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We derive the Josephson relation in a superfluid between the condensate density, the superfluid mass density,
and the infrared structure of the single-particle Green’s function by means of diagrammatic perturbation theory.
The derivation is valid for finite systems and two dimensions.
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Although the phenomena of superfluidity and Bose
condensation1 are intimately related, the connection between
the condensate density n0 and the superfluid mass density �s
is only indirect. In the limit of dilute gases, the superfluid
mass density simply equals the condensate density times the
particle mass m. More generally, the two quantities are re-
lated via the infrared structure of the single-particle Green’s
function G. The detailed relation was given by Josephson,2,3

�s = − lim
k→0

n0m2

k2G11�k,0�
, �1�

where G11�k ,0� is the single-particle Green’s function at mo-
mentum k and zero Matsubara frequency.

This relation, applied in the critical region of Bose con-
densation in a three dimensional system, determines the scal-
ing structure of the superfluid density.4 Furthermore, it
implies that in a two dimensional interacting Bose gas,
superfluidity can exist below the Kosterlitz-Thouless-
Berezinskii transition temperature, even in the absence of
condensation in the thermodynamic limit.5,6 The Josephson
relation was derived originally by heuristic arguments. In
this note, we derive the Josephson relation at finite tempera-
ture within the framework of diagrammatic perturbation
theory, for infinite as well as large but finite size systems.
The present derivation, which follows a different path from
that of Josephson, extends to finite temperatures the discus-
sion of Gavoret and Nozières7 of the microscopic connection
between superfluidity and condensation at zero temperature
�see also Talbot and Griffin8�. Our derivation, in yielding the
correct Josephson relation for finite systems, is of immediate
experimental importance for ultracold trapped atomic gases.

A superfluid effectively has an extra dynamical degree of
freedom, the velocity of the superfluid, vs, with respect to the
wall velocity.9 In the presence of superflow, the free energy
density F of the system is

F�vs,T,�� = F�0,T,�� +
1

2
�svs

2, �2�

where T is the temperature and � the chemical potential.
Thus, thermodynamically,

�s =
�2

�vs
2 �F�vs,T,���vs=0, �3�

and the normal density �n is given by �n=�−�s, where � is
the mass density of the system.

The Hamiltonian H�vs� in the rest frame of the superfluid,
written in terms of the variables of the “lab” frame, in which
the walls are at rest and the superfluid flows in the z direc-
tion, is

H�vs� = H − Pzvs +
1

2
Mvs

2, �4�

where P is the total momentum operator. We work in a sys-
tem of large volume V and assume periodic boundary condi-
tions in the z direction.10 We consider the free energy density
of a system with a nonzero superfluid velocity with respect
to the walls, in the frame moving with the superfluid. Differ-
entiating the partition function with respect to vs, we obtain

�F/�vs = − �Pz − Mvs�/V , �5�

and then, noting that the total momentum operator in the z
direction commutes with H, we have

�2F/�vs
2 = � − ��Pz

2�/V , �6�

at vs=0 and �=1/kBT. Thus, the normal mass density is
given by

�n = ��Pz
2�/V . �7�

In a normal system, the total momentum P has a classical
Boltzmann distribution with probability � exp�−�P2 /2M�,
where M is the total mass, which implies ��Pz

2� /V=M /V
=�, and thus �n=�. Only deviations of the distribution of
states with total momentum P from the classical distribution
can give rise to superfluidity; in the superfluid phase, the
distribution of total momentum is no longer classical as a
consequence of entanglement of the total momentum and
superfluid velocity.

