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A three-terminal Aharonov-Bohm ring with a quantum dot embedded in one arm is investigated using the
exactly solvable formalism of the tight-binding model. We show that by tuning the degree of coupling to the
third terminal, the zero of the Fano resonance in the transmission moves off the real-energy axis and the phase
jump of � at the resonance diminishes and softens. This behavior is illustrated with a simple model involving
the zero and pole of the Fano resonance. The manifestation of the Fano resonance on the conductance, due to
the unique interplay between the magnetic flux through the ring and coupling to the third terminal, is discussed.
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Electron transmission through quantum dots �QD� and
Aharonov-Bohm �AB� rings has shown a rich resonance
structure, which includes Fano resonances1 when the QD is
embedded in one arm of the AB ring. The Fano resonance is
a manifestation of interference between the localized quasi-
bound states of the QD in one arm and the continuum states
in the other arm, characterized by both complete transmis-
sion and complete reflection. This characteristic of resonance
structure �a zero-pole pair� can be controlled by changing the
confinement parameters of the QD. Transmission through a
QD embedded in an AB ring remains phase coherent, as
indicated by the visibility of the AB oscillations.2 The intrin-
sic phase of the QD is significant in its relation to the AB
oscillations when the QD is embedded in the AB ring, and it
has experimentally been seen to exhibit interesting phase
jumps of � in a two-terminal system when the conductance
of the AB ring reaches a peak.3,4 Aharony et al. show that
this “phase rigidity” can be broken in physical AB rings with
several electron paths around the ring. In this case, each reso-
nance on the QD couples to a different wave function on the
ring �associated with a different enclosed flux�, leading to
different periodicities of the AB oscillations.5

Theoretical analysis of these systems6 has provided some
explanation for the phase behavior that has been observed in
experiments. In a two-terminal device �single-path device�,
the Onsager relations7 of time-reversal symmetry and current
conservation �unitarity� constrain the transmission phase to
values of 0 or �. However, if the two-terminal AB ring is
“opened” by allowing current to flow out through additional
terminals, the unitarity condition is broken and it becomes
possible to extract meaningful phase information about the
QD.8–10 Experiments with open rings demonstrate a gradual,
rather than abrupt, phase change across the transmission
resonances, as measured by the phase of the AB
oscillations.11 In particular, Schuster et al. produced a four-
terminal interferometer in an AlGaAs/GaAs heterostructure
which showed smooth phase transitions.3 Other mechanisms,
which have been postulated to contribute to the disruption of
unitarity, include QD interlevel thermal excitation and inelas-
tic electron-phonon interactions.12

In this article we analyze a three-terminal interferometer
with an embedded QD in one arm of the AB ring. By em-
ploying the exactly solvable formalism of the tight-binding
model, the electron transmission �conductance� through the
ring and the transmission phase are studied by modulating
the coupling, VD, of the QD to a third output terminal. As VD
is increased from zero �creating an open ring�, the zero of the
Fano resonance produced by the QD and the AB ring leaves
the real-energy axis and the abrupt phase jump of � is seen
to soften. Other recent research on the mesoscopic Fano ef-
fect shows that for the case of imperfect coupling between
the arms of the AB interferometer, the transmission consists
of mixed modes which inhibit the complete destructive inter-
ference characteristic of the Fano resonance zero.13 In the
research presented here, however, we focus on the case of
complete coupling between the AB arms. A simple analytical
model of the Fano resonances shows naturally how the phase
transition across the resonance peak softens in the case
where the transmission zero is no longer real, but complex.
In contrast, the transmission to the third output terminal
shows a simple Breit-Wigner �BW� resonance with the cor-
responding transmission phase near the BW resonance
changing by � progressively more smoothly for VD�0. We
also show the magnetic flux dependence of the transmission
�conductance� and the resistance for an open ring with a
fixed coupling VD. Experiments have shown a slight flux
dependence of the transmission resonances and the phase of
the AB oscillations.5,14 However, this effect is insignificant if
the area of the QD is small compared to the ring area �as
assumed here�, or for the case of weak fields.15 Finally, we
emphasize that for values of magnetic flux which position
the Fano zero in the positive complex-energy half plane, the
zero in the transmission can be returned to the real-energy
axis by increasing VD �effecting complete blockage of trans-
mission into either terminal�. This shows the unique control
over resonance features offered in an open ring by the com-
bination of phase effects arising from both magnetic flux and
coupling to a third terminal.

