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The electron transport in a four-terminal nanodevice consisting of two crossed nanotubes is investigated in
the framework of the Landauer-Büttiker formalism. The evident formula for the ballistic conductance of the
device is found using a model of crossed conductive cylinders with a point contact between them. Sharp
conductance dips stipulated by resonance scattering on the contact are shown to appear in the conductance of
the first cylinder. The conductance between the cylinders has resonant behavior. The form and the position of
resonant peaks are studied. Our results indicate that the form of asymmetric dips and peaks in the conductance
differs from the well-known Fano line shape �Phys. Rev. 124, 1866 �1961��. We have shown that the maximal
value of the conductance between cylinders does not exceed a unit of the conductance quantum.
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I. INTRODUCTION

Carbon nanotubes are considered as a promising material
for future nanoelectronic engineering due to their unique
physical properties. The quantum coherent transport proper-
ties of carbon nanotubes have been confirmed by experimen-
tal results, indicating that the tube can be considered as a
ballistic conductor at least up to 200 nm.1 Phase coherent
transport and electron interference have been observed in
single-walled2 and multiwalled3 carbon nanotubes. It was
shown that superlattice properties of carbon nanotubes in a
transverse electric field raise new possibilities for developing
optoelectronic devices operating in the terahertz range of
frequencies.4 Recent theoretical studies have shown that
electronic devices together with their metallic interconnects
can, in principle, be fabricated on a single tube.5 Further-
more, nanotubes can operate under a variety of conditions
and are compatible with many other materials and fabrica-
tion techniques. Several promising functional devices based
on carbon nanotubes have been proposed.6 These devices
include metallic wires,7 terahertz range emitters,8 field effect
transistors,9–13 and nanometer-size rectifying diodes.14–17

The design of the integrated electronic circuits implies the
application of many contacted nanotubes. Therefore, trans-
port properties of the contacts between nanotubes are of par-
ticular interest. In the last few years, electron transport in
such contacts has been investigated experimentally.17–20

A number of interesting theoretical models have been
suggested to study physical properties of the contacts.21–27

The transmission through atom-contacted single-walled
carbon nanotubes was calculated within the tight-binding
approach.21 Multiterminal junctions of single-walled carbon
nanotubes were investigated using the classical molecular
dynamics method.22 Tight-binding calculations of the con-
ductance of multiply connected metallic carbon nanotubes
were carried out in Refs. 24 and 25. Parallel and crossed
junctions of single-wall carbon nanotubes were studied in the
framework of the tight-binding approximation.23 Transport
properties of three-terminal carbon nanotube junctions have
been investigated within the scattering matrix approach.27

The differential conductance of several crossed carbon nano-
tubes was calculated using the tight-binding model and the
Green’s function method.26

It has been shown that the conductance through several
multiterminal nanotube junctions exhibits Fano reso-
nances.24–27 This phenomenon emerges from the coherent
interaction of a discrete state and a continuum and was first
discovered by studying the asymmetric peak in helium
spectrum.28 Subsequent theoretical investigations have
shown the occurrence of this effect in numerous meso-
scopic devices, including quantum dots29,30 and quasi-one-
dimensional channels with impurities.31–34 Recently, the
resonances were observed experimentally in the ballistic
conductance of a single-electron transistor35 and a quantum
ring.36 Asymmetric dips and peaks similar to the Fano reso-
nances have been found in the conductance of carbon
nanotubes.3,18,37 The interest to this problem is stipulated by
the possibility of application the phenomenon in high-
sensitivity resonant electronic devices. The resonances lead
to large changes in current intensity in short intervals of volt-
age. This phenomenon may be used in designing of precise
electronic devices.

The necessary condition for the emergence of Fano reso-
nances is the existence of the discrete level in the continuous
spectrum. In the case of carbon nanotube junctions, these
discrete levels were attributed to pentagonal and heptagonal
defects of the honeycomb lattice.24–27 However, the detailed
atomic structure of the multiterminal nanotube junction still
was not studied experimentally. Therefore, the origin of
asymmetric line shapes in the conductance requires further
theoretical investigations, especially in the case of multiwall
carbon nanotubes.

