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I consider the Hubbard model of graphene in an external magnetic field and in the Hartree-Fock approxi-
mation. In the continuum limit, the ground-state energy at half filling becomes nearly symmetric under rota-

tions of the three-component vector �� = �N1 ,N2 ,m�, with the first two components representing the Néel order
parameter orthogonal to and the third component the magnetization parallel with the external magnetic field.
When the symmetry breaking effects arising from the lattice, Zeeman coupling, and higher Landau levels are
included the system develops a quantum critical point at which the antiferromagnetic order disappears and the
magnetization has a kink. The observed incompressible states at filling factors ±1 are argued to arise due to a
finite third component of the Néel order parameter at these electron densities. Recent experiments appear
consistent with N1=N2=0 and N3�0, at the filling factors zero and one, respectively.
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I. INTRODUCTION

The nature of the ground state of two-dimensional carbon
�i.e., “graphene”� in a uniform magnetic field is an issue
which has attracted a lot of attention lately. The interest
mainly stems from the recent experimental observation1 of
the additional plateaus in the Hall conductivity at the values
of zero and unity which are not naturally explained by the
picture of noninteracting electrons alone.2–4 The mechanism
behind the formation of the gaps in the energy spectrum that
apparently develop within the zeroth Landau level has been a
matter of debate. On one hand, the Coulomb repulsion may
on general grounds be expected to favor breaking of the
sublattice5 or “valley” symmetry,6–8 which in the zeroth Lan-
dau level are equivalent. If the Zeeman coupling of the elec-
tron spin to the magnetic field is entirely neglected the sense
of this symmetry breaking can be equal or opposite for the
two projections of spin, depending on details of the interac-
tion on the lattice scale. This would yield a staggered pattern
of either charge or spin in the ground state, with the con-
comitant many-body gap in the quasiparticle spectrum.9 One
could, however, also imagine the opposite limit of a strong
coupling of the electron spin to the magnetic field, in which
the gap in the spectrum at half filling would become essen-
tially a single-particle Zeeman gap. Of course, such a ferro-
magnetic ground state is already favored by the repulsive
Coulomb interaction alone, due to the familiar physics of
Hund’s rule.10 The interplay between different possible insta-
bilities in graphene in magnetic field represents an important
unsolved problem at the moment.11,12 Here I would like to
point out and explore a surprising symmetry between differ-
ent order parameters which may help its resolution.

I consider the minimal Hubbard model for the interacting
electrons living on a honeycomb lattice. Although admittedly
a simplification, the Hubbard model already contains most of
the relevant physics. Without a magnetic field it exhibits both
the ferromagnetic and antiferromagnetic ground states in its
phase diagram,13 with the latter as stable at half filling.14 In a
field, constraining the Néel vector to lie parallel to it leads to

a discontinuous transition between the antiferromagnetic and
ferromagnetic ground states at a critical Zeeman coupling, as
discussed in the previous work by the author.9 Here I calcu-
late the ground-state energy in the Hartree-Fock approxima-
tion, but for an arbitrary direction of the Néel vector. An
immediate, and maybe not entirely unexpected result is that
the ground-state energy at half filling is minimized when the
Néel order parameter N� is in fact orthogonal to the external
magnetic field. Restricting therefore N� to its easy plane �N3
=0� and taking the magnetization m� to be parallel to the
external magnetic field �m1=m2=0�, the ground state energy
at half filling becomes nearly symmetric with respect to an
internal SO�3� group of rotations of the three-dimensional
order parameter �� = �N1 ,N2 ,m3�. This symmetry becomes
exact in the zeroth Landau level approximation, if the Zee-
man effect and the discreteness of the lattice are also ne-
glected. With these realistic symmetry breaking effects in-
cluded one finds that with the increase of Zeeman coupling
the system at half filling suffers a continuous quantum phase

transition from the “mixed” state with both N� ��0 and m3

�0 to a pure ferromagnet with N� �=0 and m3�0. This situ-
ation is depicted in Fig. 1. With a change in the chemical
potential the third Néel component N3 eventually becomes
finite and produces additional incompressible states at the
filling factors ±1. An observation of such, albeit according to
our estimate, a rather weak Néel order along the magnetic
field at ±1 would provide a direct support for our theory.