The general structure studied in our calculations is a
three-terminal AB ring with magnetic flux through the ring
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and an embedded QD, sketched schematically in Fig. 1
where relevant parameters are defined. By discretizing the
system spatially with lattice constant a, and denoting the
wave function on site n by �n, the Schrödinger equation in
the tight-binding approximation can be written as
−�Vn,m�m+�n�n=E�n. Here, the sum runs over the nearest
neighbors of n, E is the electron energy, and �n is the site
energy. �In our calculations, the site energies �n are set to
zero for all sites except for the QD at n=0 which has site
energy �D.� The parameters Vn,m are overlap integrals �or
coupling parameters� involving the overlap of the single site,
atomiclike wave functions from sites m and n with the
single-site potential of site n. In the homogeneous leads, the
coupling parameters are all set to V0=1.0, which we use
throughout the discussion as a unit of energy. In the presence
of the magnetic flux �, a phase difference between the path
through the QD and the path through the reference arm is
produced.16 Therefore, we choose a gauge in which the cou-
pling parameter for each segment of the lower arm is modi-
fied as V1→V1e±i�, and the reference arm coupling param-
eter becomes Vre

±2i� �“�” for counterclockwise transits
around the ring and “�” for clockwise transits�. The phase �
is related to the magnetic flux � by 2�=�� /�0, where
�0=h /e is the elementary flux quantum.

Let us consider an incoming wave function only from
terminal 1, with transmitted waves through the ring into the
other terminals:

�n = ein	 + r11e
−in	, n 
 − 1,

�n = t21e
in	, n � 1,

�m = t31e
im	, m � 1, �1�

with 	=ka. Here, k is the wave vector that is connected with
the energy by the dispersion relation for the Bloch states,
E=−2V0 cos ka; t21 and t31 are the transmission amplitudes
from terminal 1 into terminal 2 and 3, respectively; and r11 is
the reflection amplitude back to terminal 1. Applying the
Schrödinger equation to the three sites around the AB ring
and also to site m=1 of the third terminal, we obtain the

following matrix equation for the complex transmission am-
plitudes:

� V0 − Vre
−i�2�−	� − V1V0ei�/VD

− Vre
i�2�+	� V0 − V1V0e−i�/VD

− V1e−i��−	� − V1ei��+	� − �VDei	 + �E − �D�V0/VD�
�

��r11

t21

t31
� = � − V0

Vre
i�2�−	�

V1e−i��+	� � . �2�

Inverting the matrix on the left side of Eq. �2�, we can find
the unknown reflection and transmission amplitudes: r11, t21,
and t31. In the same way we can find the other elements of
the scattering matrix: r22, t12, t32 and r33, t13, t23 when incom-
ing waves are chosen from terminals 2 and 3, respectively.
The transmission amplitudes for an electron from terminal
�channel� j into terminal �channel� i may be written in the
form17

tij��� =
Nij���
D���

, �3�

where we have

N21��� = 2iV0 sin 	e2i��Vr�V0�E − �D� + ei	VD
2 � − e−4i�V0V1

2� ,

�4�

N31��� = − 2iV0V1VD sin 	e−i��V0 + ei�4�+	�Vr� , �5�

D��� = ei	V0
2�2V1

2 + VD
2 � − e3i	Vr

2VD
2 + V0�V0

2 − e2i	Vr
2��E

− �D� + 2e2i	V0VrV1
2 cos�4�� , �6�

with symmetry conditions

D��� = D�− ��, Nij��� = Nji�− ��, N13��� = N23��� .

�7�

Thus, we have all the transmission coefficients Tij���
= �tji����2, which obey the property

Tij��� = Tji�− �� . �8�

In order to find the nonlocal conductance of the open ring,
we use the Buttiker equations:18

Ii =
2e

h 	�1 − Rii�i − �
j�i

Tij j
 �i, j = 1,2,3� , �9�

where Rij���= �rji����2 are the reflection coefficients �which
may be eliminated from the set of equations by using current
conservation: 1−Rii=� j�i Tij�, and i are the chemical po-
tentials of the reservoirs �terminals�. The factor of 2 in Eq.
�9� stems from the identical contribution of both electron
spin states. Here, it is noteworthy that we consider a typical
situation in which two terminals �1 and 2� are used for injec-
tion of current and measurements of the conductance G12,12
�see Büttiker’s notations in Ref. 18�, whereas the potential
drop �which is characterized by the resistance R12,13� is mea-
sured only between terminals 1 and 3. For our purpose, we
set the current between terminals 1 and 2 as I� I1=−I2.

