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We present a theoretical study on the orbital magnetism in multilayer graphenes within the effective mass
approximation. The Hamiltonian and thus susceptibility can be decomposed into contributions from sub-
systems equivalent to monolayer or bilayer graphene. The monolayer-type subband exists only in odd layers
and exhibits a delta-function susceptibility at �F=0. The bilayer-type subband appearing in every layer number
gives a singular structure in the vicinity of �F=0 due to the trigonal warping as well as a logarithmic tail away
from �F=0. The integral of the susceptibility over energy is approximately given only by the layer number.
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I. INTRODUCTION

Recently, unconventional electronic properties of monoc-
rystalline graphenes attracts much attention motivated by ex-
perimental fabrication,1–3 although they were already the
subject of theoretical study prior to the fabrication.4–13

Multilayer films which contain more than two layers can also
be synthesized, and various phenomena depending on the
layer number have been reported.2,14,15 In this paper, we
present a theoretical study on the orbital magnetism in
multilayer graphenes.

The electronic structure of the monolayer graphene is
quite different from conventional metals because the conduc-
tion and valence bands touch at K and K� points in the Bril-
louin zone, around which the dispersion becomes linear like
a relativistic particle. In multilayer graphenes, the interlayer
coupling makes a complex structure around the band touch-
ing. The electronic properties of graphene bilayer were theo-
retically studied for the band structure16,17 and the transport
properties.18–20 For few-layered graphenes of more than two
stacks, the electronic structure is investigated theoretically in
a k ·p approximation,21 a density functional calculation,22

and a tight-binding model.23,24 On the experimental side, the
band structures of graphenes from one to four layers were
recently measured using angle-resolved photoemission
spectroscopy.15

The orbital magnetism in graphene-based systems was
first studied for a monolayer as a simple model to explain the
large diamagnetism of graphite.4 It was found that the sus-
ceptibility becomes highly diamagnetic at �=0 �band touch-
ing point� even though the density of states vanishes there.
The calculation was extended to graphite25,26 and to few-
layered graphenes as a model of graphite intercalation
compounds.27–29 The Fermi surface of the graphite is known
to be trigonally warped around the band touching point25 and
the effect of the warping on magnetization was discussed
within the perturbational approach.26 Recently, the disorder
effects on the magnetic oscillation30,32 and on the
susceptibility31,32 were studied for the monolayer graphene.

Here, we present a systematic study on the orbital mag-
netism for multilayer graphenes with arbitrary layer numbers
in the effective mass approximation. We show that the
Hamiltonian of a multilayer graphene can be decomposed

into those equivalent to monolayer or bilayer, which allows
us to study the dependence of the susceptibility on layer
numbers. We take the trigonal warping effect into the calcu-
lation and show that the fine structure around zero energy
gives rise to singular magnetic properties.

We introduce the model Hamiltonian and its decomposi-
tion into subsystems in Sec. II and present the calculation of
the magnetization in Sec. III. The discussion and summary
are given in Sec. IV.

II. FORMULATION

We consider a multilayer graphene composed of N layers
of a carbon hexagonal network, which are arranged in the AB
�Bernal� stacking, as shown in Fig. 1. A unit cell contains Aj
and Bj atoms on the layer j=1, . . . ,N. For convenience, we
divide carbon atoms into two groups as

Group I: B1,A2,B3, . . . , �1�

Group II: A1,B2,A3, . . . , �2�

The atoms of group I are arranged along vertical columns
normal to the layer plane, while those in group II are above
or below the center of hexagons in the neighboring layers.
The lattice constant within a layer is given by a=0.246 nm
and the distance between adjacent layers c0 /2=0.334 nm.

The system can be described by a k ·p Hamiltonian
closely related to a three-dimensional �3D� graphite
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FIG. 1. Atomic structure of multilayer graphene with AB �Ber-
nal� stacking.
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model.25,33–35 The low energy spectrum is given by the states
in the vicinity of K and K� points in the Brillouin zone. Let
�Aj� and �Bj� be the Bloch functions at the K point, corre-
sponding to the A and B sublattices, respectively, of layer j.
For monolayer graphene, the Hamiltonian around K point for
the basis �A1�, �B1� is written as4,5,13,36,37

H0 = � 0 �k−

�k+ 0
� , �3�

where k±=kx± iky and

� =
�3

2
a�0, �4�

with �0 being the nearest-neighbor coupling in a single layer.
We cite the experimental estimation �0�3.16 eV.39

For the interlayer coupling, we include parameters �1 and
�3, following the Hamiltonian previously derived for a bi-
layer graphene.16,18 Here, �1 represents the coupling between
vertically neighboring atoms in group I �A2k↔B2k±1�, and �3

between group II atoms on neighboring layers �B2k↔A2k±1�,
which are estimated to �1�0.39 eV �Ref. 40� and �3
�0.315 eV.41 If we look at the interaction between layers 1
and 2, the matrix element 	A2 �H �B1�, corresponding to the
vertical bond, becomes �1 not accompanying an in-plane
Bloch number. The matrix element 	B2 �H �A1� is written as
��k+ with

�� =
�3

2
a�3, �5�

similar to the intralayer term 	A1 �H �B1�, as the in-plane vec-
tor components from A1 to B2 are identical to those from B1
to A1.

