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Two-dimensional random Voronoi tessellations with three different metrics are compared in terms of the

Kolmogorov-Johnson-Mehl-Avrami approach. The main reason for this is to take into account the lattice
symmetry in describing the kinetics of birth-growth processes at single crystal faces. Metrics of discrete
random tessellations originating in this context and their continual analogs are determined by the unrestricted
(prior to the first impingement) growth of a nucleus and differ from the Euclidean one. The free boundary
length as a function of the nucleus radius is shown to be sensitive to the metric.
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I. INTRODUCTION

The use of random tessellations in describing various
birth-growth processes is partly rooted in Ref. 1. Together
with Refs. 2 and 3, it originated the well-known
Kolmogorov-Johnson-Mehl-Avrami ~ (KJMA)  approach.
Originally developed for simulating the kinetics of steel
crystallization, this approach was later extended to the fields
of solid state reaction kinetics* and thin film growth.> A ran-
dom tessellation is the direct ultimate result of a nucleation
and growth to impingement process. In the extreme case of
simultaneous nucleation and linear growth, it is termed the
random Voronoi tessellation; a two-dimensional (2D) ex-
ample is shown in Fig. 1. To get analytical relationships, the
problem is reformulated in terms of coverings, as illustrated
in Fig. 2. For the totality of circles, it is easy to calculate
extended quantities, total area, and perimeter length. The
theory gives the following relationship between actual and
extended conversions:

a=1- exp(— aext)- (1)

The applicability of the KIMA approach is restricted by
the following conditions:? (i) nuclei are small compared to
the reaction space, (ii) nucleation is according to Poisson,
(iii) all nuclei have the same convex shape and orientation,
and (iv) the growth law is the same for all the nuclei. Obvi-
ously, the reality is much richer. A large amount of work has
been done to pass these limits, both in terms of coverings
and tessellations. The progress is especially notable in the
field of thin film growth. This includes, in particular, the
account of the correlated nucleation,® the concepts of cap-
ture zones and scaling properties,'®!# the simulation of
highly anisotropic growth.!>:16

One more interesting step to be made is to take the sym-
metry of a substrate into account. The use of the KIMA
approach in its conventional form implies the Euclidean met-
ric. In particular, Figs. 1 and 2 correspond to the Euclidean
plane. Generally, the influence of substrates is diverse and
difficult to register. If the growth process is linked to the
(translational) symmetry of a substrate, the metric is differ-
ent. To study this effect per se and to make use of the pos-
sible analytical calculations, the extreme model case of the
simultaneous nucleation and the same growth law for all the
nuclei is considered. Approaches in terms of coverings and
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tessellations are complementary. The former provides simple
analytical formulas, whereas the latter is capable of a keener
insight into geometrical details of a birth-growth process.
This will be used below to compare different metrics deter-
mined by different crystal faces.

II. CRYSTAL FACE: MAIN TYPES OF DISCRETE
RANDOM TESSELLATIONS

Any single crystal face is characterized by definite sym-
metry and combinatorial-topological structure. Its transla-
tional symmetry is described in terms of the Wigner-Seitz
cells. Two distinctions from the Euclidean plane, the dis-
creteness and metric, are essential in the present context. The
former is determined by the parameters of the crystal lattice,
and the latter by the mode of unrestricted (prior to the first
impingement) growth of a nucleus.

The simplest situation corresponds to two following as-
sumptions: a seed nucleus has the shape of the Wigner-Seitz
cell of a substrate; and during the growth process, the inter-
face propagates simultaneously to all adjacent symmetrically
equivalent cells. At first glance, the former seems quite un-
realistic. A seed nucleus is formed at random, and generally
different nuclei may have different shapes as well as differ-
ent numbers of atoms. However, if the influence of a sub-
strate is significant, these different random nuclei may as-
sume with time the same form determined by the symmetry.
This point is discussed in detail in Ref. 17. It is logical to
start with nuclei the symmetry of which corresponds to that
of a substrate. The Wigner-Seitz cell as a seed nucleus is a
reasonable model easily extendable to more realistic cases.