n=1n=-1

m=1

n=0

n=2n=-2

Terminal 3
T31

V0V0
V1 V1

VDQuantum dot

Vr Terminal 2
T21Φ

(flux)

εD

Terminal 1

FIG. 1. �Color online� Schematic of the three-terminal interfer-
ometer with a QD embedded in one of the arms. In addition to the
magnetic flux � threading the AB ring, the relevant coupling pa-
rameters between sites are defined: the confinement V1 of the QD,
coupling VD to the third terminal, and coupling Vr through the ref-
erence arm of the ring.
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Thus, terminal 3 represents an ideal probe that draws no net
current �I3=0�. Solving the set of Eq. �9�, we find the coef-
ficient

G12,12 =
2e2

h
�T21 +

T23T31

T31 + T32
 �10�

between the current I and the bias U12= �1−2� /e. The po-
tential drop U13 between the terminals 1 and 3 is defined by
the resistance R12,13, U13=R12,13I, where

R12,13 =
h

2e2� T32

T21T31 + T23T31 + T32T21
 . �11�

Below, we present results for the following parameters of the
system: V1=0.3 �QD confinement�, Vr=0.3 �the coupling
through the reference arm of the AB ring�, and �D=0 �the
site energy of the QD which positions the resonance in the
center of the allowed energy band�.

Now, we study the effect of coupling to the third output
terminal on the transmission T21= �t21�2 through the AB ring
in the absence of the magnetic flux. Here, the transmission
amplitude t21 can be calculated from Eq. �3� as

t21 =
2i sin 	�V1

2 − e4i�Vr�E − �D + ei	VD
2 /V0��

e2i	VrV1
2�e6i� + e−2i��/V0 + e2i���2V1

2 + VD
2 �ei	 − e3i	Vr

2VD
2 /V0

2 + �E − �D��V0 − e2i	Vr
2/V0��

. �12�

The behavior of the transmission zero and phase in a three-
terminal interferometer as a function of energy for various
values of coupling to the third terminal �VD=0.1 �solid�,
VD=0.3 �dotted�, and VD=0.6 �dashed�� is shown in Fig. 2.
Unlike a two-terminal closed AB ring with QD’s
�VD=0�,19,20 it is seen from Fig. 2�a� that in an open ring
�VD�0� the Fano resonance peak does not reach unity be-
cause of energy loss due to the outgoing electrons into the
third terminal. In addition, as VD increases, the Fano zero
�obtained from N21=0 in Eq. �4�� shifts progressively further

off the real-energy axis into the complex-energy half plane.
The Fano zero can be returned to the real energy axis at
discrete values of magnetic flux �see below� as long as VD is
less than a critical value. This flexible control over the trans-
mission resonance features is unavailable in a closed, two-
terminal interferometer.

In Fig. 2�b�, we show the transmission phase as a function
of energy for different values of VD. The transmission phase
�21, which can be calculated from Eq. �12� as �21
=tan−1�Im�t21� /Re�t21��, no longer changes abruptly by � at
the resonance, as for VD=0, but is shown to progressively
soften and to smoothly change by less than � as VD in-
creases. We attribute this smearing of the abrupt phase jump
of � to the fact that current, which flows to the third termi-
nal, breaks unitarity and disrupts the interference effects due
to repeated reflections of the electrons from the junctions and
back through the ring.

In order to illustrate the transmission phase changing from
an abrupt jump to a smooth transition of less than � in a
three-terminal AB ring, we calculate the phase using a
simple analytical model which is based on the properties of
the Fano resonance. In the vicinity of the Fano resonance in
the transmission versus electron energy for an AB ring with
an embedded QD, the transmission amplitude has the form:21

t21 � tbg� E − Ẽ0

E − ER + i�
 . �13�

Here, Ẽ0 is the position of the transmission zero and ER gives
the energy of the pole. The width of the resonance � indi-
cates how far the pole is off the real-energy axis, and tbg
represents any background contribution to the amplitude. Be-
cause the Fano transmission zero lies off the real-energy axis

for an open ring, we can write Ẽ0 in a complex form, Ẽ0
=E0− i�. The transmission amplitude can now be written as
the product of two complex terms,

�2 �1 0 1 2
E

�0.6

�0.4

�0.2

0

0.2

0.4

Α
21
�Π
�

�b�

�2 �1 0 1 2

0.2

0.4

0.6

0.8

1

T
21

�a�

FIG. 2. Transmission T21 and transmission phase �21 as a func-
tion of energy for different values of VD=0.1 �solid curve�, VD