Accordingly, if the basis is taken as �A1� , �B1� ;
�A2� , �B2� ; . . . ; �AN� , �BN�, the Hamiltonian for the multilayer
graphene around the K point becomes

H =

H0 V

V† H0 V†

V H0 V

� � �

� , �6�

with

V = � 0 ��k+

�1 0
� . �7�

The effective Hamiltonian for K� is obtained by exchanging
k+ and k− and replacing �1 with −�1. The derivation of the
effective Hamiltonian based on a tight-binding model is pre-
sented in Appendix A.

We show in the following that the Hamiltonian matrix
�Eq. �6�
 can be block diagonalized into smaller matrices by
choosing an appropriate basis independent of k. First, we
arrange the basis in the order of group I and then group II,
i.e., �B1� , �A2� , �B3� , . . . ; �A1� , �B2� , �A3� , . . .. Then, Eq. �6� be-
comes

H = �H11 H12

H12
† H22

� , �8�

with Hij being N�N matrices defined as

H11 = �1

0 1

1 0 1

� � �

1 0 1

1 0
� , �9�

H12 = �

k+

k−

k+

�

k±

� , �10�

H22 = ��

0 k+

k− 0 k−

k+ 0 k+

� � �

k� 0 k�

k± 0

� , �11�

where the upper and lower signs correspond to odd and even
N, respectively.

If we set k=0 �the K point�, H12 and H22 vanish. Remain-
ing H11 is equivalent to the Hamiltonian of a one-
dimensional tight-binding chain with the nearest-neighbor
coupling �1, giving a set of eigenenergies

�m = �1�N,m,

�N,m = 2 sin
m�

2�N + 1�
, �12�

with

m = − �N − 1�,− �N − 3�, . . . ,N − 1. �13�

Here, m is an odd integer when the layer number N is even,
while m is even when N is odd, and therefore m=0 is al-
lowed only for odd N.

The corresponding wave function is explicitly written as

�m�j� =� 2

N + 1
sin� �− m + N + 1��

2�N + 1�
j� , �14�

where �m�j� represents the amplitudes at �B1� , �A2� , �B3� , . . .
and satisfies

�
j

�m�j��m��j� = 	mm�. �15�

We have a relation between the wave functions �m and �−m
as

�−m�j� = �m�j��− 1� j+1. �16�

MIKITO KOSHINO AND TSUNEYA ANDO PHYSICAL REVIEW B 76, 085425 �2007�

085425-2



Now, we construct the basis by assigning �m�j� to the
atoms of groups I and II as

�
m
�I�� = �m�1��B1� + �m�2��A2� + �m�3��B3� + ¯ ,

�
m
�II�� = �m�1��A1� + �m�2��B2� + �m�3��A3� + ¯ �17�

and attempt to rewrite the Hamiltonian �Eq. �6�
. The matrix
elements within group I come from H11 and become diago-
nal as is obvious from the definition,

	
m�
�I� �H�
m

�I�� = 	m,m��1�N,m. �18�

Off-diagonal elements between �
m
�I�� and �


m�
�II�� are written

from H12 as

	
m�
�II��H�
m

�I�� = �kx�
j=1

N

�m�
* �j��m�j� + i�ky�

j=1

N

�m�
* �j��m�j�

��− 1� j = ��kx	m,m� − iky	m,−m�� . �19�

In the second equality, we used relation �16� and orthogonal-
ity �15�. Lastly, the matrix elements within group II are ob-
tained from H22 as

	
m�
�II��H�
m

�II�� = ��kx�
j=1

N−1

��m�
* �j + 1��m�j� + �m�

* �j��m�j + 1�


+ ��iky�
j=1

N−1

�− 1� j��m�
* �j + 1��m�j�

− �m�
* �j��m�j + 1�


= ���N,m�kx	m,m� + iky	m,−m�� . �20�

The Hamiltonian is thus closed in the subspace
��
m

�I�� , �
−m
�I� � , �
m

�II�� , �
−m
�II��� for each �m�. Particularly, m=0 is

special in that the subspace is spanned with only two bases
��
0

�II�� , �
0
�I���, while this is absent in even-layer graphenes.

The submatrix is written as

Hm=0 = � 0 �k−

�k+ 0
� , �21�

which is independent of �1 and �3 and equivalent to the
Hamiltonian of the monolayer graphene.

For m�0, we rearrange the basis as

���
m
�II�� + �
−m

�II���/�2,��
m
�I�� + �
−m

�I� ��/�2,

��
m
�I�� − �
−m

�I� ��/�2,��
m
�II�� − �
−m

�II���/�2� , �22�

where we take m�0 without loss of generality. We then
obtain

Hm =

0 �k− 0 ���k+

�k+ 0 ��1 0

0 ��1 0 �k−

���k− 0 �k+ 0
� , �23�

with �=�N,m. This is equivalent to the Hamiltonian of a bi-
layer graphene except that �1 and �����3� are multiplied by
�.

