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Tests of increasing accuracy1 of the Berezinskii-
Kosterlitz-Thouless �BKT� theory2 of the two-dimensional
XY model critical behavior have been made possible by the
steady improvements of the computer performances and the
progress in the numerical approximation algorithms. How-
ever, the critical parameters of this model have not yet been
determined with a precision comparable to that reached for
the usual power-law critical phenomena due to the compli-
cated and peculiar nature of the critical singularities. There-
fore, any effort at improving the accuracy of the available
numerical methods by stretching them toward their �present�
limits should be welcome. After extending the high-
temperature �HT� expansions of the model in successive
steps3 from order �10 to �21, we present here a further exten-
sion by three orders for the expansions of the spin-spin cor-
relation on the square lattice and perform a first brief analysis
of our data for the susceptibility and the second-moment
correlation length. More results and further extensions both
for the square and the triangular lattice4 will be presented
elsewhere. Our study strengthens the support of the main
results of the BKT theory already coming from the analysis
of shorter series and suggests a closer agreement with recent
high-precision simulation studies1,5 of the model.

The Hamiltonian

H�v� = − 2J�
nn

v��r�� · v��r� �� , �1�

with v��r�� a two-component unit vector at the site r� of a
square lattice, describes a system of XY spins with nearest-
neighbor interactions.

Computing the spin-spin correlation function,

C�0� ,x� ;�� = �s�0�� · s�x��� �2�

�for all values of x� for which the HT-expansion coefficients
are nontrivial within the maximum order reached�, as series
expansion in the variable �=J /kT, enables us to evaluate the
expansions of the lth order spherical moments of the corre-
lation function,

m�l���� = �
x�

�x��l�s�0�� · s�x��� , �3�

and, in particular, the reduced ferromagnetic susceptibility
����=m�0����. In terms of m�2���� and ����, we can form the
second-moment correlation length:

�2��� = m�2����/4���� . �4�

Our results for the susceptibility are

� = 1 + 4� + 12�2 + 34�3 + 88�4 +
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1 054 178 743 699

725 760
�16

+
39 863 505 993 331

13 063 680
�17 +

19 830 277 603 399

3 110 400
�18 +

8 656 980 509 809 027

653 184 000
�19 +

2 985 467 351 081 077

108 864 000
�20

+
811 927 408 684 296 587

14 370 048 000
�21 +

399 888 050 180 302 157

3 448 811 520
�22 +

245 277 792 666 205 990 697

1 034 643 456 000
�23

+
83 292 382 577 873 288 741

172 440 576 000
�24 + O��25� . �5�

For the second moment of the correlation function we have
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m2 = 4� + 32�2 + 162�3 + 672�4 +
7378
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�15

+
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90 720
�16 +
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�17 +
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16 329 600
�18 +
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�19

+
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�20 +
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�21 +

721 617 681 295 019 782 781
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�22

+
79 897 272 060 888 843 617 033

1 034 643 456 000
�23 +

2 287 397 511 857 949 924 319

12 933 043 200
�24 + O��25� . �6�

The coefficients of order less than 22 were already tabu-
lated in Refs. 3, but for completeness we report all known
terms. As implied by Eq. �1�, the normalization of these se-
ries reduces to that of our earlier papers3 by the change �
→� /2.

Let us now list briefly the main predictions2 of the BKT
renormalization-group analysis to which the HT series
should be confronted in order to extract the critical param-
eters.

As �→�c, the correlation length �2���=m�2���� /4���� is
expected to diverge with the characteristic singularity

�2��� � �as
2 ��� = exp�b/���	1 + O���
 , �7�

where �=1−� /�c. The exponent � takes the universal value
�=1/2, whereas b is a nonuniversal positive constant. At the
critical inverse temperature �=�c, the asymptotic behavior
of the two-spin correlation function as �x��=r→� is
expected6 to be

�s�0�� · s�x��� �
�ln r�2	

r
 �1 + O� ln ln r

ln r
� . �8�

Universal values 
=1/4 and 	=1/16 are predicted also for
the correlation exponents.

