
surface J, is, in general, different from the bulk value J,,.3° In
Fig. 2, the temperature dependence of the mean polarization
is presented for different values of the surface interaction J
and a fixed number of shells N.

The particle is made up of four shells as shown in Fig.
1(d). The variation of the coupling at the surface changes the
polarization accordingly. A lowered surface interaction
strength J,<<J, leads to a reduced polarization, which van-
ishes continuously at a lower critical temperature 7,. The
opposite case J,>J, yields a larger dipole moment and, con-
sequently, an enhanced phase transition temperature 7. This
reflects the observation that both the bulk and the surface
couplings contribute to the ordering of the pseudospins. The
phase transition is a pronounced second order one. In this
approach, a variation of J is also possible through strain.
This effect is included implicitly. An ab initio study of the
polarization as a function of temperature is given in Ref. 40.
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FIG. 2. Temperature dependence of the averaged polarization o
with J,=150 K and N=4 for different surface couplings: J,=J,
(solid curve), J,=325 K (dotted curve), and J,=50 K (dashed
curve).

For a more detailed observation, the shell resolved polar-
ization o, is given in Figs. 3 and 4 for a particle with eight
shells (N=8). The index n denotes the position in the par-
ticle; e.g., n=_8 represents the surface shell. The reduction of
the local polarization o, depending on the position within the
particle is clearly visible. The behavior for weaker surface
coupling is opposite to that for stronger surface coupling.
The smaller the strength J; compared to the bulk value J,,
the faster is the decrease of the polarization in the outer
shells. A higher J; provides smaller values in the inner shells.
This reflects the importance of the inclusion of surface ef-
fects. The case J,<J, (see Fig. 3) could explain the decrease
of the polarization and the phase transition temperature in
small particles of BTO'1? and PTO,!7*#! while the second
case (cf. Fig. 4) is responsible for the increase of the polar-
ization and T, in small KDP particles*? and KNO; thin
films.*3 Because we are mainly interested in the properties of
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FIG. 3. Temperature dependence of the shell resolved polariza-
tion o, for different shells n with J,<J,, where J,=150 K, J;
=50 K, and N=38.
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FIG. 4. Temperature dependence of the shell resolved polariza-
tion o, for different shells n with J,>J,, where J,=150 K, J;
=325 K, and N=38.

BTO-type FE small particles, the forthcoming investigations
concentrate on the case J,<J,,.

As already pointed out in the Introduction, there is a long-
standing debate how physical properties like the polarization
or the critical temperature are affected by the size of the
system, especially in the nanometer scale. Therefore, we
have calculated within our microscopic model the depen-
dence of polarization on size. The result is depicted in Fig. 5.
In the present case, the size is controlled by the number of
shells N. Obviously, the polarization is enhanced with in-
creasing particle size. Summarizing all the data, the phase
transition temperature versus the number of shells is shown
in Fig. 6. The FE particles exhibit a fast increase of 7. with
an ascending number of shells. In the limit of very large
numbers N, the critical temperature approaches nearly the
constant bulk value. The result is in qualitative agreement
with the experimental data of small particles composed of
BTO!? and PTO.'7#! However, the chosen set of parameters
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FIG. 5. Temperature dependence of the polarization o for J,
<J,, with J,=150 K, J;=50 K, and different numbers of shells N.
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FIG. 6. Critical temperature 7, depending on the number of
shells N with J,=150 K and J;=50 K.

does not lead to an indication of a pronounced critical size
effect as argued before. This point deserves a more refined
procedure.

Apart from macroscopic quantities such as the polariza-
tion, the method allows us also to find microscopic features
of the nanoparticles such as the energy of the elementary
excitations [cf. Eq. (4)], and its damping [see Eq. (5)]. In Fig.
7, the temperature dependence of the excitation energy is
plotted for a different number of shells when the relation J,
<J, is fulfilled. One observes a lowering of the excitation
energy with increasing temperature. The larger the particles,
the higher are the energies. The nanoparticle shows a typical
soft-mode behavior as already observed in the bulk material.
Apparently, the excitation energy is shifted to smaller values
in comparison to the bulk material when the number of shells
decreases. The result implies a lowering of the force constant

in the small particle, which was observed for PTO
ooy - — N=1
.................... -\.\. - = N=2
800 fmmeee . \\ === N=4
S=——— N <o+ N=8
— ~eae N
T_ 700 B o _ S N — N=16
E Ss -s \
3 s \~s N\
T 600 \\ ‘\ \
> AN ™, \
o » \
g 500 B R
L \\ \\‘ \
c 400 \ A
) \ A
— \ \ -
S 300 \ LAY
C \ LA
x \ \‘ - \
W 200 | \ \ A
\ Voo
\ g
100 } \ [
1 1 |
1 i T

0 50 100 150 200 250 300 350 400 450
Temperature T(K)

FIG. 7. Temperature dependence of the excitation energy for

different numbers of shells N with J,=150 K and J;=50 K.
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FIG. 8. Temperature dependence of the damping of the excita-
tion energy for different numbers of shells N with J,=150 K and
J,=50 K.

particles.'®!744 Consequently, this leads to the decrease of
the phase transition temperature between the tetragonal and
cubic phases.