2D Wigner-Seitz cells may be either quadrangles or hexa-
gons. Accordingly, we will be interested in random discrete

FIG. 1. Random Voronoi tessellation in the Euclidean metric.
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FIG. 2. Random covering compared to random tessellation; the
set of nuclei is the same as in Fig. 1.

tessellations on quadrangle or hexagonal grids. The hexago-
nal grid is sketched in Fig. 3, which illustrates how the un-
restricted growth of a nucleus determines the corresponding
metric. The distance between any two nuclei (solid hexa-
gons) is measured as the number of hexagons in the shortest
chain between them (solid lines). With respect to the central
nucleus, the whole grid is subdivided into two parts, A and B
in Fig. 3. In region A and centrally symmetrical region, the
distance is determined by the relationship dist,=|Ax]
+|Ay|[(1=cos ) /sin ¢], where i is the translational angle.
In the case of regular hexagons, y=60°, but generally, ¢ may
be different. The subscript H denotes the hexagonal metric
(H metric). In region B, the distance is disty=Ay/sin . On
the whole, the H metric is defined as follows:

1 —cos A
|Ax]| + |Ay|_—¢, A1 < tan ¢
) sin ¢ |Ax|
disty = (2)
|Ay| |Ay|
- s = tan .
sin ¢ |Ax|

The circle in this metric is the regular hexagon oriented as
shown in the right bottom corner of Fig. 3. For the quad-
rangle lattice (Fig. 4), #=90° and the corresponding metric
(O metric) is defined as

disty = |Ax| + |Ay]. (3)

The Euclidean metric will be termed the E metric.

II1. UNIFORM DISCRETE RANDOM TESSELLATIONS

In studying discrete random tessellations, one faces a
number of peculiarities that have no analogs in conventional
continual cases. In particular, this concerns domain bound-
aries.

In the conventional case shown in Fig. 1, boundaries of
domains have fairly simple structure. They are lines each
point of which is equidistant from two nuclei except vertices
that are equidistant from three nuclei. Boundaries of discrete
tessellations are more involved. Figure 4 illustrates this in
the case of the square grid. The boundary is a line only if the
distance between nuclei is odd (nuclei a and b in Fig. 4). If
the distance is even (nuclei b and c), the boundary consists of
cells. Linear boundaries look simpler, but this impression is
wrong. Part of a linear boundary may be equidistant from
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FIG. 3. The growth of a nucleus on the hexagonal grid; the
boundary propagates simultaneously from a seed nucleus (solid
hexagon) to all adjacent symmetrically equivalent cells (light gray
filling).

two nuclei whereas another part is equidistant from three or
more nuclei, and it is not a simple task to distinguish these
parts in numerical computations.

If no restrictions are posed on the positions of nuclei, the
corresponding tessellation will have mixed boundaries (right
part of Fig. 4). It is impossible to construct tessellations with
only linear boundaries. However, it is possible to construct
tessellations with only cellular boundaries: the square grid is
considered as a big chessboard and nuclei are placed at ran-
dom on either black or white cells. Only this type of discrete
random tessellations will be considered here. Tessellations of
this type will be termed uniform tessellations.

In this case, the boundary between two nuclei has the
following structure (see Fig. 4):

(1) The number of cells in its stepwise part is equal to
min(|Ax|,|Ay[)+1.

(2) If the origin of coordinates is associated with one of
the nuclei (e.g., nucleus b in Fig. 4), one of these cells is
surely situated on one of the axes.

(3) The stepwise part may be prolonged (ad infinitum if
only two nuclei are considered) in both directions by straight
parts oriented along the second axis.

(4) The stepwise part may consist of only one cell; in this
case, one gets simply a straight boundary parallel to one of
the axes.