=0.3 �dotted curve�, and VD=0.6 �dashed curve�. �a� As VD in-
creases, the Fano resonance no longer reaches unity and the Fano
zero lifts off the real-energy axis. �b� The phase jump of � at the
transmission resonance diminishes and softens as the ring is opened
with coupling to the third terminal.
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t21 � tbg
�E − E0 + i���E − ER − i��

�E − ER�2 + �2 = �t21�ei	tot, �14�

where 	tot is the combined transmission phase from the two
complex terms. By separating Eq. �14� into its real and
imaginary parts, we obtain an expression for 	tot as

	tot = arctan	 �E − ER�� − �E − E0��
�E − ER��E − E0� + ��


 . �15�

In Eq. �15� for 	tot, there is no sharp phase jump at a particu-
lar value of energy, as exists at E=ER for a two-terminal
closed ring in which the Fano zero is on the real-energy axis
��=0�. In Fig. 3, we show plots of 	tot versus E for various
coupling parameters VD to the third terminal. It is clearly
seen that as VD is increased from zero, the abrupt phase jump
of � at the resonance softens and diminishes in magnitude.
This indicates that the Onsager relations �unitarity and time
reversal symmetry� are not valid for an open AB interferom-
eter with an embedded QD.8,22

Since the Fano zero and resonance pole in the transmis-
sion can be tuned by the magnetic flux � threading the AB
ring, we investigate the magnetic flux dependence of trans-
mission T21 for a fixed VD. In Fig. 4, the total transmission as
a function of electron energy �the left column� and contour
plots of the transmission amplitude in the complex-energy
plane �the right column� with fixed VD=0.3 are shown for
different magnetic flux values: � /�0=0.0, 0.25, 0.548, 0.75,
and 0.952 �top to bottom�. As the magnetic flux is increased
from �=0, the Fano zero begins to move on a counterclock-
wise orbit around the Fano pole. At � /�0=0.25, the zero is
positioned directly below the Fano pole in the complex-
energy plane. As � continues to increase, the Fano zero
moves back up towards the real-energy axis and crosses the
axis at � /�0=0.548. When � /�0=0.75, the Fano zero ar-
rives directly above the Fano pole, attaining its most positive
imaginary value. As the flux is further increased towards
� /�0=1.0, the Fano zero again crosses the real-energy axis
at � /�0=0.952 on the way back to its position from which
it started at � /�0=0.

It is interesting to note from Fig. 4 that for a fixed value of
VD, there exist two values of magnetic flux for which the
Fano zero crosses the real-energy axis. By setting Vr�V0�E
−�D�+ei	VD

2 �−e−4i�V0V1
2=0 from Eq. �4�, the analytical ex-

pression for the energy values of the Fano zeros �E0� and the
corresponding normalized magnetic flux values �� /�0� in
terms of the coupling parameter VD can be obtained as

E0 = ±��V1
2V0/Vr�2 − VD

4

V0
2 − VD

2 and

cos	2��1 −
�

�0

 = ±� 1 − �VrVD

2 /V0V1
2�2

1 − VD
4 /�2V0

2 − VD
2 �2 . �16�

Here, it is required that both the real and imaginary parts of
N21 from Eq. �4� be zero. For the parameters used in Fig. 4
�V0=1.0, V1=Vr=0.3, and VD=0.3�, the two Fano zeros are
at E0=−30 and 0.30 when � /�0=0.548 and 0.952, respec-
tively. Notice, however, that there is a critical value of
VD

crit �VD
crit=V1

�V0 /Vr, obtained from requiring E0 to be real

�2 �1 0 1 2
E

0

0.2

0.4

0.6

0.8

Θ t
ot
�Π
�

FIG. 3. Modeled transmission phase 	tot vs energy E for a stan-
dard Fano resonance �solid curve: E0=0.3, �=0.0005, ER=0.04,
�=0.192�, and for modified Fano resonances �dotted curve: E0

=0.3, �=0.1, ER=0.05, �=0.3; dashed curve: E0=0.38, �=0.45,
ER=0.1, �=0.75� based on the approximate positions of the Fano
zeros and poles for VD=0.01,0.3,0.6, respectively. The phase jump
of � at the transmission resonance diminishes and softens as VD

increases.
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FIG. 4. The total transmission, T21, as a function of electron
energy �the left column� and contour plots of the transmission am-
plitude in the complex-energy plane �the right column� with fixed
VD=0.3, for different magnetic flux � /�0=0.0, 0.25, 0.548, 0.75,
and 0.952 �top to bottom�. The Fano zero moves directly downward
and crosses the real-energy axis at VD=VD

crit, shown in the dashed
curve for � /�0=0.75.