It should be noted that most of theoretical studies of
the electron transport in the junctions were focused on
nanotubes of sufficiently small diameters �about 1–4 nm�.
At the same time, the diameters of tubes used in some
experiments18 were in the range of 25–30 nm. The applica-
tion of the tight-binding approach to this systems is some-
what difficult because it requires considerable amount of
computer resources. Furthermore, physical meaning of the
phenomenon is sometimes smeared in sufficiently accurate
but very complicated models. Thus, it should be useful to
study the electron transport through the contact between two
nanotubes using a simple model which allows exact analyti-
cal solution. The simplest model with the geometry of a
nanotube is a structureless two-dimensional cylindrical sur-
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face. Transport properties of the electron gas on the cylindri-
cal surface have already been studied in the literature.38–42

In particular, this model has been used for analysis of
some electron properties of carbon nanotubes.41,42 Other
interesting systems with cylindrical geometry are rolled
GaAs/AlGaAs heterostructures.43,44

II. HAMILTONIAN

The purpose of the present paper is the theoretical inves-
tigation of the electron transport in a four-terminal nanode-
vice consisting of two crossed nanotubes with a point contact
between them. Each tube is modeled by a conductive cylin-
drical surface of radius rj�j=1,2�. The schematic view of the
device is shown in Fig. 1.

Our first goal is to construct the electron Hamiltonian of
the system. If we ignore the contact between the cylinders,
then the electronic states are described by the unperturbed
Hamiltonian H0=H1 � H2, where H1 and H2 are electron
Hamiltonians in the first and the second cylinder, respec-
tively. In this case, the electron wave function may be rep-
resented in the form of one-column matrix

� = ��1

�2
� . �1�

Since the contact between cylinders is modeled by a single
point, the Hamiltonian H of the whole system is a point
perturbation of the operator H0. To obtain this perturbation,
we use the zero-range potential theory.

We introduce two independent cylindrical coordinate sys-
tems and denote the point on the cylinder by q= �z ,��. Then,
the Hamiltonian Hj has the form

Hj =
pz

2

2mj
+

Lz
2

2mjrj
2 , �2�

where mj is the electron effective mass in the jth nanotube,
and pz and Lz are projections of the momentum and the an-
gular momentum onto the axis of the cylinder. The electron
effective mass depends on the size and chirality of the tube.
For each cylinder, we use its own cylindrical coordinate sys-
tem.

The spectrum of the Hamiltonian Hj is given by the sum
of the discrete part Em

�j�=� jm
2 and the continuous part

pz
2 / �2mj�,

Em,pz

�j� = � jm
2 + pz

2/�2mj� , �3�

where m is the magnetic quantum number and � j
=�2 / �2mjrj

2�. In the case of identical tubes �r1=r2�, we will
omit below the subscript of �.

To obtain the Hamiltonian H of the whole system, we
have to define the point perturbation of the Hamiltonian H0.
For this purpose, we use linear boundary conditions at the
point of the contact. Boundary values for the wave function
� j of the electron in the jth cylinder are determined with the
help of the zero-range potential theory.45–47 The theory
shows that the electron wave function � j�q� has the logarith-
mic singularity in a vicinity of the contact point q0,

� j�q� = − uj ln ��q,q0� + v j + R�q� , �4�

where ��q ,q0� is geodesic distance between the points q and
q0, uj and v j are complex coefficients, and R�q�→0 in the
limit q→q0. A similar method has been used earlier in Refs.
48 and 49.

It is clear that the boundary conditions at the point of
contact are some linear relations between u1, v1, u2, and v2.
The coefficients of the relations are not all independent47

since the Hamiltonian H is Hermitian. Thus, the most general
form of the boundary conditions is given by

v1 − b1u1 = au2,

v2 − b2u2 = a*u1. �5�

Here, the coefficients b1 and b2 determine the strength of the
zero-range potential at the point of contact and a is a dimen-
sionless parameter that is responsible for the coupling of the
wave functions on different cylinders. According to the zero-
range potential theory, parameters bj can be represented in
terms of scattering lengths � j by the relation bj =2 ln � j. It
should be noted that the zero-range potential is attractive and
the strength of the potential decreases with increasing of � j.
The limit � j→� corresponds to the absence of the point
perturbation. We point out that the model of zero-range po-
tential is applicable when the size of the contact is much
smaller than the Fermi wavelength of the electron.