Thus, the Hamiltonian of odd-layered graphene is com-
posed of one monolayer-type and �N−1� /2 bilayer-type sub-
bands, while that of even-layered graphene is composed of
N /2 bilayers but no monolayer. The similar idea was previ-
ously proposed for trilayer graphene without �3, where it was
shown that the energy spectrum becomes a superposition of
that for a monolayer and for a bilayer.21 Here, we have ex-
tended this argument to decomposition of the Hamiltonian
matrix and to systems with arbitrary number of layers includ-
ing the trigonal warping. We also note that k independence
of the basis becomes important in the following sections,
since this enables us to write the magnetization as a sum over
contributions from sub-Hamiltonians, which are indepen-
dently calculated.

Many other parameters were introduced for the descrip-
tion of the band structure of bulk graphite.25,26,35,38 The pa-
rameter �4 couples group I and II atoms sitting on the neigh-
boring layers, such as Aj↔Aj+1 or Bj↔Bj+1. This parameter
does not change the qualitative feature of the low-energy
spectrum and therefore is not important.25 Parameters �2 and
�5 represent vertical hoppings between the second-nearest
neighboring layers for group II and I atoms, respectively.
Further, �6 is an energy difference between the group I and II
atoms due to difference in the chemical environment. Inclu-
sion of these parameters �2, �5, and �6 causes opening up of
small energy gaps between the conduction and the valence
bands. However, these gaps do not play important roles in
the magnetization, as will be discussed in the following.

In 3D limit, N→
, the eigenstate becomes a superposi-
tion of opposite traveling waves with ±kz along the stacking
direction. The relation between the index m and �kz� is ob-
tained by comparing the eigenenergy of H11, Eq. �12�, to that
of the 3D limit, 2�1 cos�kzc0 /2�, as

�kz�c0

2
=

�− m + N + 1��
2�N + 1�

. �24�

The band structure of the Hamiltonian �Eq. �23�
 can be
obtained by replacing �1 by ��1 and �3 by ��3 in that of the
bilayer.16 We plot in Fig. 2 the dispersion for �=2, which has
the maximum trigonal warping. The middle two subbands
stick together at �=0, while the remaining two bands appear
only in the energy range ������1. If we neglect �3, the
effective Hamiltonian for ������1 becomes

H =
�2

2m*� 0 k−
2

k+
2 0

� , �25�

which works for the reduced basis

���
m
�II�� + �
−m

�II���/�2,��
m
�II�� − �
−m

�II���/�2� , �26�

giving a rotationally symmetric dispersion with the effective
mass,

m* =
�2���1�

2�2 . �27�

The term proportional to �3 is responsible for the trigonal
warping effect, which is most remarkable around the band
sticking point �=0. Let us define
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�trig =
1

4
���3

�0
�2

���1� . �28�

In the energy range �����trig, the Fermi line splits into four
separated pockets, one center part and three leg parts located
trigonally, which shrink into four Fermi points linearly with
�→0. We note that �trig is proportional to �3 and thus very
sensitive to �, while the energy of the higher-band bottom,
��1, behaves linear to �. The maximum of � approaches 2 as
the layer number increases, so that �trig becomes as large as
2��3 /�0�2�1�8 meV.

Figure 3 shows the band structures around the K point
along the kx axis in the multilayer graphenes with N=2, 3, 4,
and 5 and �3 /�0=0.1. The lists of �N,m are given as

N = 1: ��1,0� = �0� ,

N = 2: ��2,1� = �1� ,

N = 3: ��3,0,�3,2� = �0,�2� ,

N = 4: ��4,1,�4,3� = ���5 − 1�/2,��5 + 1�/2� ,

N = 5: ��5,0,�5,2,�5,4� = �0,1,�3� . �29�

While we have included �0, �1, and �3 in our graphene
model, the extra parameter neglected here may make some
changes in the electronic structure. The energy band of a
few-layered graphene has been calculated in the density
functional calculation22 and the tight-binding model.23,24

Those results differ from ours, mainly in that the band cen-
ters relatively shift depending on m and that a narrow gap
opens, where the conduction and valence bands �within a
single m� touch and where different bands �with different
m’s� cross. Gaps are attributed to effects of couplings such as
�2, �5, and �6, which are mentioned above. In terms of the
effective mass Hamiltonian �Eq. �6�
, those parameters ap-

pear as matrix elements without being multiplied by the
wave number kx and ky, since they are associated with a
hopping along the z axis or a diagonal element. Thus, they do
not vanish at k=0 �K or K�� and lift the degeneracy to open
a gap. Apart from the gap opening, the main feature of the
trigonal warping is well described in the present model. It
should also be mentioned that an energy gap is induced by an
electric field perpendicular to the layer stacking
direction,15,17,21,42 where the electrostatic potential appears as
matrix elements independent of kx and ky as well.

