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Second-harmonic generation from surfaces and thin films can be described by up to three nonlinear expan-
sion coefficients, which are associated with the quadratic combinations of the p- and s-polarized components
of the fundamental beam and specific to the measured signal. It has been shown that the relative complex
values of the coefficients can be uniquely determined by using a quarter-wave-plate to continuously vary the
state of polarization of the fundamental beam [J. J. Maki, M. Kauranen, T. Verbiest, and A. Persoons, Phys.
Rev. B 55, 5021 (1997)]. The proof is based on a specific and experimentally convenient initial state of
polarization before the wave plate and on the assumption of the most general experimental situation where all
three coefficients are nonvanishing, which implies that the sample or the experimental setup is chiral. We show
both experimentally and theoretically that, surprisingly, the traditional experimental configuration fails in
yielding unique values in a more specific, but common, achiral case. We identify new initial states of polar-
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ization that allow the coefficients to be uniquely determined even in the achiral case.
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I. INTRODUCTION

Techniques based on second-order nonlinear optical pro-
cesses such as second-harmonic generation (SHG) are attrac-
tive tools to study interfaces, surfaces, and thin films.! This
feature arises from the fact that, within the electric-dipole
approximation, second-order processes are forbidden in bulk
media with inversion symmetry. However, they are allowed
at surfaces where the symmetry is necessarily broken.

The proper quantity to describe SHG is the susceptibility
tensor, which is directly associated with the macroscopic
structure of the material. Accurate determination of the sus-
ceptibility tensor components is important for both the char-
acterization of new materials and fundamental studies of sur-
face and interface effects. However, the tensor components
are not accessible directly from experimental measurements.
Instead, in a surface geometry (Fig. 1), the intensity of any
SHG signal from the nonlinear surface layer can be ex-
pressed in the general form?

PO = |fE} + gE; + hE,E,|*, (1)

where E, and E; are the p- and s-polarized (parallel and
perpendicular to the plane of incidence, respectively) com-
ponents of the beam at fundamental frequency, and the ex-
pansion coefficients f, g, and h are complex valued. The
expansion coefficients are linear combinations of several
components of the susceptibility tensor and also depend on
the experimental geometry and the linear optical properties
of the material. Equation (1) is completely general and ap-
plicable to surface-type samples of any symmetry as long as
the changes in the polarizations of the fields due to linear
properties of the sample can be neglected.? The equation also
shows that the second-harmonic signal does not depend on
the overall phase of the coefficients but only on their relative
phases. Nevertheless, the expansion coefficients are the
quantities which can be directly determined from experimen-
tal measurements.

The expansion coefficients can be determined by modu-
lating the state of polarization of the fundamental beam.?*-!!
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Furthermore, it is commonly believed that the relative com-
plex values of the coefficients can be uniquely determined by
using a continuously rotating quarter-wave-plate for the po-
larization modulation.’ This result has been proven for the
most general case where all the three expansion coefficients
are simultaneously present, i.e., when the sample>*%-3 or the
experimental setup®'? is chiral. In addition, the detailed
proof of Ref. 5 is based on the assumption that the initial
beam is p polarized before the quarter-wave-plate. This
choice for the initial polarization is convenient in practice,
because p polarization is easy to align in the laboratory. Be-
cause of the generality of the situation, one would expect the
proof to hold for arbitrary samples, i.e., also for achiral situ-
ations. Achiral samples are still by far the most common
cases encountered in surface and thin-film nonlinear optics.

In this paper, we show both experimentally and theoreti-
cally that the uniqueness proof of Ref. 5 is limited to chiral
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FIG. 1. Geometry of surface or thin-film second-harmonic gen-
eration. E(w) is the electric field vector of the fundamental beam
incident on the sample, while R(2w) and T(2w) are the field vectors
of the SHG beams in the reflected and transmitted directions, re-
spectively. The fields are most naturally divided into p and s com-
ponents (parallel and normal to the plane of incidence, respec-
tively). The coordinate system xyz associated with the sample is
also shown.
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FIG. 2. Geometry for measuring the susceptibility tensor com-
ponents by second-harmonic generation. QWP, zero-order quarter-
wave-plate; L, 50 cm focal-length lens; VP, variable-angle polar-
izer; F, filter; and PMT, photomultiplier tube.

cases and is therefore not valid for achiral cases. We also
show that the uniqueness can be recovered by properly
choosing the initial polarization of the fundamental field be-
fore the quarter-wave-plate.