III. TRANSMISSION COEFFICIENTS

In the paper, we investigate the conductance G11 of the
first cylinder and the conductance G21 that is responsible for
the electron transport from the first cylinder to the second
one. According to the Landauer-Büttiker formula, the zero-
temperature conductance Gji can be expressed in terms of
transmission coefficients Tm�m

ji from the state with magnetic
quantum number m in the ith cylinder to the state with m� in
the jth cylinder,

Gji = G0 �
m�m

Tm�m
ji . �6�

Here, G0=e2 /�� is the conductance quantum and the sum is
taken over all states with Em	
, where 
 is the Fermi en-
ergy.

The transmission coefficients are represented via trans-
mission amplitudes tm�m

ji ,

Tube 2

T
ub

e
1
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1a
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FIG. 1. Scheme of the device. Tube 1 lies over tube 2. Rect-
angles 1a, 1b, 2a, and 2b represent electron reservoirs.
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Tm�m
ji =

km�
�j�

km
�i� �tm�m

ji �2.

To determine the amplitudes tm�m
ji , we need a solution of the

Schrödinger equation for the Hamiltonian H. The zero-range
potential theory allows us to represent the solution in terms
of the Green’s function Gj�q ,q� ,E� for the operator Hj,

�1�q� = �m�q� + �1G1�q,q0;E� ,

�2�q� = �2G2�q,q0;E� , �7�

where �m�q�=exp�ikmz+ im�� is an incident wave, and coef-
ficients � j have to be determined from boundary conditions.
The Green’s function Gj�q ,q� ,E� is given by49

Gj�q,q�;E� =
imj

2��2 �
m=−�

�
eikm

�j��z−z��+im��−���

km
�j�r

, �8�

where km
�j�=	2mj�E−Em

�j�� /�, Re km�0, and Im km�0.
Substituting the wave function �7� into Eq. �4�, we obtain

uj =
2��2

mj
� j ,

v j =  j1 + ujQj�E� , �9�

where Qj�E� is Krein’s Q function47 that is the renormalized
Green’s function of the Hamiltonian Hj,

Qj�E� = lim
q→q0


2��2

mj
Gj�q0,q;E� + ln ��q0,q�� .

To simplify our notations, we denote Q̃j�E�=Qj�E�−bj. The

explicit form of Q̃j�E� was found in Ref. 49,

Q̃j�E� =
i

rjk0
�j� + 2�

m=1

� � i

rjkm
�j� −

1

m
� + 2 ln

rj

� j
. �10�

One can see from Eqs. �7� and �8� that the wave function
� j�q� has the following asymptotics at z→�:

� j�q� � �
m�=mmin

mmax

tm�m
ji eik

m�
�j�

z+im��, �11�

where mmin and mmax are minimal and maximal values of the
magnetic quantum number for occupied states. The asymp-
totics of the wave function �1�q� in the first cylinder at z
→−� is given by

�1�q� � eikm
�1�z+im� + �

m�=mmin

mmax

rm�m
11 e−ik

m�
�1�

z+im��,

where rm�m
11 are reflection amplitudes. Elementary but cum-

bersome calculations show that the relation

�
m�=mmin

mmax 
 km�
�1�

km
�1� ��rm�m

11 �2 + �tm�m
11 �2� + 2

km�
�2�

km
�1� �tm�m

21 �2� = 1

is valid for an arbitrary energy E that is the manifestation of
the current conservation law for our system. Here, the factor
2 corresponds to equal probabilities for an electron to pass
from lead 1a to lead 2a or 2b �see Fig. 1�.

Applying boundary conditions �5� to the wave function
�7�, we obtain the following form for the transmission am-
plitudes tm�m

11 :

tm�m
11 �E� = mm� −

iQ̃2

Q̃1Q̃2 − �a�2
. �12�

The transmission coefficients Tm�m
11 are given by

Tm�m
11 �E� =

km�
�1�

km
�1�mm� −

iQ̃2

Q̃1Q̃2 − �a�2
2

. �13�

We note that according to Eq. �10�,

Im Q̃j = �
m=mmin

mmax 1

rjkm
�j� . �14�

Thus, we can express the sum in Landauer’s formula �6� in
terms of the Q function and obtain the following equation for
the conductance G11�
�:

G11�
�
G0

= N�
� −
�Im Q̃1�2�Q̃2�2

�Q̃1Q̃2 − �a�2�2
− 2

�a�2 Im Q̃1 Im Q̃2

�Q̃1Q̃2 − �a�2�2
.