Due to higher order interactions between the constituents
and/or due to the scattering at defects or due to the inclusion
of phonon degrees of freedom, the elementary excitation can
be damped. Such a damping could be manifested in a finite
lifetime of the excitation. Here, we have calculated the
damping according to Eq. (5). In Fig. 8, the temperature
dependence of the damping is plotted. When the particle size
is lowered, the damping increases. At low temperatures, the
damping is extremely small, clearly even smaller than the
excitation which is underdamped accordingly. In approach-
ing the critical temperature 7., the damping increases
strongly but remains finite (see Fig. 8). This behavior is in
contrast to the behavior of the bulk material, where the line-
width of the soft mode diverges at the ferroelectric-to-
paraelectric transition in PTO.* In the vicinity of T, the soft
mode becomes overdamped. Such a behavior is, however, in
agreement with experimental data for PTO,'®** BTO,?' and
SBT?" particles. The enhanced damping in small nanopar-
ticles, obtained here, could be an explanation for the broad-
ened peak, observed in the dielectric constant of PTO
particles*! and (Ba,Sr)TiO5 thin films.***” A broadened di-
electric anomaly leads also to a smearing out of the critical
regime. The inset shows the overall development of the
damping. Very close to the critical point, a sudden decrease
was observed, which is only plotted in the inset for the sake
of completeness. Because in our Green’s function method
fluctuation effects, predominantly occurring in the vicinity of
the phase transition, are slightly suppressed, the results pre-
sented should be considered as an extrapolation to illustrate
the behavior near 7.. A more refined calculation of the damp-
ing near 7, will be given elsewhere.*®

Experiments show a clear influence of impurities or de-
fects on physical properties. For this reason, let us incorpo-
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FIG. 9. Temperature dependence of the excitation energy for
Jp,>J,>J,; with different defect shells: J,=150 K, J;=50 K, J,
=25 K, and N=8.

rate also defect configurations into the model. The simplest
way is to assume that the interaction strength J varies in the
case of defects. The defect coupling is denoted as J,. Physi-
cally, this variation of the coupling parameter can be origi-
nated from the appearance of local stress, by the substitution
of ions with different radii and, consequently, different dis-
tances between them (smaller radii correspond to larger dis-
tances), and by localized vacancies. The excitation energy as
well as its damping should depend on the defect concentra-
tion. The temperature dependence of the energy of the el-
ementary excitations for different numbers of defect shells,
denoted as ng, is shown in Fig. 9. For instance, n;=4 means
all up to the fourth shell are defect ones. In Fig. 9, the bulk
coupling is stronger than the defect coupling, i.e., J,>J;
>J,. The excitation energy depends on both the number of
defects n,; and the corresponding coupling J,. For an en-
hanced defect concentration, € is reduced. In the case of J,
<J,<J, the opposite behavior of the excitation energy is
observed. The excitation energy is increased for all tempera-
tures up to the critical point. For the first case, we have also
analyzed the behavior of the damping of excitations, which
is depicted in Fig. 10. There is experimental evidence that for
La-doped nanocrystalline PTO* and for Er- and La-
substituted PTO thin films,>® the soft-mode frequency is low-
ered and the Raman peak width is broadened in comparison
to the undoped specimen. Let us emphasize that our results
reveal that different mechanisms such as surfaces, stress, and
defects contribute additively to the damping coefficient. The
damping is always enhanced in comparison to the bulk and
to materials without defects.

IV. CONCLUSION

Ferroelectrics are widely used in many applications that
require sizes down to the nanometer range. Although the
main challenge is to fabricate structures in the nano region,
there is also an increasing interest in modeling ferroelectric
nanoparticles. Due to the fact that the behavior is obviously
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FIG. 10. Temperature dependence of the damping for J,>J,
>J, with different defect shells: J,=150 K, J;=50 K, J,=25 K,
and N=8.

determined by the microscopic interaction between the con-
stituents, it seems natural to consider models on that scale
instead of the mesoscopic or macroscopic ones. In the
present paper, we have calculated within such a microscopic
model those macroscopic quantities such as the polarization
and, additionally, dynamic features such as the excitation en-
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ergy and its damping. To that aim, one of the standard mod-
els for describing bulk properties of ferroelectric materials,
the Ising model in a transverse field, is modified in such a
manner as to be able to find out the quantities mentioned
before. This approach and the method of Green’s functions in
real space yield the polarization and associated dynamic
properties of nanoparticles. As the simplest case, spherical
particles composed of different shells were analyzed. This
number corresponds directly to the size of the particle. The
small size of the materials requires the inclusion of both bulk
and surface interactions. Furthermore, in case of the appear-
ance of defects, there occurs an additional coupling strength.
Taking into account the microscopic parameters (direct cou-
pling and transverse field), the temperature and size depen-
dence of the polarization as well as the excitation energy and
its damping were obtained. Whereas the excitation energy
decreases, the damping increases strongly with decreasing
particle size. Furthermore, damping of the quasi-soft-mode
in nanoparticles is significantly larger than that in bulk crys-
tals. The results obtained are in agreement with the experi-
mental data for BTO and PTO small particles.
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