III. MAGNETISM OF MULTILAYER GRAPHENES

For the magnetic susceptibility, we use the general expres-
sion based on the linear response theory,44

� = Im �
−





d�f���F�� + i0� , �30�

with
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F�z� = −
gvgs

2�L2

e2

�2�
k

tr�GHxGHyGHxGHy� , �31�

where gv=2 is the valley degeneracy, gs=2 is the spin de-
generacy, and L is the system size. We defined here Hx
=�H /�kx, Hy =�H /�ky, G�z�= �z−H�−1, and f���= �1
+e��−��/kBT
−1, with the chemical potential � and the tempera-
ture T. The formula valid also for the Hamiltonian �Eq. �25�

is discussed in Appendix B. By integration by parts in Eq.
�30�, we have

��T,�� = �
−





d��−
�f

��
���0,�� , �32�

showing that the susceptibility at nonzero temperature is
written in terms of that at zero temperature. The integration
of � over � is independent of T.

We include the impurity scattering effects by introducing
a self-energy −i� in the Green’s function, i.e., i0 in Eq. �30�
is replaced by i�. Here, we simply assume the scattering rate
�=� /2� to be independent of energy.

Using the decomposition of the Hamiltonian, the magne-
tization of the N-layered graphene can be written as a sum-
mation over each sub-Hamiltonian. The contribution from
m=0 is exactly equivalent to the susceptibility of a mono-
layer graphene,4,26 which becomes at zero temperature and in
the clean limit,

�mono = −
gvgs

6�

e2�2

�2 	��F� . �33�

Thus, the odd-layer graphene always has a large diamagnetic
peak at zero energy. The delta-function dependence of �mono
agrees with the general property of the susceptibility in sys-
tems described by the k-linear Hamiltonian, as discussed in
Sec. IV.

In the presence of disorder, the delta function is broad-
ened into a Lorentzian with width � and the same area,31 i.e.,

�mono = −
gvgs

6�

e2�2

�2

�

���F
2 + �2�

, �34�

within the present model assuming a constant �. The shape
of the peak itself depends on the model disorder and we may
have some different manner of broadening in a more realistic
treatment. In fact, in the monolayer graphene, it was shown
in a self-consistent Born approximation8 that � has a much
sharper peak at �=0 than the Lorentzian and also a large tail
proportional to ���−1 for ��0.32 In multilayer cases, effects
of disorder are more complicated because of the presence of
other bands. This problem is out of the scope of this work.

The susceptibility of a bilayer graphene described by the
Hamiltonian �Eq. �23�
 was analytically calculated for the
case of �3=0.28 The expression for T=0 and �=0 is given by

� = −
gvgs

4�

e2�2

�2

����1 − ��F��
��1

�− ln
��F�
��1

−
1

3
� , �35�

with �=�N,m, where ��t� is a step function defined by

��t� = �1 �t � 0�
0 �t � 0� .

� �36�

The susceptibility diverges logarithmically toward �F=0, be-
comes slightly positive for ��F�� ���1, and vanishes for
��F����1, where the higher subband enters. In the presence
of disorder, the logarithmic peak is broadened approximately
as �ln ��F

2 +�2.
The integration of � in Eq. �35� over the Fermi energy

becomes −�gvgs /3���e2�2 /�2� independent of �1, which is
exactly twice as large as that of the monolayer graphene �Eq.
�33�
. This arises due to the fact that the integral of � over
the Fermi energy is determined only by terms of the Hamil-
tonian matrix, proportional to kx or ky, and is independent of
terms independent of kx and ky. A proof of this important
property is presented in Sec. IV.

If we include the extra band parameter �3, the low-energy
structure of the susceptibility �Eq. �35�
 drastically changes
due to the fine structure around the band touching point. To
demonstrate this, we numerically calculate � for the Hamil-
tonian �Eq. �23�
 in the case of the maximum trigonal warp-
ing, �N,m=2. Figure 4 shows the susceptibility as a function
of �F with several values of �. We take �3 /�1=0.1, where
the Fermi line splitting occurs in lower than �trig=0.02�1.
For reference, we also plot the result without the trigonal
warping, �3=0, as a dashed curve.
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When we go down from high energy in the top panel �the
smallest ��, the susceptibility gradually deviates downward
from the logarithmic dependence of �3=0 and takes a sharp
dip at �=�trig. Remarkably, we have a strong peak centered
on �=0, which is regarded as the effect of the linear disper-
sions around zero energy. The integral of � over the Fermi
energy is almost constant −�gvgs /3���e2�2 /�2�, as discussed
in Sec. IV, showing that the reduction in higher energies
compensates the zero-energy peak. As � becomes larger, the
peak begins to cancel with the reduction in high energy and
the effect of �3 eventually disappears when ���trig. In con-
trast, the peak associated with the monolayer band m=0 be-
comes broad in � but never vanishes, as shown in Eq. �34�.