II. EXPERIMENTAL DETAILS AND MODEL DATA

An achiral sample is commonly encountered for the cases
of thin organic films that consist of achiral molecules that are
isotropically distributed in the plane of the sample (C.,, sym-
metry). Furthermore, the experimental geometry is also
achiral when p- or s-polarized SHG light, not their combina-
tion, is detected.’~!? In such a case, where both the sample
and setup are achiral, the p-polarized SHG signal is de-
scribed by only the expansion coefficients f and g and the
s-polarized signal by #, i.e., Ref. 10,

LMC=|fE; + gE]|%, )

B =|hEE|*. (3)

It is evident that Eq. (3) provides no information about the
relative values of the expansion coefficients. However, the
intensity of the p-polarized second-harmonic signal de-
scribed by Eq. (2) depends on the relative values of the ex-
pansion coefficients f and g.

Our experimental setup for surface second-harmonic gen-
eration is shown in Fig. 2. Infrared radiation from a Nd:YAG
(yttrium aluminum garnet) laser (1064 nm, 0.15 mJ, 60 ps,
1000 Hz) is the source of fundamental light for second-
harmonic generation. The beam is applied to the sample at an
incident angle of 45°. A 50 cm focal-length lens is used to
make the beam weakly focused to a spot size of approxi-
mately 0.5 mm at the sample to achieve sufficient separation
of its reflections from the front and back surfaces of the glass
substrate. The polarization state of the beam is first cleaned
with a variable-angle calcite Glan polarizer (extinction ratio
~4Xx107) to define the polarization of the fundamental
beam, such as p-, s-, and p=s-polarized light, and then
modulated by rotating a zero-order quarter-wave-plate
(QWP). We refer to the beam before (after) the QWP as the
initial (incident) beam. A long wavelength pass filter before
the sample blocks the SHG light generated by the preceding
optical components. The SHG components of the transmitted
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FIG. 3. Normalized p-polarized second-harmonic signal for
p-polarized initial light. The circles are the original experimental
data; the solid and dashed lines are the fit curves with different
initial values of the fit coefficients. Note that the two fits cannot be
resolved because they overlap.

and reflected beams are isolated with short wavelength pass
filters and 532 nm interference filters and detected with a
photomultiplier tubes (PMTs). Analyzers before the PMTs
are used to detect the p-polarized component of the second-
harmonic signal.

In our experiments, we use Z-type Langmuir-Blodgett
films of terthiophene-vinylbenzoate whose structure has been
described earlier.!® The films belong to the symmetry group
C.,- Our first measurements are performed using the tradi-
tional configuration where the initial fundamental beam be-
fore the quarter-wave-plate is p polarized. The result for the
transmitted second-harmonic signal and its fits to Eq. (2) are
shown in Fig. 3. In addition, the relative fitted values of the
expansion coefficients f and g are shown in Table L.

The results shown in Fig. 3 and Table I indicate that the
experimental results can be fitted equally well with two com-
pletely different sets of relative values of the fit coefficients.
The expansion coefficients obtained from the measurements
are therefore not unique. In addition, the disagreement is
substantial, because the two sets of fit coefficients differ by
more than one order of magnitude in value. The present re-
sults are therefore contradictory with the uniqueness proof of
Ref. 5. However, the proof is based on the assumption that
all three expansion coefficients f, g, and & are nonvanishing,
whereas i vanishes for the present case. Therefore, the ex-
isting contradiction may arise from the subtle difference be-
tween the theory behind the proof and the present experi-

TABLE I. Fitted relative values of the expansion coefficients f
and g for p-polarized second-harmonic detection from the measured
experimental data obtained by using p-polarized initial light. The
subscripts 1 and 2 denote the real and imaginary parts of the coef-
ficients, respectively. The coefficient f is normalized to unity.

Initial values Fitted values (f=1)

81=0.1 21=0.1423
g2=0.1 g2=—00072
g1=2 g1=1.8577
g,=0.1 £,=—0.0072
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FIG. 4. (a) Preparation of the polarization state of the initial
fundamental beam with a quarter-wave plate. (b) Definition of the

rotation angle 6,,, of QWP with respect to p and § directions.

ment. We will next proceed to investigate whether this is the
case.

III. THEORY

We take the fundamental laser beam as a plane wave but
allow the possibility that its initial linear polarization before
the quarter-wave-plate is arbitrary (Fig. 4). We therefore ex-
press the electric field amplitude of the laser beam in terms
of its p- and s-polarized components as

I laserp lasery
ECT=E D+ ECS, (4)
where p and § are the polarization unit vectors. After passing
through the quarter-wave-plate, the beam incident on the
sample is of the form

E=Ep+ES, (5)

where the p and s components are

E Eluser
|:EP j| = T|:Eimer\| ? (6)

and the Jones matrix for a quarter-wave-plate'*

1 |1-icos26,, -—isin26,,
T=—F . ) , (7)
V2L —isin26,, 1+icos26,,
where 6, is the rotation angle of the quarter-wave-plate

measured as the angle between the fast axis of the quarter-
wave-plate and the p direction.