JOE, HEDIN, AND SATANIN PHYSICAL REVIEW B 76, 085419 �2007�

085419-4



in Eq. �16��, which is the maximum value of VD for which
there is the possibility of placing the Fano zero on the real-
energy axis at any value of flux. We show in Fig. 4 that the
Fano zero moves directly downward and crosses the real-
energy axis at VD

crit �see the dashed transmission curve for
� /�0=0.75�. When VD�VD

crit, the Fano zero passes into the
negative complex-energy half plane and there is no value of
flux which can bring the Fano zero back to the real-energy
axis.

In contrast to amplitude t21, the cross amplitudes t31 and
t32 do not have zeros in the allowed region of the energy
plane �see Eq. �5�� and hence, the behavior of the amplitudes
near the pole is expected to be similar to that of the ampli-
tudes near a BW resonance. The transmission T31 and the
transmission phase �31 in the absence of magnetic flux for
different coupling parameters, VD=0.1, 0.3, and 0.6, are
shown in Fig. 5 as solid, dotted, and dashed curves, respec-
tively. A simple BW resonance peak in T31, which is less
than unity, can clearly be seen in Fig. 5�a� and the corre-
sponding smooth phase change, �31, near the BW resonance
is depicted in Fig. 5�b�. Notice here that �31 at the resonance
progressively softens as VD increases, but the BW peak near
E�0 has a maximum amplitude at VD=0.5 for the system
parameters used here.

Finally, we investigate the magnetic flux dependence of
the conductance G12,12 and the resistance R12,13 for an open
ring with a fixed VD. In Fig. 6�a�, the conductance G12,12 as a
function of electron energy E with a fixed VD=0.1 is shown
for different values of magnetic flux � /�0=0.0 �solid�, 0.25
�dotted�, and 0.5 �dashed�. As � increases, a transition from
Fano resonance �asymmetry parameter q�0, peak→dip� to
BW resonance and then back to Fano resonance �q�0, dip
→peak� in G12,12 can be observed as a sequence. The Fano

resonance produces a very strong influence on the resistance
R12,13. As shown in Fig. 6�b�, the resistance increases dra-
matically when the electron energy approaches the zero en-
ergy E0 of the Fano resonance. The appearance of the peak in
the resistance near the zero of the Fano resonance is con-
nected with almost full reflection of the electron waves trav-
eling from terminal 1 to terminal 2. This indicates that at this
Fermi energy there is an additional interference resistance in
the circuit region between terminals 1 and 3.

In summary, we have studied the Fano zero and transmis-
sion phase for a QD embedded in one arm of a three-terminal
AB ring using the exactly solvable tight-binding formalism.
A variation of the coupling to the third terminal of the AB
ring shifts the zero of the Fano transmission resonance into
the complex-energy plane, and softens the abrupt phase jump
of � at the resonance. A unique interplay between the mag-
netic flux threading the ring and coupling to the third termi-
nal opens up a regime of parameter space in which the Fano
zero can be returned to the real-energy axis. A manifestation
of Fano resonances gives rise to unusual behavior of the
conductance �resistance� of a three-terminal ring as a func-
tion of Fermi energy in the presence of magnetic field. These
results may have applications in further experimental studies
of mesoscopic AB interferometers in which phase and reso-
nance properties continue to be of interest.14,22,23
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grant from the Center for Energy Research, Education, and
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FIG. 5. Transmission T31 and transmission phase �31 as a func-
tion of energy for different values of VD=0.1 �solid curve�, VD

=0.3 �dotted curve�, and VD=0.6 �dashed curve�. �a� The BW reso-
nances, which arise from the fact that the amplitude t31 does not
have zeros in the energy plane, are seen for a variation of VD. �b�
The phase change near the BW resonance softens as VD increases.
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FIG. 6. �a� The conductance G12,12 and �b� the resistance R12,13

are depicted as a function of electron energy with a fixed VD=0.1
for different magnetic flux � /�0=0.0 �solid curve�, 0.25 �dotted
curve�, and 0.5 �dashed curve�. As � increases, the swing from
Fano to BW resonance �or vice versa� appears in the conductance
G12,12, and the resistance R12,13 increases dramatically near the zero
of the Fano resonance.
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