A simple nonrigorous argument based on Eqs. �7� and �8�
suggests that for l�
−2, the spherical correlation moment
m�l���� diverges as �→0+ with the singularity

m�l���� � �−	�as
2−
+l���	1 + O��1/2 ln ��
 . �9�

This argument was challenged7 by a recent
renormalization-group analysis implying that the logarithmic
factor in Eq. �8� gives rise to a less singular correction in the
correlation moments, taking, for example, in the case of the
susceptibility, the form

m�0���� � �as
2−
���	1 + cQ
 , �10�

where Q= �2

2	ln���+u
2 +O	ln���−5
 and u is a nonuniversal

parameter.
By Eqs. �7� and �9�, the ratios rn�m�l��=an

�l� /an+1
�l� of the

successive HT-expansion coefficients of the correlation mo-
ment m�l���� for large n should behave3 as

rn�m�l�� = �c + Cl/�n + 1� + O�1/n� , �11�

with =1/ �1+��, to be contrasted with the value =1 which
is found for the usual power-law critical singularities.

To begin with, let us assume that �=1/2 as expected, so
that =2/3. Figure 1 gives a suggestive visual test of the
asymptotic behavior of some ratio sequences rn�m�l�� by
comparing them with Eq. �11�. The four lowest continuous
curves interpolating the data points are obtained by separate
three-parameter fits of the ratio sequences rn���, rn�m�1/2��,
rn�m�1��, and rn�m�2�� to the asymptotic form a+b / �n+1�2/3

+c / �n+1� of Eq. �11�. In the same figure, the two upper sets
of points are obtained by extrapolating the alternate-ratio se-
quence for the susceptibility, first in terms of 1/ �n+1�2/3 and
then in terms of 1/ �n+1�. The values of �c indicated by the
fits of the ratio sequences range between 0.5592 and 0.5611.

A more accurate analysis can be based on the simple re-
mark that near the critical point, by Eqs. �7� and �9� 	or Eq.
�10�
, one has ln���=c1 /��+c2+¯. Therefore, if �=1/2, the
relative strength of the 1/�� and 1/� singularities in the
function L�a ,��= 	a+ln���
2 is determined by the value of
the constant a. If we choose a�1.19, the function L�a ,�� is
approximately dominated by a simple pole and we can ex-
pect that the differential approximants �DAs�8 will be able to
determine with higher accuracy not only the position but also
the exponent of the critical singularity. Using inhomoge-
neous second-order DAs of L�a ,��, we can locate the critical
singularity at �c=0.5598�10�. By analyzing in the same way
the series data truncated to order 21 which were previously
available, we would get the estimate �c=0.5588�15�. A con-
sistent estimate �c=0.558�2� had been obtained in earlier
independent3,9 studies of the same series using Padé approxi-
mants or first-order DAs. Older studies3 of slightly shorter
series also indicated values of �c in the same range, but with
notably larger uncertainty. Thus, the results of the series in
this study indicate a stabilization and a sizable reduction of
the spread for the �c estimates. Our uncertainty estimates are
generally taken as the width of the distribution of the values
of �c in the appropriate class of DAs. Figure 2 shows the
singularity distribution �open histogram� of the set of qua-
sidiagonal DAs which yield our estimate. These are chosen
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as the approximants 	k , l ,m ;n
 with 17�k+ l+m+n�22.
Moreover, we have taken �k− l� , �l−m� , �k−m��3 with
k , l ,m�3 and 1�n�7. The class of DAs can be varied with
no significant variation of the final estimates, for example, by
further restricting the extent of off-diagonality or by varying
the minimal degree of the polynomial coefficients in the
DAs. No limitations have been imposed on the exponents of
the singular terms or on the background terms in the DAs in
order to avoid biasing the �c estimates. Should we require
that the exponent of the most singular term in the approxi-
mants differs from −1, for example, by less than 20%, we
would obtain �c=0.5602�5�, well within the uncertainty of
our previous unrestricted estimate. The vertical dashed line
in Fig. 2 shows the value �c=0.559 95 suggested by the
simulation of Ref. 5. Although no explicit indication of an
uncertainty comes with this estimate, an upper bound to its
error might be guessed from the statement5 that the simula-
tion can exclude values larger than or equal to �c
=0.560 45 for the inverse critical temperature.