Equation (1) shows that the second-harmonic signal does
not depend on the overall phase of the parameters but only
on the relative phase among them. Therefore, we take the
expansion coefficients to be of completely general forms f
=f,e'® with f; >0 and g=(g,+ig,)e’?. These forms make the
overall phase of the expansion coefficients explicit and the
subscripts 1 and 2 denote the real and imaginary parts of
coefficients, respectively. After using these forms of the ex-
pansion coefficients and Egs. (5)—(7), we find from Eq. (2)
that the intensity of the p-polarized SHG signal can always
be expanded as a Fourier series of the angle 6,,, of the wave
plate as’
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PG = gy + >, [a,, cos(2m

m=1

ewp) + bm Sin(zm wp)] (8)

Note that the Fourier coefficients are uniquely defined.
Therefore, the uniqueness of the relative values of the expan-
sion coefficients depends on whether they can be uniquely
solved from the Fourier coefficients.’

We first consider the traditional case where the initial
beam before the wave plate is p-polarized [EI‘“”—I and
E"“*"=0 in Eq. (4)]. The nonvanishing Fourier ‘coefficients
are then found to be

19

ap= 32 (81 +82) 6f181’ (9a)
1
ap = Zfng’ (9b)
3 1 1
ar=ofi-gEi+ e+ fign, (9¢)
1
az=-— Zflgz, (9d)
Lo 1T 5, 5 1
a4=3_2f1+§(81+82)—1_6f181~ (%e)

By solving Egs. (92)—(9e), the solutions for the expansion
coefficients are found to be

f1= iV2(12+8a4, (10)
_ 2_ 2
_fx INf = 2ayft - 4a? an
1 f 9’
1
4a
8= fl (12)
1

It is obvious that only one solution for the expansion coeffi-
cient f, in Eq. (10) satisfies the requirement f; >0. In spite
of this requirement, it is clear that the real part of expansion
coefficient g is not unique. This indicates that the use of a

p-polarized initial beam does not give unique values of the

expansion coefficients in the achiral case. This result ex-
plains the two equally good fits in our model data. Further-
more, it shows that the earlier result of Ref. 5 about the
uniqueness is limited to chiral cases.

However, unique determination of the expansion coeffi-
cients is very important to obtain reliable values of the com-
ponents of susceptibility tensor for a nonlinear optical mate-
rial. We next proceed to investigate whether the coefficients
can be determined uniquely using different choices of the
initial polarization. We will consider the most obvious cases
of s-, p+s-, and p—s initial polarizations.

When the initial beam is s polarized, the Fourier coeffi-
cients are found to be
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3 19 3
ao=§f%+3_2(g%+g§)—l_6f181, (13a)
1
01=Zf182’ (13b)
1 3 1
az=—§f%+§(g%+3§)+1f1g1, (13c)
1
‘13=—Zf182s (13d)
L, 1, o, 1
a4=3_2f1+3_2(g1+82)—1_6f181- (13e)

By combining and solving Egs. (13a)—(13e), we first obtain
four solutions for f,

fi== \/Zaz +40a, £ 8\'/4a2a4 + léaﬁ - a%. (14)

Under the requirement that f; >0, we find the final solution
for the expansion coefficients as

fl = \/2612 + 40614 =+ 8V/4a2a4 + 16ai - a%, (15)
2a, - 24a, + f;
g = #, (16)
2fy
4(11
=, (17)
fi

As a consequence, the expansion coefficients are still not

uniquely determined when the initial beam is s polarized.
When the initial fundamental beam is taken to be

(p+s)-polarized light [Ei,‘””=E§”“’r=l— in Eq. (4)], the Fou-

\2
rier coefficients are

9 1
aO=3_2(f%+g%+g§)_Ef1gl’ (18a)
1
ay=-— Zfng’ (18b)
1
azz_aflgl’ (18¢c)
1
az= Zfnga (18d)
=BG cfign (18
32 16
1
by=(fi-gi- 8- (181)

From these equations, the solution for the coefficient f is
first found to be
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fi= £\2by £ 2\b2 + a2 + 4dl. (19)

It is evident that the only solution that fulfills the require-
ment f;>0 is then

£i=\20,+ 202 + 2+ 4d2, (20)
2612
gi=—" (21)
A
4(13
g =—. (22)
A

The results indicate that the real and imaginary parts of the
expansion coefficient g can also be uniquely determined un-
der the use of a combination of p- and s-polarized light as
initial light.