Figure 5 shows ���F� of graphenes with layer number
from N=1 to 5 with several disorder strengths �. For N�3,
insets show the contributions from each of bilayer-type
bands. The result of odd N always contains a monolayerlike
component, which is exactly the same as N=1 and thus omit-
ted in the inset. We can see that odd-layered graphenes ex-
hibit a particularly large peak, which mainly comes from the
monolayertype band. A bilayerlike component contains a
central peak due to the trigonal warping and a logarithmic
tail in high energies, in accordance with Fig. 4.

The layer-number dependence of the susceptibility in
multilayer graphene has been studied for the graphite inter-
calation compounds.29 This system can be viewed as inde-
pendent multilayer graphenes bound by the intercalant lay-
ers, but the intercalants give a strong electrostatic potential
along the stacking direction, leading to the charge redistribu-
tion among different layers.43 As a result, the band structure
and the magnetization are considerably different from our
system with a uniform electrostatic potential in the vertical
direction.

In isolated multilayer graphenes realized in recent experi-
ments, we may have some potential difference among layers
depending on the experimental environment, and this can
also be tuned by the external electric field as mentioned. In

Sec. IV, we will show that, as long as the potential is not too
strong to alter the entire band structure, this does not change
the qualitative feature of the magnetization.

IV. DISCUSSION

The zero-energy peak in the bilayer-type subband origi-
nates in Dirac-like dispersions appearing around four Fermi
points. Using the known results in a bilayer,16 we can show
that the sequence of the Landau levels in the center pocket
approximately becomes �=sgn�n���2�N,m�� / l���n� with N
=0,1 ,2 , . . ., and those in the three leg parts �=sgn�n�
���6�N,m�� / l���n�, where l=�� / �eB� is the magnetic
length. Since the susceptibility is determined solely by
Landau-level energies, we compare this to the monolayer’s
sequence �=sgn�n���2� / l���n� and obtain � from each
pocket by substituting � in Eq. �33�. We end up with

� = 10��N,m�3

�0
�2

�mono, �37�

except for a constant coming from the integral over the lower
energy states. The zero-energy peak in Fig. 4 fits well to the
Lorentzian with width � and the area of the delta function
�Eq. �37�
, as long as �� ��trig.

The factor attached to �mono becomes as large as 0.4 when
�N,m=2 and �3 /�0=0.1, and therefore the singularity is not
too small compared with that of the monolayer. For
N-layered graphene, a simple relation,

�
�N,m�0

��N,m�2 = N − 1, �38�

leads to the summation of Eq. �37� over all the bilayer-type
subbands,
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� = 10�N − 1���3

�0
�2

�mono � 0.1�N − 1��mono. �39�

In Fig. 5, the peak height becomes a little larger than this
estimation due to mixing with the logarithmic tail.

The delta-function dependence of � in monolayer
graphene is a characteristic property common to general
k-linear Hamiltonian. This can be shown using the scaling
argument. We consider a Hamiltonian H which contains only
terms linear in kx and ky. We change the energy and wave
number scales by an arbitrary factor � as

� = ��̃, ki = �k̃i, �40�

then the Hamiltonian becomes formally identical under this
transformation, since the coefficients of k-linear terms in the
Hamiltonian remain unchanged.

Going back to the definition of � in Eqs. �30� and �31�,
F�z� is scaled as

F�z� =
1

�2 F̃�z̃� . �41�

The function F should depend only on the coefficients of
k-linear terms and natural constants and thus is invariant un-

der the scale transformation, namely, we have F= F̃. With
Eq. �41�, we come up with an equation,

F�z� =
1

�2F� z

�
� , �42�

which is satisfied solely by

F�z� =
A

z2 . �43�

A constant A is related to the integral of the susceptibility
���F� over the Fermi energy �F. From Eq. �30�, we generally
have

�
−





����d� = − Im �
−





d��F�� + i0� =
1

2i
�

C

dzzF�z� ,

�44�

where the integral path C is a circle with an infinite radius
with counterclockwise direction. In the present system, Eq.
�43� immediately gives the integral as �A. This is an integral
of the real function ���� and thus is real. Substituting Eq.
�43� with real A in Eq. �30�, we finally obtain the explicit
form of the zero-temperature susceptibility as

���F� = − Im
A

�F + i0
= �A	��F� . �45�

As discussed in Sec. II, the band structure in more realis-
tic models has an energy gap around zero energy due to extra
band parameters neglected in the present model. It was also
mentioned that the external electric field along the stacking
direction opens an energy gap. One might think that the gap
would strongly reduce the large diamagnetism at the band
touching point. However, we can show within the effective
mass approximation that the integral of susceptibility over �F

is independent of any kind of matrix elements without kx and
ky, which are responsible for gap opening. This is obvious
from the general expression �Eq. �44�
; even if the Hamil-
tonian contains k-independent terms in addition to k-linear
terms, they can be safely neglected in the integral as they are
infinitesimal compared to �z� on the path C. In the effective
mass model of the multilayer graphene, we immediately con-
clude that the integral is independent of �1, �2, �5, �6, and
any other parameters independent of the wave vector. Thus,
we expect that the large diamagnetic peak is still visible even
when a gap opens, while it may get broadened in energy by
the gap width. The diamagnetism in narrow gap systems is
known in bismuth45 and recently studied for the gapped
Dirac fermion.46 Any further discussion requires a direct
computation of the magnetization including extra param-
eters, but we leave this for the future study.