Motivated by a recent experiment,15 I examine the depen-
dence of the activation gap at filling ±1 on the in-plane com-
ponent of the magnetic field, at the fixed perpendicular field.
The present theory predicts such a gap to be completely in-
dependent of the in-plane component only if at the filling
zero N�=0 and m3�0, in which case it is simply given by
2N3. Given that this seems to be the situation in the experi-
ment, we conclude that for the experimentally relevant val-
ues of the parameters the ground state should have a finite N3
at the filling factor ±1, whereas it should be a pure ferromag-
net at zero filling. This conclusion is in accord with the ob-
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served dissipative nature of the state at the filling zero, which
can be understood in terms of the particular edge-state trans-
port implied by such a ferromagnetic ground state.16 It is
then also in agreement with one of the possible scenarios
discussed previously in Ref. 9, where the Néel order param-
eter was constrained to lie only along the magnetic field.

The paper is organized as follows. In the next section I
derive the expression for the ground-state energy of the sys-
tem as a function of Néel and uniform magnetizations, in the
Hartree-Fock approximation. In Sec. III the emergence and
the breaking of the approximate SO�3� symmetry by differ-
ent terms in the Hamiltonian is discussed. The discussion of
the result as they pertain to experiment is given in Sec. V.
Finally, the main results are summarized in Sec. VI.

II. HARTREE-FOCK GROUND-STATE ENERGY

Let me define the Hubbard model on a honeycomb lattice
as Ht+HU, where

Ht = − t �
A� ,i,�=↑,↓

u�
†�A� �v��A� + b� i� + H.c., �1�

and

HU =
U

16�
A�

��n�A� � + n�A� + b���2 + �n�A� � − n�A� + b���2

− �m� �A� � + m� �A� + b���2 − �m� �A� � − m� �A� + b���2� . �2�

The sites A� denote one triangular sublattice of the honey-
comb lattice, generated by linear combinations of the basis
vectors a�1= ��3,−1��a /2�, a�2= �0,a�. The second sublattice

is then at B� =A� +b� , with b� = �1/�3,1��a /2�. a is the lattice

spacing, and n�A� �=u�
†�A� �u��A� � and m� �A� �=u�

†�A� ��� ���u���A
� �

are the particle number and the magnetization vector at site

A� . Variables at the second sublattice are analogously defined

in terms of fermion operators v��B� �. It is easy to check that
HU is just the standard Hubbard on-site repulsion, written
here in the rotationally invariant form which will prove to be
suitable for our purposes.

Here we are after the Hartree-Fock ground state of the
Hubbard model in the uniform magnetic field and at half
filling. Even at the highest laboratory fields 	40 T the mag-
netic length is much larger than the lattice spacing l�a. It
suffices therefore to consider only the continuum theory cor-
responding to the Hubbard model. General form of the low-
energy field theory of graphene has been discussed in detail
before.14 For present purposes it will be enough to consider
the Hartree-Fock ground state obtained after the usual decou-
pling of the interaction term in the ferromagnetic and anti-
ferromagnetic channels. We thus assume a uniform

density �
n�X� ��=1,X� =A� ,B� �, and allow for both the

uniform �m� = 
m� �A� �+m� �A� +b���� and staggered magnetiza-

tions �N� = 
m� �A� �−m� �A� +b����. Standard manipulations17 give
the ground-state energy per unit area and at half filling to be

E =
N� 2

4ga
+

m� 2

4gf
+ E0�N� ,m� � , �3�

where E0 is the ground-state energy per unit area of the re-
sulting single-particle Hamiltonian

HHF = I2 � H0 − �N� · �� � � �0 + ���� + m� � · �� � � I4. �4�

�� =gZB� represents the Zeeman effect of the uniform magnetic

field B� , and gZ is the electron g factor. H0= i�0�i�−i�i−Ai�,
with B=�3ij�iAj, is the standard Dirac Hamiltonian near the
two Fermi points in the spectrum of Ht.