When the initial light is (p—s) polarized (i.e., Eﬁ,“mzé
and Ei“’e’=—é), we find the Fourier coefficients
W= =B -fe. (%)
32 16
1
ay=- Zflgz’ (23b)
1
a=- 5f181’ (23¢)
1
as= L figs. (23d)
a=-Rrg e (23
32 16
1
by= (= fi+gi+8)- (230)
The solution for the expansion coefficient f; is now
fi= i\/— 2b212\/b§+a§+4a§, (24)
and final solutions that fulfill the requirement f; >0 are
fr=N=2b, + 262 + 2+ 4, (25)
2(12
g1=—"", (26)
fi
4a3
g&H=—". (27)
A

The above results can be summarized by the requirement
that it is necessary to use a combination of p- and s-polarized
initial light before the quarter-wave-plate in order to obtain
unique relative values of the expansion coefficients f and g
when the sample and setup are achiral.
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TABLE II. Fitted relative values of the expansion coefficients f
and g for p-polarized second-harmonic detection under the use of
p-, s-, (p+s)-, and (p—s)-polarized light as an initial beam. The
coefficient f is normalized to unity. The correct and mutually agree-

0k ’ N N L pslinitial be. E, ) X p-s.itial beam-
0 90 180 270 360 0 90 180 270 360
rotation angle of quarter-wave plate (degrees)

FIG. 5. Normalized p-polarized second-harmonic signals for p-,
s-, p+s-, and p—s-polarized initial lights. The circles are the origi-
nal experimental data; the solid and dashed lines are fit curves with
different initial values of the fit coefficients.

IV. EXPERIMENTAL VERIFICATION

To test the validity of the theory, we use a variable-angle
polarizer before the quarter-wave-plate to obtain different
initial polarizations. The results for p, s, p+s, and p—s initial
polarizations are shown in Fig. 5, respectively. In addition,
the fitted values of the expansion coefficients f and g are
shown in Table II.

Table II indicates that the fitted values agree well with the
theoretical analysis for all the four different cases of the ini-
tial polarization. In particular, the p and s initial polarizations
lead to two equally good fits, i.e., the coefficients cannot be
determined uniquely. The p+s and p—s initial polarizations,
on the other hand, lead to unique expansion coefficients. We
found that the fitted values of the expansion coefficients for
p- and s-polarized initial beams are dependent on the initial
values, while they are independent of the initial values for
the case of a combination of p and s polarization initial
beam. Furthermore, the unique and correct values obtained
from all the four measurements are close to each other. This
also suggests that a more reliable solution could be obtained
by combining results for a number of different choices of the
initial polarization.

V. CONCLUSION

We have considered the uniqueness of the determination
of the second-order nonlinear optical expansion coefficients
of surfaces and thin films by a technique based on continu-
ous modulation of the state of polarization of the fundamen-
tal beam by a quarter-wave-plate. We have shown that the
commonly used technique where the initial polarization be-

z ing values are indicated by boldface. Note that the imaginary parts
féo I p initial beam | are essentially vanishing as expected for the present sample.

g 1 o

g Polarization of

% initial beam Initial values Fitted values (f=1)

2 g1=0.1 g1=0.1358
2,=0.1 2,=0.0042
g1=2 21=1.8642
2,=0.1 2,=0.0042

s 21=0.1 £1=-0.1976
g,=0.1 2,=0.0107
gl=2 g1=0.1417
g2=0.1 g2=00055

p+s Arbitrary 21=0.1460

£,=0.0052

p—s Arbitrary 21=0.1412

£,=0.0039

fore the quarter-wave-plate is p does not lead to unique val-
ues of the expansion coefficients for achiral cases, i.e., when
only f and g coefficients are present. The earlier proof of the
uniqueness is therefore limited to chiral cases where all the
three coefficients f, g, and & contribute. To overcome this
problem, we have extended the study to other choices of the
initial polarization. The result is that the relative values of
expansion coefficients f and g for achiral cases can be
uniquely determined when the initial beam consists of a su-
perposition between the p- and s-polarized components, the
most natural choices being p+s polarizations.

The theoretical predictions were verified in an experiment
using an achiral and isotropic thin film of nonlinear mol-
ecules deposited on a substrate. Furthermore, they suggest
that the reliability of the values of the expansion coefficients
could be further improved by combining results from mea-
surements where different initial polarizations were used.
The possibility of obtaining unique values of the expansion
coefficient is a prerequisite for any subsequent determination
of the components of the nonlinear susceptibility tensor.
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