The integral of the susceptibility can be calculated by the
Hamiltonian with the k-independent terms dropped and thus
depends only on the band parameters associated with k-linear
terms. In our model �Eq. �6�
, the value is mainly determined
by the dominant parameter �0, while �3 gives a correction at
most of the order of ��3 /�0�2�0.01. The correction must be
the second order in �3 because we can change �3 to −�3 in
the Hamiltonian with a unitary transformation multiplying
the base on layer j by �−1� j. As a result, the integral of ���F�
for the bilayer-type Hamiltonian becomes almost twice as
large as the monolayer’s, and the summation over all the
subsystems in N-layered graphene becomes approximately N
times as large as the monolayer’s.

It is instructive to derive the susceptibility starting from
the Landau-level energies. In the monolayer graphene, the
thermodynamic function � is given by

� = − kBTgvgs
1

2�l2�
n

g��n����n� , �46�

���� = ln�1 + exp���� − ��
� , �47�

where �=1/kBT, �n=sgn�n���B
��n� with ��B=�2� / l, and

g��� a cutoff function which gradually decays to zero for
�����c with cutoff energy �c. We can rewrite this as

� = − kBTgvgs
1

2�l2 �
n=0


 �1 −
1

2
	n0�H�nh� , �48�

where

H�x� = g��x�ln�1 + 2 exp����cosh���x� + exp�2���
 ,

�49�

with h= ���B�2.
Expanding the integral

�
0




H�x�dx = �
0

h/2

H�x�dx + �
j=1


 �
−h/2

h/2

H�x + hj�dx , �50�

with respect to h, we immediately have

ORBITAL DIAMAGNETISM IN MULTILAYER GRAPHENES:… PHYSICAL REVIEW B 76, 085425 �2007�

085425-7



h�1

2
H�0� + �

j=1




H�x + hj�� = �
0




H�x�dx −
1

12
h2�H��0�

+
1

2
H��
�� , �51�

up to the second order in h or in B. Then, we have

� = �0 + �� , �52�

where �0 is the thermodynamic function in the absence of a
magnetic field and

�� =
1

12

gvgs���B�2

2�l2

� exp�� �
�1 + exp�� �
2

=
gvgs�

2

12�l4 �
−



 �−
�f���

��
�	���d� . �53�

Applying the relation ��=�B2 /2, we obtain �mono given by
Eq. �33� at zero temperature.

We should note that the thermodynamic function in the
absence of a magnetic field is given by

�0 = − kBTgvgs
1

2�l2�
n
�

−1/2

1/2

g��n+t����n+t�dt . �54�

For contributions of states with �n��1, we can expand the
above with respect to t and have to the lowest order in the
field strength B,

�� =
gvgs

2�l2

1

96
���B�4 �

�n��0

��n
−3f��n� − �n

−2f���n�


�
gvgs

2�l2

���B�2

48
lim

	→+0
��

	




��−2f��� − �−1f����
d�

− �
−


−	

��−2f��� − �−1f�����d��
= −

gvgs

2�l2

1

24
���B�2�

−



 �−
�f���
��

�	���d� . �55�

This gives a “paramagnetic” susceptibility. For n=0, on the
other hand, the change in the thermodynamic potential is
calculated as

�� =
gvgs

2�l2

1

8
���B�2�

−



 �−
�f���
��

�	���d� . �56�

The sum of these two contribution is the same as Eq. �53�, as
is expected.

In the bilayer graphene, the Landau level with �3=0 in
the region �����1 can be calculated from the Hamiltonian
�Eq. �25�
 as16

�sn = s��c
�n�n + 1� , �57�

where �c=eB /m* with m* defined in Eq. �27�, s= ±1, and
n=0,1 ,2 , . . .. We have doubly degenerate levels at zero en-
ergy �n=0, s= ±1�, while the spacing gradually becomes
constant as n goes higher. In a similar but more complicated
manner, the susceptibility is calculated as

� = − � e�

2m*�2gvgsm
*

2��2 �
−





g���ln
�c

e���
�−

�f

��
�d� , �58�

which correctly describes the logarithmic divergence around
zero energy in the rigorous expression �Eq. �35�
, as ex-
pected. A constant term independent of energy is missing in
Eq. �58� since this depends on all the low-energy bands
which are neglected in this calculation.