18,19 For simplicity,
the magnetic field will be assumed to be orthogonal to the
graphene plane, until further notice. We work in “graphene
representation” of the Clifford algebra14 in which �0= I2
� �3, �1=�3 � �2, �2=−I2 � �1, where �I2 ,�� � is the standard
Pauli basis of two-dimensional matrices. Likewise, I4 repre-
sents the four-dimensional unit matrix. In our units �=e /c
=vF=1. The coupling constants gf and ga are both propor-
tional to the original repulsion energy U, and positive. Al-
though they are exactly equal at the lattice scale, as evident
from the form of HU in Eq. �2�, they in general will not be in
the effective linearized Dirac theory sensible only below a
certain momentum cutoff 	. Subscribing to the usual logic
of the low-energy description, gf and ga must be considered
only as effective parameters which themselves depend on the
cutoff 	 in a way that ensures the cutoff independence of all
physical quantities. This observation will play a role in the
selection of the ground state, as will be discussed shortly.

To proceed one needs the spectrum of the eight-
dimensional Hamiltonian HHF. Perhaps this is most easily
computed by casting it into a block-diagonal form HHF=H1
� H2,20 with

� � �

���

��

FIG. 1. The dependence of the Néel order parameter �N�� or-
thogonal to and the magnetization �m3� parallel with the external
magnetic field on the Zeeman energy ��� at the filling factor zero
�Eqs. �15�–�18��. The critical point is located at �c=2�ga

−gf� / �
l2�, where ga and gf are the coupling constants in the Néel
and the ferromagnetic channels, respectively. l is the magnetic
length.
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H1�2� = ± I2 � �1�− i�1 − A1� − I2 � �2�− i�2 − A2�

− �N� · �� � � �3 + �� + m3��3 � I2. �5�

Here we have chosen the third spin axis and the magnetiza-
tion to be along the magnetic field, i.e., m1=m2=0, m3�0.
Next we note that H1=U1

†HU1, with U1= I2 � i�2, and

H = H0 + iN1�0�3 + iN2�0�5 − N3�0 + i�� + m3��3�5 �6�

and �3=�1 � �2, �5=�2 � �2. Similarly, H2=U2
†HU2, with

U2= i�2 � I2, with N3→−N3. It is sufficient therefore to find
the spectrum of the single four-dimensional Hamiltonian H.
After some algebra the eigenvalues of HHF are this way
found at ±en� with

en� = �N�
2 + ��N3

2 + 2nB�1/2 + ��� + m3��2�1/2, �7�

with �= ±1, N� �= �N1 ,N2�, and the degeneracies per unit area
of 1 / �
l2� and 1/ �2
l2�, for n=1,2 ,3 , . . ., and n=0, respec-

tively. Note that for N� =0 the eigenvalues become the famil-
iar relativistic Landau levels split by the Zeeman term, as
expected. For �+m3=0, on the other hand, the spectrum re-
duces to the Landau levels of the massive Dirac Hamil-

tonian, with the mass �N� �, also in agreement with the previ-
ous calculations.9

At half filling then the ground state of HHF has all the
eigenstates with negative energies filled, and all the others
empty, so

E0�N� ,m3� = −
1

2
l2 �
�=±1


e0� + 2�
n�0

en�� . �8�

The variational Hartree-Fock ground-state energy is then de-
termined by the least value of the expression in Eq. �3�.