IV. COMPARISON OF TESSELLATIONS WITH
DIFFERENT METRICS

There is no natural discretization for conventional Euclid-
ean tessellations. Accordingly, the only way to compare the
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FIG. 4. Two different types of boundaries on the square grid; the
type is determined by the distance between corresponding nuclei.
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FIG. 5. Transition from a discrete model A to its continual ana-
log B.

above discrete tessellations with the Euclidean one is to con-
struct continual analogs for the former.

Figure 5 illustrates the approach in the case of the Q met-
ric. One of the main parameters of continual tessellations is
the density N\, which is the number of nuclei per unit area. In
the discrete case, a nucleus itself has a definite area, and the
density A is the ratio of the number of nuclei to the total
number of grid cells. If the area of the cell is o, then A
=A/o. The perimeter length of a growing nucleus is counted
in the discrete case as the number of cells forming its bound-
ary. Thus, defined perimeter length is independent of the dis-
creteness parameters. To pass to the continual analog, one
needs to join centers of corresponding cells (Fig. 5). Perim-
eter lengths of the discrete nucleus A in Fig. 5 and its con-
tinual analog B expressed as the number of cells are the
same. If the cell edge equals a, the distance between the
centers of adjacent cells is 2a (Q metric). The boundary of a
nucleus is uninterrupted only until its first impingement with
the boundary of the corresponding domain of the tessellation.
The number of boundary cells # and the number of linking
pieces y are equal. The first impingement results in the break
of the boundary, and y=#7—1. Generally, the boundary of a
nucleus has z breaks and its size [ in units of length is related
to that counted as the number of cells 7 by the linear rela-
tionship

1=2a(n-z). (4)

In the discrete case, the nucleus radius is naturally expressed
as the step number s: at each step, the boundary propagates
to all adjacent symmetrically equivalent cells. The same in-
crement may be chosen for convenience in the continual

FIG. 6. Random Voronoi tessellation in the Q metric; the set of
nuclei is the same as in Fig. 1.
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FIG. 7. Random Voronoi tessellation in the H metric; the set of
nuclei is the same as in Fig. 1.

case. Two continual random tessellations resulting from the
same set of nuclei as in Fig. 1, but corresponding to metrics
Q and H, are shown in Figs. 6 and 7, respectively.

Figure 8 illustrates the way in which kinetic properties of
tessellations were compared numerically. Each domain of a
random tessellation is considered as a “rightful domain” of a
growing nucleus, and the growth of this nucleus is followed
from the very beginning by plotting the free boundary length
(with the account of impingements) on radius. An example
obtained as the direct computer output for one cell is shown
in Fig. 9. Each peak of this curve corresponds to the im-
pingement of a nucleus with one of the domain edges, which
simulates impingements of nuclei. This dependence /(r) for a
single nucleus is termed the primitive kinematic curve. The
term “kinematic” is used to emphasize that no reference is
made to actual driven forces of a birth-growth process. The
resulting curve L(r) is the sum of all primitive curves of the
tessellation averaged over the nucleus population.

Kinematic curves L(r) of all three tessellations have been
computed in the following way:

(1) 10 000 nuclei were placed at random on a plane to
provide the density A=1.

(2) Tree primitive curves I(r), [o(r), and Iy(r) were cal-
culated for each nucleus. To do this, the nucleus radius r was
varied in the range [0, rg,] with the step 0.01; rp,, was
determined by the conditions /x(rg,)=0, lo(rpna)=0, and
Ly(reina) =0. At each step, the part of the nucleus boundary
which is closer to its nucleus than to any other nucleus was
identified in each metric. Generally, the length of this part of

FIG. 8. A kinetic view of the random Voronoi tessellation. The
set of nuclei is the same as in Fig. 1, but the growth of only four
nuclei is sketched for clarity. At a given value of the radius, the
number of impingements is different for different nuclei: (a) no
impingements; (b) one impingement, the boundary is singly con-
nected; (c) two impingements, the boundary is doubly connected;
and (d) four impingements, the boundary is singly connected.
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FIG. 9. An example of the primitive kinematic curve; four peaks
correspond to four successive impingements of a growing nucleus
with boundaries of its four-edge domain.

the boundary may be calculated in two ways: in one and the
same Euclidean metric for all three mosaics and for each
mosaic in its metric. The former approach is used in the
present paper.