Biasing with �c=0.5598�10� the set previously specified
of second-order DAs of L�a ,�� leads to the exponent esti-
mate �=0.50�1�. Figure 2 also shows the distribution of the

exponent estimates �hatched histogram� from this biased set.
The uncertainty we have reported for � accounts not only for
the width of its distribution shown in Fig. 2 but also for the
variation of its central value as the bias value of �c is varied
in the uncertainty interval of the critical inverse temperature.
Essentially the same value of � would be obtained from the
analysis of a series truncated to order 21.

While, as one should expect, the DA estimate of �c is
rather insensitive to the choice of a, the estimate of the ex-
ponent � and the width of its distribution are fairly improved
by our choice of a. Taking, for example, a=0, we would find
�=0.53�4�, which shows how the convergence of the expo-
nent estimates is slowed down by the more complicated sin-
gularity structure of L�0,��. Similar values of � were found
in previous studies of shorter series. Probably for the same
reason, also the central values of the 
 estimates obtained
from the usual indicators are still slightly larger than ex-
pected. For example, by studying the function H���=ln�1
+m�2� /�2� / ln��� �or analogous functions of different mo-
ments�, we can infer 
=0.260�10�. The function7 D���
=ln���− �2−
�ln��� and its first derivative are also interest-
ing indicators of the value of 
. Taking 
=1/4, Padé ap-
proximants and DAs do not detect any singular behavior of

FIG. 1. Ratios of the successive HT-expansion coefficients vs
1/ �n+1�2/3: for the susceptibility � �open circles�, for m�1/2�

�rhombs�, for m�1� �squares�, and for m�2� �triangles�. The four low-
est continuous curves are obtained by separate three-parameter fits
of each ratio sequence to its leading asymptotic behavior 	Eq. �11�
.
The data points represented by crossed circles are obtained by ex-
trapolating the sequence of the susceptibility alternate ratios with
respect to 1/n2/3, and the continuous line interpolating them is the
result of a two-parameter fit of the last few points to the expected
asymptotic form a+b /n. The small black circles are obtained by a
further extrapolation of the latter quantities with respect to 1/n. The
continuous line interpolating the black circles is drawn only as a
guide for the eye. The horizontal broken line indicates the critical
value �c=0.559 95 suggested by the simulation of Ref. 5.

FIG. 2. Distribution of singularities for a class of second-order
inhomogeneous DAs of L�1.19,��= �1.19+ln ��2 vs their position
on the � axis �open histogram�. The central value of the open his-
togram is �c=0.5598�10�. The bin width is 0.0007. The vertical
dashed line shows the critical value �c=0.559 95 indicated by the
simulation of Ref. 5 for which one can guess an uncertainty at least
twice smaller than ours. The hatched histogram represents the dis-
tribution of the exponent � obtained from DAs of L�1.19,�� biased
with �c=0.5598 vs their position on the � axis. The central value of
the hatched histogram is �=0.500�1� and the bin width is 0.0015.
The variation of the central value of � as �c varies in its uncertainty
interval is 0.01. This value can be taken as a more reliable estimate
of the uncertainty of �.
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D��� or of its derivative as �→�c, thus confirming the com-
plete cancellation of the leading singularity in D���. More-
over, this behavior seems to exclude the form 	Eq. �9�
 of the
corrections which implies the presence of weak subleading
singularities, while it is compatible with Eq. �10�.

In conclusion, our analysis suggests that, in spite of their
diversity, the HT extended series approach and the latest

most extensive simulation are competitive and lead to con-
sistent numerical estimates of the highest accuracy so far
possible.
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