III. SO(3) SYMMETRY AND ITS BREAKING

Let us minimize the Hartree-Fock ground state energy

given by Eqs. �3� and �8�, assuming ��0. Choosing �N� � and
N3 as independent variables and then differentiating with re-
spect to N3 yields

�
�=±1

��� + m3�
 1

e0�

+ �
n�0

2

en�

N3

�N3
2 + 2nB

� = 0. �9�

The left-hand side of the equation vanishes for N3=0, and
otherwise is a negative definite function of N3. N3=0 is
therefore the only solution. One can also show that this so-
lution represents the minimum of the energy. Restricting the
Néel vector then to be orthogonal to the magnetic field the
ground-state energy in Eq. �3� can be rewritten as

E = ESO�3� + E�, �10�

where

ESO�3� =
N� �

2 + m3
2

4ga
−

1


l2 �N� �
2 + m3

2�1/2, �11�

and E�=E	+EZ+EHLL, with

E	 =
�ga − gf�

4gfga
m3

2, �12�

EZ =
1


l2 ��N� �
2 + m3

2�1/2 − �N� �
2 + �� + m3�2�1/2� , �13�

EHLL = − �
�=±1

�
n=1

M
�N� �

2 + ��2nB�1/2 + ��� + m3��2�1/2


l2 .

�14�

This form makes it manifest that the Hartree-Fock ground-
state energy at half filling is nearly symmetric with respect to

rotations of the three-component order parameter ��

= �N1 ,N2 ,m3�. The identification of this approximate internal
SO�3� symmetry is our central result. The SO�3� symmetry is
in the Hubbard model broken by three terms of different
physical origin: �1� the difference between the coupling con-
stants ga and gm at the cutoff 	 �E	�, �2� the finite Zeeman
coupling to the magnetic field � �EZ�, and �3� the n�0 Lan-
dau level contribution �EHLL�. If one were to consider only
the zeroth Landau level, use the bare values of the couplings
for which ga=gm, and neglect the Zeeman coupling, the
Hartree-Fock ground-state energy would become perfectly
SO�3� symmetric. In particular, the antiferromagnetic state
with the Néel vector orthogonal to the external magnetic
field and the ferromagnetic state with the magnetization
along the same field would in this approximation appear as
degenerate.

Clearly, the Zeeman term favors magnetization. Similarly,
it can be shown that HHLL prefers the Néel components.21 It
is less obvious what the sign of the “easy-axis anisotropy,”
i.e., of ga−gf, in E	 should be. This is determined by the
flow of the two coupling constants as the high-energy modes
between the momenta 	1/ l and 	1/a are integrated out
essentially at zero magnetic field. Since the leading instabil-
ity of the Hubbard model on a honeycomb lattice and at half
filling as the interaction strength is increased is towards the
antiferromagnetism, we may assume that in general ga�gf
in the low-energy theory. This would also be in accord with
the explicit renormalization group calculation for weak
couplings.14

The ground state in the Hartree-Fock approximation is
thus the result of the competition between the high-energy
modes represented by H	 and HHLL, and the Zeeman cou-
pling, which favor antiferromagnetic and ferromagnetic so-
lutions, respectively. Since the effect of HHLL is in the same
direction as of H	, to keep the algebra simple we will drop
HHLL altogether and just assume ga−gf �0 in the Eq. �10�.
This is a particularly good approximation at the laboratory
magnetic fields at which the inclusion of the higher Landau
levels is expected to provide corrections to our results of
higher order in the small parameter a / l. Minimizing the en-
ergy in Eq. �10�, for ���c we then find

�N� �� =
ga

ga − gf

��c
2 − �2, �15�

m =
gf

ga − gf
� , �16�

and for ���c,
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N� � = 0, �17�

m =
gf

ga − gf
�c, �18�

where �c=2�ga−gf� / �
l2�. With the increase of the Zeeman
coupling there is a continuous transition at which the Néel
order disappears, and the magnetization saturates to its maxi-
mum �Fig. 1�.

Note that if the Néel vector is constrained to be along the

magnetic field, so that N� �=0, the above quantum critical
point becomes replaced with the level crossing between the
purely antiferromagnetic �N3�0, m3=0� and purely ferro-
magnetic �N3=0, m3�0� ground states.9 Such a pure antifer-
romagnet would correspond to a local maximum of the en-
ergy in Eq. �3�, however. It seems always energetically
favorable to compromise between the two competing mag-
netic orderings by orienting the Néel vector orthogonally to
the field.