(3) Thus, the obtained primitive curves were then summed
up over all domains and divided by the total number of nu-
clei.

In the simplest case of Voronoi tessellations, the same
quantities may be calculated analytically exploiting the idea
of extended quantities.! The extended boundary length and
extended conversion are as follows:

A (E mosaic)
2@\ N )
— 2r°N (O mosaic)
Lext(r) = 4\“’2")\ Aoy = 3 /g
67\, %rz)\ (H mosaic).

)

The actual free boundary length L(r) is equal to (1
— )L (r), where a is given by Eq. (1). Accordingly,

27r\ exp(— wrP\)  (E mosaic)

4\1’5;")\ exp(=2r2\)  (Q mosaic)

L(r)= (6)

A

3V3 .
61\ exp(— %rz)\) (H mosaic).

L(r) curves computed both analytically and numerically
for three different metrics are compared in Fig. 10. Obvi-
ously, they represent different kinetics. The agreement of
analytical and numerical results is reasonably good.

With the boundary length calculated for comparison in the
same Euclidean metric for all three mosaics, as describe(_i
above, values of S:ij(r)dr are as follows: Sp=1, Sp=12
(1.414), and Sy;=2/y3 (1.155), and \=1. The same ratio of
areas may be obtained as shown in Fig. 11. A nucleus is
placed in the center of a unit square, and its growth is fol-
lowed in three metrics until the square is completely covered
by the nucleus. The free boundary length may be expressed
as the function of radius analytically:
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FIG. 10. Kinematic curves for the same set of nuclei calculated
analytically (solid lines) and numerically (symbols) for three differ-
ent mosaics in the Euclidean metric.
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FIG. 11. Primitive kinematic curves for a nucleus in the center
of a unit square.
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FIG. 12. Primitive kinematic curves for a nucleus in the center
of a unit domain (LXM=1).

The shape of the unit domain may be changed, but the
discussed ratio of areas remains invariant. An example is
given in Fig. 12. Equations for the free boundary length are
as follows:

lg(r) =
p
L
27Tr’ 0$r$—
2
L L M
{ 2r| -2 arccos — |, Sy
2r 2 2
(77 L M) M V2 + M2
4r\ ——arccos ——arccos — |, —<r<———,
L 2 2r 2r 2 2
(10)
p
L
4\Er, osr<-—
2
< [ L M
lo(r) =4 2V2L, —<r<— (11)
2 2
=(L+M M L+M
42\ ——=-r], —=r=s .
L 2 2 2

The corresponding areas are sp=1 and sy,=1.414. For the H
metric, the figure and formulas are somewhat cumbersome to
be reproduced here but sy=1.155. This provides an insight
into the interrelation between the metric and the nucleus
shape.

In the case of the E metric, the values of r,,,, were shown
to be close to half of the averaged distance to the second
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nearest nucleus in the population.!® This corresponds to the
value of r for the highest peak (Fig. 9) averaged over all
primitive curves (or, in other words, the distance to the sec-
ond nearest edge averaged over the Voronoi tessellation).
Distances 9, to the nearest, second, etc., nuclei can be calcu-
lated analytically exploiting the known density function!®