Microscopically, the superfluid and normal mass densities
are defined in terms of the transverse current-current corre-
lation function.3,11 In fact, the microscopic definition is, as
we shall see, equivalent to Eq. �7�. We consider a superfluid
contained in an infinitely long cylindrical vessel oriented
along the z axis. If the walls of the container move with a
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small velocity vz in the z direction, the normal mass density
moves with the walls, while the superfluid remains at rest in
the laboratory frame. The response of the fluid flow to the
motion of the walls is specified by the current-current corre-
lation function

�ij�r,r�,�� =� dtei��t−t����ji�r,t�, j j�r�,t���� , �8�

where the current density j is given by

j�r� =
1

2im
��†�r� � ��r� − ��†�r���r�� , �9�

with ��r� as the particle annihilation operator. The Fourier
transform to momentum k and real frequency � can be de-
composed into longitudinal �L� and transverse �T� parts as

�ij�k,�� =
kikj

k2 �L�k,�� + 	�ij −
kikj

k2 
�T�k,�� . �10�

The longitudinal and transverse components of the time-
ordered current-current correlation function in the imaginary
time have Fourier transforms to Matsubara frequency z	,


L,T�k,z	� =� d�

2�

�L,T�k,��
z	 − �

. �11�

The long-wavelength static longitudinal response function—
describing the response of the system in a tube with closed
ends moved along the z direction3,10—obeys


L�k → 0,0� = lim
kz→0

lim
k�→0


zz�k,z	 = 0� = − �/m2, �12�

where � denotes the directions perpendicular to z. Then

� = lim
k→0

m2� d�

2�

�L�k,��
�

, �13�

where � is the total mass density. This relation follows from
the f-sum rule together with the continuity equation. On the
other hand, the long-wavelength limit of the transverse re-
sponse, which describes the response of the system in an
open ended moving container �or with periodic boundary
conditions�, reduces to the normal mass density, �n=�−�s,


T�k → 0,0� = lim
k�→0

lim
kz→0


zz�k,z	 = 0� = − �n/m2, �14�

or

�n = lim
k→0

m2� d�

2�

�T�k,��
�

. �15�

While the order of limits in Eq. �12� describes a system
closed in the z direction, the order in Eq. �14� describes a
system open in the z direction.3

A superfluid is characterized by �n��. As long as the
two-particle Green’s function is regular, the kx ,ky ,kz→0 lim-
its in Eqs. �12� and �14� cannot depend on the order of limits,
and thus �n=�. Superfluidity implies that the two-particle
Green’s function behaves singularly in the infrared limit.

Furthermore, since �drj�rt�=P�t� /m, we have

lim
k�→0

lim
kz→0


zz�k,0� = −
i

m2V
�

0

−i�

dt�Pz�t�Pz�0�� , �16�

where V is the system volume. Since for an infinite system,
Pz is independent of t, we rederive Eq. �7�.

Having established the equivalence of the two definitions
of �s, we turn to deriving Josephson’s relation in a Bose
system, using definition �3�. We take the free energy density
to be a functional of the order parameter, ���r��, of the sys-
tem and the single-particle matrix Green’s function,

G�rt,r�t�� = − i��T�
�rt�
†�r�t���� − �
†�r�t����
�rt��� .

�17�

Here, the two-component field operator is 
�rt�
= ���rt� ,�†�rt��. In equilibrium, the first order variation of F
with respect to the order parameter vanishes, �F /��
�
=�F /��
�*=0. Static variations of F with respect to the or-
der parameter are then given in terms of the inverse of the
single-particle matrix Green’s function,

V�F = −
1

2
� drdr���
�r��*G−1�r,r����
�r��� , �18�

where �
�= ���� , ���*� is the two-component order param-
eter.

The dependence of F on the superfluid velocity enters
through the phase of the order parameter,

���r��vs
= �n0eimvsz + O�vs

2� , �19�

where n0 is the condensate density evaluated at vs=0. To
second order in vs, the dependence of the free energy density
on the superfluid velocity arises solely from the momentum
mvs of the condensate wave function. To lowest order in vs,
����r��= imvs ·r�n0, so that the second order change in F is