IV. DISCUSSION

While it is not a priori clear at which side of the transition
should the experimental samples lie at half filling, increasing
sufficiently the component of the magnetic field parallel to
the graphene layer should always place the system into the
purely ferromagnetic state. The experimental fact that the
system at the filling factor zero is dissipative suggests that
this is probably already the case even for the magnetic field
completely orthogonal to the graphene’s plane.16 Spin split-
ting as the origin of the measured gap at half filling has also
been suggested very recently in Ref. 15. Most importantly,
the experiment of Jiang et al. offers compelling evidence that
the gap at filling factor ±1 is independent of the total mag-
netic field, and thus likely to be a consequence of
interactions.15 And this is precisely what follows from our
theory.9 When the chemical potential gets close to the energy
of the first excited states laying at


c = ± �N� �
2 + �� + m3�2, �19�

the Hartree-Fock ground-state energy may always be low-
ered by developing a finite third Néel component N3. This
pushes half of the states in question below the chemical po-
tential and opens a gap. This way an incompressible state at
filling factors ±1 would be formed irrespectively of whether

N� � was zero or finite at the filling factor zero. Note, how-
ever, that the Eq. �7� implies that this mechanism is operative
only in the n=0 Landau level; the states belonging to the
other Landau levels do not get split but only shifted in en-
ergy when N3�0. Consequently, at weak coupling N3 will
become finite only in the ±1 state and otherwise not. The
incompressible states that follow from the inclusion of a fi-
nite chemical potential into Eq. �3� lie therefore only at fill-
ing factors 0, ±1, and all even integers.

Let us assume therefore a weak third Néel component N3
at the filling factor ±1. The activation gap at this filling then
becomes

Egap =
2�� + m3�

�N�
2 + �� + m3�2�1/2N3 + O�N3

2� . �20�

For a small Zeeman term ���c, Eqs. �15� and �16� give then

Egap =
2�

�c
N3 + O�N3

2� , �21�

whereas when ���c and N�=0,

Egap = 2N3 + O�N3
2� . �22�

Recalling that both N3	B� and �c	B�, whereas �	B,
where B is the total and B� the perpendicular component of
the magnetic field, we see that the gap is independent of the
field’s in-plane component only in the latter case. The experi-
ment is therefore consistent with N3�0 at the filling factor
±1, and with N�=0 at the filling factor zero. This may not be
very surprising in view of the equality between the couplings
ga and gf at the lattice scale, which makes the critical Zee-
man coupling �c likely to be exceeded by the experimental
value of �.22

Finally, restoring a finite range to electron-electron inter-
actions may replace the antiferromagnetic ground state dis-
cussed here with a charge density wave with the particle
density alternating �around the value of unity� on the two
sublattices. In this case the mean field phase diagram would
remain the same as discussed previously in Ref. 9. Provided
that the on-site repulsion is indeed the dominant effect of the
Coulomb interaction in graphene, our prediction is that at
filling factors ±1 and at magnetic fields B	10T the system
has a weak Néel component N3	�a / l�2
B	�10−3

−10−4�
B per electron. 
B is the Bohr magneton. The inher-
ent weakness of the Néel order derives from a small fraction
of electrons occupying the relevant n=0 Landau level, which
is the sole source of antiferromagnetism in this case. The
existence of such ordering at the fillings ±1 can be used to
distinguish the present proposal from all others in the current
literature on the subject.

V. SUMMARY

To summarize, the ground-state energy in the Hartree-
Fock approximation to the Hubbard model on honeycomb
lattice and at half filling is nearly symmetric with respect to
rotations between the components of the Néel order orthogo-
nal to and the magnetization parallel with the external mag-
netic field. The effects of the symmetry breaking terms origi-
nating from discreetness of the lattice, Zeeman interaction,
and n�0 Landau levels were examined. It was shown that
whereas the component of the Néel order parameter parallel
to the magnetic field always vanishes at half filling, it be-
comes finite �only� at filling factors ±1, introducing this way
a gap in the spectrum. The existence of such a weak Néel
order along the magnetic field 	10−4
B per electron is pro-
posed as a litmus test of the present theory.
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