(80 =20m) (k= )] exp(- A7) &,

where k enumerates these neighbors. For averaged distances
(&, it gives

(12)

a I'(k+1/2)
D= (13)

where I'(x) is the Euler function. With this in mind, averaged
distances to neighbors have been numerically computed for
the above set of 10 000 nuclei with density A=1 in three
metrics. Results divided by 2 are given in Table I. According
to Eq. (6), 7y i equal to 1/y27\ for the E metric, 1/2\\
for the Q metric, and 1/ \'m for the H metric (numerical
values for A=1 are 0.399, 0.5, and 0.439, respectively).
One more point is to examine the area distribution func-
tions of the Voronoi domains in three metrics. This has been
done in the following way. First, 10 000 nuclei were placed
at random within 100X 100 square, providing A=1. Then,
1 000 000 test points were placed at random within the same
square. In each metric, each test point was attributed to the
nearest nucleus. The percentage of test points belonging to a
given nucleus determines the area of its domain (as a share in
the total area). The result is 10 000 values of domain areas

for each metric. Since A=1, they are scaled as S/S. Histo-
grams constructed from these data were normalized to the
unit area under them. Results are shown in Fig. 13. Surpris-
ingly, there are no significant differences; area distributions
are practically the same for all three metrics. The solid line

in Flg 13 corresponds to the Commonly used Kiang
COHj ecturezo
( ) < ot ( ) ( 1 )
F(y) = exXpl—cy). 4

The parameter ¢=3.63 is in a reasonable agreement with that
mentioned in the literature.?0->2

This result for area distributions raises the question about
the relationship of neighborhood for the same nuclei in dif-
ferent metrics. Figure 14 shows that the neighborhood is
changed for some nuclei in passing from the E metric to Q

TABLE 1. Averaged distances to neighbors (divided by 2) in three metrics for the same set of nuclei

A=1).

Neighbor
Metric 1 2 3 4 5 6 7
E [Eq. (13)] 0.250 0.375 0.469 0.547 0.615 0.677 0.733
E 0.249 0.375 0.468 0.546 0.615 0.676 0.733
0 0.313 0.470 0.587 0.684 0.770 0.847 0.918
H 0.274 0.412 0.514 0.601 0.676 0.744 0.806
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FIG. 13. Area distributions of domains in three metrics (sym-
bols) in comparison with the Kiang conjecture (solid line).

metric. In this small fragment, four neighbors in the £ metric
are no longer neighbors in the Q metric; instead, three non-
neighbors in the E metric are neighbors in the Q metric. In
30 similar small tessellations, the number of new neighbors
and of new non-neighbors are approximately the same. This
holds true in passing from the E metric to H metric. A de-
tailed comparative statistics of the neighborhood is an in-
volved problem which is beyond the scope of this paper.

V. SUMMARY

2D random Voronoi tessellations with three different met-
rics have been compared with respect to KIMA kinetics. The
motivation for this study is to take the symmetry of the sur-
face lattice into account in describing birth-growth processes
which may be linked to this symmetry. Two metrics com-
pared with the conventional Euclidean metric are determined
by the two main types of 2D Wigner-Seits cells. The corre-
sponding random Voronoi tessellations are discrete. Pecu-
liarities of their boundaries are briefly discussed and con-
tinual analogs are constructed for comparison with the
Euclidean metric. The present study is restricted to the sim-
plest model: simultaneous nucleation and the same growth

PHYSICAL REVIEW B 76, 085430 (2007)

<4=p Neighbors in E-metric but not in Q-metric
<€ Neighbors in Q-metric but not in E-metric

FIG. 14. The change of neighbors in passing from the £ metric
to Q metric.

law for all the nuclei. This is warranted by analytical calcu-
lations possible in this case. The dependence of the free
boundary length on radius is shown to be sensitive to the
metric. Also, for some nuclei of the population, neighbors
are changed with the change of metric. A surprising result is
the invariance of the area distribution of Voronoi domains.
Generally, the area is believed to be a more appropriate
quantity for describing the kinetics of birth-growth pro-
cesses. Here, we face the situation when the boundary length
is a more sensitive characteristic. This argues in favor of
complementarity of these two quantities in exploring various
aspects of these many-sided processes. Where analytical cal-
culations are possible, numerical results are in a reasonable
agreement with them, which justifies the extension of the
approach to more realistic but analytically intractable cases.
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