�F =
n0m2

V
� drdr��vs · r��vs · r����G−1�11 − �G−1�12��r,r��

= −
n0m2

2
lim
k→0

�vs · �k�2��G−1�11�k,0� − �G−1�12�k,0�� . �20�

Since the inverse of the static Green’s function has the form

G−1�k,0� = 	� − �k − �11 − �12

− �21 � − �k − �22

 , �21�

where �k=k2 /2m and the �ij�k ,0� are the self-energies; the
variation of the free energy density �Eq. �20�� is given in
terms of the �’s by

�F =
1

2
n0m2vs

2 �2

�kz
2 ��k + �11�k,0� − �12�k,0��k=0. �22�

After a brief algebra, we obtain

�G11�−1�k,0� = − 2��k − � + �11�k,0� − �12�k,0��

−
�� − �k − �11�k,0� + �12�k,0��2

� − �k − �11�k,0�
. �23�

We assume that below the critical temperature Tc, the
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single-particle excitation spectrum is gapless. Then, Eq. �22�
reduces to Eq. �1�. In this case, the chemical potential �,
which depends on n0, is determined by the Hugenholtz-Pines
relation13

� = �11�0,0� − �12�0,0� . �24�

Thus, the final term in Eq. �23� is of order k4 and can be
neglected as k→0. Rewriting Eq. �22� in terms of G11

−1�k ,0�,
we find

�s = −
1

2
n0m2 lim

k→0

�2

�kz
2 �G11�−1�k,0� , �25�

which in the gapless phase implies the Josephson relation
�Eq. �1��. Further, since we have explicitly used a finite sys-
tem with periodic boundary conditions, we note that the ther-
modynamic limit has to be taken after the k→0 limit in Eqs.
�1� and �25� has been performed.

Equivalently, we can derive �n by carrying out a gauge
transformation on the Gij in which

G11�r,r�,0� → eimvn·�r−r��G11�r,r�,0� ,

G12�r,r�,0� → eimvn·�r+r��G12�r,r�,0� ,
�26�

G21�r,r�,0� → e−imvn·�r+r��G21�r,r�,0� ,

G22�r,r�,0� → e−imvn·�r−r��G22�r,r�,0� .

Under this transformation, the free energy density changes
by

�F =
1

2
�nvn

2. �27�

Now, the first order variation of the free energy density
with �G gives a purely kinetic contribution,

�Fkin = −
1

2V
Tr�G0

−1�G� �28�

=
1

2
�� − mn0�vn

2, �29�

since �G0
−1�11�r ,r��= ��+�r

2 /2m���r−r��, �G0
−1�11�r ,r��

= �G0
−1�22�r ,r��, and �G0

−1�12�r ,r��= �G0
−1�21�r ,r��=0. The sec-

ond order variation is given by12

�Fint = −
1

2V
Tr1Tr2�G�1�L−1�1,2��G�2� . �30�

The connected two-particle correlation function, L�1,2�
=G2�1,2�−G�1�G�2�, is the two-particle Green’s function,
G2, with the uncorrelated one-particle Green’s function con-
tribution subtracted. To evaluate Eq. �30� with Eq. �26�, we
note that under the gauge transformation coupled with the
transformation ���r��→ ���r��eimvn·r, the diagrams involving
the interaction are invariant. Thus, from Eq. �22�, we see that
Eq. �30� contributes

�Fint = − n0m2vn
2 �

�kz
2 ��11�k,0� − �12�k,0��k=0. �31�

Assembling the pieces and using Eq. �25�, we find that under
the transformation �Eq. �26��

�F =
1

2
� + n0m2 lim
k→0

�

�kz
2G11

−1�k,0��vn
2 =

1

2
�� − �s�vn

2,

�32�

as expected.
We note that our derivation of the Josephson relation is, in

fact, valid in a finite size system. There, the Green’s func-
tions are defined only on a discrete set of points in k space,
the limit k→0 in Eq. �1� is replaced by the limit k→k0, with
k0=2� /L, and the Josephson relation becomes discretized. In
addition, the relation remains valid in two dimensions in the
gapless phase5 since we do not need to explicitly specify the
number of dimensions in the derivation.
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