We can understand the logarithmic dependence intuitively
by looking into the Landau level sequence. The Landau-level
energy can be expanded for large n as

�sn = s��c��n +
1

2
� −

1

8
�n +

1

2
�−1

+ ¯ � , �59�

where the first term gives the constant interval, and the sec-
ond gives a shift toward zero energy, which is rewritten as
−���c�2 / �8�sn�. For �F�0, for example, the change in the
total energy due to the energy shift is calculated as

�E = −
gvgsm

*

2��2 �
−�c

�F ���c�2

8�
d� =

B2

2

gvgs

4�

e2�2

�2��1
ln

�c

��F�
,

�60�

giving the ln��F� dependence of the susceptibility.
For the Hamiltonian �Eq. �25�
 containing terms propor-

tional to k±
2, the susceptibility formula �Eq. �30�
 with Eq.

�31� is no longer valid, since this was originally derived for
systems in which x commutes with Hy and Hyy =�2H /�ky

2.
The modified formula should be

F�z� = −
gvgs

4�L2

e2

�2�
k

tr�GHxGHyGHxGHy

− 2GHxGHxGHyGHy −
1

2
GHyGHxxGHy

−
1

2
GHxGHyyGHx� . �61�

This is derived in Appendix B. A scaling argument similar to
the case of the monolayer graphene then gives F�z��1/z.
This again leads to the logarithmic dependence of � on the
Fermi energy, which coincides with Eq. �58� apart from a
constant.

The experimental measurements of the magnetization of
two-dimensional electron systems were performed on the
semiconductor heterostructures by using the superconducting
quantum interference device47,48 or using the torque
magnetometer.49–51 We expect that the detection of the
graphene magnetism is also feasible with those techniques.

We have studied the orbital magnetism of multilayer
graphene with the Bernal stacking in the effective mass ap-
proximation. We have demonstrated that the Hamiltonian
and thus the susceptibility can be decomposed into those
equivalent to the monolayer or bilayer bands. The monolay-
erlike band exists only in odd-layered graphenes and gives a
strong diamagnetic peak at �F=0. The bilayerlike bands al-
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ways exist and present a strong diamagnetism in the vicinity
of zero energy, unless the fine band structure caused by �3 is
destroyed by the disorder.
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APPENDIX A: EFFECTIVE MASS HAMILTONIAN

We derive in the following the effective mass equation
�Eq. �6�
 describing states in the vicinity of K point in a
multilayer graphene by starting from the one-orbital tight-
binding model. The following is nothing but a straightfor-
ward extension of the monolayer case.13,36 In a tight-binding
model, the wave function is written as

��r� = �
j
��

RAj

�Aj
��Aj

�
�r − RAj
� + �

RBj

�Bj
��Bj

�
�r − RBj
�� ,

�A1�

where j=1,2 , . . . ,N is the layer index, and 
�r� is the wave
function of the pz orbital of a carbon atom located at the
origin, as a function of three-dimensional position r. RX is
the three-dimensional position of the site X, and �X is a two-
dimensional component of RX, parallel to the layer.

In the model including hopping parameters �0, �1, and �3
defined in Sec. II, Schrödinger’s equation can be written as
follows. For odd j,

��Aj
��Aj

� = − �0�
l=1

3

�Bj
��Aj

− �l� + �3�
l=1

3

��Bj+1
��Aj

+ �l�

+ �Bj−1
��Aj

+ �l�
 , �A2�

��Bj
��Bj

� = − �0�
l=1

3

�Aj
��Bj

+ �l� + �1��Aj+1
��Bj

� + �Aj−1
��Bj

�
 .

�A3�

For even j,

��Aj
��Aj

� = − �0�
l=1

3

�Bj
��Aj

− �l� + �1��Bj+1
��Aj

� + �Bj−1
��Aj

�
 ,

�A4�

��Bj
��Bj

� = − �0�
l=1

3

�Aj
��Bj

+ �l� + �3�
l=1

3

��Aj+1
��Bj

− �l�

+ �Aj−1
��Bj

− �l�
 . �A5�

Here, we introduced the vectors from the B site to the nearest
neighboring A sites as �1=a�0,1 /�3�, �2=a�−1/2 ,−1/2�3�,
and �3=a�1/2 ,−1/2�3�, and we set �A0

=�B0
=�AN+1

=�BN+1
=0.

The states around the K point can be expressed in terms of
the slowly varying envelope functions FAj

,FBj
as

�Aj
��Aj

� = CAj
eiK·�AjFAj

��Aj
� , �A6�

�Bj
��Bj

� = CBj
eiK·�BjFBj

��Bj
� , �A7�

where K= �2� /a��1/3 ,1 /�3�, and CAj
, CBj

are phase factors
defined by

CAj
= − �−1, CBj

= 1 �j odd� , �A8�

CAj
= 1, CBj

= − � �j even� , �A9�

with �=exp�2�i /3�. When �l is much smaller than the
length scale of the envelope functions, we have

�X�� ± �l� � eiK·��±�l��1 ± �l ·
�

��
�FX��� , �A10�

with X=Aj or Bj.
By substituing Eq. �A7� with �A10� into Schrödinger’s

equations �A3� and �A5�, we have for odd j,

�FAj
��� = �k−FBj

��� + ��k+�FBj−1
��� + FBj+1

���
 ,

�FBj
��� = �k+FAj

��� + �1�FAj−1
��� + FAj+1

���
 , �A11�

and for even j,

�FAj
��� = �k−FBj

��� + �1�FBj−1
��� + FBj+1

���
 ,

�FBj
��� = �k+FAj

��� + ��k−�FAj−1
��� + FAj+1

���
 ,

�A12�

where k±=kx± iky with kx= 1
i

�
�x , ky = 1

i
�
�y . We also used an

identity

�
l=1

3

e−iK·�l�1 �l
x �l

y� =
�3

2
a�−1�0 i 1� . �A13�

If we rewrite this set of equations into the matrix form for a
vector �FA1

,FB1
,FA2

,FB2
, . . . �, we finally obtain the Hamil-

tonian matrix �Eq. �6�
. The effective Hamiltonian for an-
other valley K�= �2� /a��2/3 ,0� can be derived in a parallel
way, while � and �−1 are exchanged in Eq. �A9�.

APPENDIX B: SUSCEPTIBILITY FORMULA

The susceptibility formula �Eq. �30�
 with �Eq. �31�
 has
been derived for the Luttinger-Kohn representation of the
Bloch function52 and therefore in systems described by the
Hamiltonian consisting of the free electron kinetic energy

�2k̂2 /2m and terms linear in k̂.44 We derive here the suscep-
tibility formula which is valid in the general Hamiltonian

H�k̂�, which includes k-square terms in off-diagonal matrix
elements as well as k-linear terms. We shall confine our-
selves to the case without electron-electron interaction for
simplicity.
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Consider the system described by the Schrödinger equa-
tion

H�k̂ +
e

�
A�r�,r����r� = �����r� , �B1�

with k̂=−i� and A being the vector potential. The thermo-
dynamic function � is given by

� = − kBTgs
1

V�
�

ln�1 + exp���� − ���
�

= − kBTgs
1

V
� d��−

1

�
�Im Tr

1

� − H + i0

�ln�1 + exp���� − ��
� , �B2�

where gs is the spin degeneracy and V is the system volume.
We consider an isotropic system and assume the vector

potential A= �0,A�, with

A�x� =
B

2iq
�eiqx − e−iqx�, B�x� = B cos�qx� , �B3�

where we are going to take the long wavelength limit q
→0, for which the field causes the response the same as that
due to a spatially uniform magnetic field. In the presence of

this vector potential, the Hamiltonian changes from H�k̂� to

H�k̂+�k�, with �k= �0,�k�, where �k= �e /��A�x�. The
Hamiltonian can be expanded as

H�k̂ + �k� = H0 +
1

2
��kHy + Hy�k� +

1

2
��k�2Hyy ,

�B4�

where H0�H�k�, Hy ��H0 /�k̂y, and Hyy ��2H0 /�k̂y
2. Note

that, in general, k-square Hamiltonian �k does not commute
with Hy but does with Hyy.

Expanding the Hamiltonian up to the second order in the
strength of the magnetic field B, we have

Tr� 1

� − H
−

1

� − H0
� =

1

�2iql2�2

�

��
Tr� 1

� − H0
Hyy

+
1

� − Hq/2
Hy

1

� − H−q/2
Hy� ,

�B5�

where l=�� /eB is the magnetic length, Hq=H�k̂+q�, q

= �q ,0�, and we assumed that the system is translational in-
variant �after the configuration average in the presence of
impurities�.

We then expand Hq up to the second order in q to have

Tr� 1

� − H
−

1

� − H0
� =

1

16l4

�

��
Tr�GHxGHyGHxGHy

− 2GHxGHxGHyGHy

−
1

2
GHyGHxxGHy

−
1

2
GHxGHyyGHx� , �B6�

with G= ��−H0�−1. This immediately gives the change of the
thermodynamic potential ��=��B�−��0� with Eq. �B2�.
The susceptibility � is obtained by a relation ��
=−�1/2��	B�x�2�= �1/4��B2 as

� =
gs

4V

e2

�2 � d�f����−
1

�
�Im Tr�GHxGHyGHxGHy

− 2GHxGHxGHyGHy −
1

2
GHyGHxxGHy

−
1

2
GHxGHyyGHx� . �B7�

This gives Eq. �30� with Eq. �61� for the multilayer
graphene.

When �k commutes with Hy, we can simplify the for-
mula by noting in Eq. �B5� that

Tr� 1

� − Hq/2
Hy

1

� − H−q/2
Hy� = Tr� 1

� − Hq
Hy

1

� − H0
Hy�

= Tr� 1

� − H0
Hy

1

� − H−q
Hy� .

�B8�

The susceptibility becomes

� =
gs

2V

e2

�2 � d�f����−
1

�
�Im Tr�GHxGHyGHxGHy� ,

�B9�

giving Eq. �30� with Eq. �31�.
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