�15�

Here, N�
�=mmax−mmin+1 is the number of states with en-
ergy smaller than 
. It is worth mentioning that the possibil-
ity to represent the conductance in the explicit form is based
on the application of zero-range potentials for modeling the
contacts.

IV. RESULTS AND DISCUSSION

Conductance G11 as a function of the Fermi energy 
 is
presented in Figs. 2–5. If the contact between the cylinders is
absent, then Eq. �15� contains only the first term, and the
dependence G11�
� is steplike. The second term in Eq. �15�
is responsible for the backscattering on the contact point and
the last term is stipulated by the transmission of electrons
from the first nanotube to the second one.

At first, we consider the case of identical tubes �r1=r2 and
�1=�2�. The presence of the zero-range perturbation at the
point of the contact leads to the appearance of virtual levels

Ẽ=ER− i� in the spectrum of the Hamiltonian H. Positions
of the virtual levels are defined by the following equation:

Q̃1�Ẽ�Q̃2�Ẽ� − �a�2 = 0. �16�

The scattering on the virtual levels leads to the appearance of
dips on the dependence G11�
�. If the coupling between the
wave functions on different cylinders is weak ��a��1�, then
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the virtual level Ẽ is situated in the vicinity of the root Ẽ1 of

the equation Q̃1�Ẽ1�=0. The conductance has only one dip
on each plateau in this case. The dip is situated near the point

Re Q̃1�E1�=0. If �1�r1, then the dip is situated near the
right edge of the conductance plateau. With decreasing �1,
the dip shifts to lower energies and disappears, reaching the
left edge of the plateau. There are no dips of the conductance
in the limit of the strong point perturbation �� j �rj� and the
weak interaction between the wave functions ��a��1�. The
dependence G11�
� is monotonic under these conditions
�Fig. 3�.

If the coupling between the wave functions on different
tubes is sufficiently strong �a��1, then additional conduc-
tance minima appear on the graph G11�
� �Fig. 4�. These
minima are stipulated by splitting of the virtual levels due to
the interaction between electron states on different cylinders.
In the case of the strong point perturbation �� j �rj� and the
strong interaction between the wave functions ��a��1�, the
dependence G11�
� contains one dip on each conductance
plateau.

Let us determine the minimal values of the con-

ductance G11�
�. We denote � j =Re Q̃j / Im Q̃j and �

= �a�2 / �Im Q̃1 Im Q̃2��0. Then, we can express the conduc-
tance G21�
� in terms of three real variables �1, �2, and �,

G11�
� = G0
N�
� −
1

1 + f11�
�� , �17�

where

f11�
� =
��1�2 − ��2 + �1

2

1 + �1
2 + 2�

� 0. �18�

One can see from Eq. �17� that the depth of dips equals G0
when f11=0. That is possible only when the interaction be-
tween the tubes is absent �a=0�. Otherwise, the depth of dips
is less than G0.

If the radii of nanotubes are different, then the depen-
dence G11�
� contains additional peaks and dips in the vi-
cinity of the points Em

�2�. Similar effects occur in the case of
different electron effective masses. To study the form of the
curve G11�
�, we consider the asymptotics of the Q function

in the vicinity of Em
�j�. One can see from Eq. �10� that Q̃j�E�

has a root singularity at the point Em
�j�,

Q̃j�E� = �2	� j/�Em
�j� − E� + F�E� , E → Em

�j� − 0

2i	� j/�E − Em
�j�� + F�E� , E → Em

�j� + 0,
� �19�
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FIG. 4. Conductance G11 versus the Fermi energy 
 at r1=r2,
�1=�2=4r1, and a=4. The inset represents a fragment of the curve
marked with the dotted rectangle.
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FIG. 5. Conductance G11 versus the Fermi energy 
 at r2

=1.1r1, � j =4rj, and a=4. The inset represents a fragment of the
curve marked with the dotted rectangle.

0 2 4 6 8 10

2

4

6
G

11
/G

0

µ/ε

FIG. 2. Conductance G11 versus the Fermi energy 
 at r1=r2,
�1=�2=3r1, and a=0.1. The dotted line represents the conductance
of the unperturbed cylinder.
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FIG. 3. Conductance G11 versus the Fermi energy 
 at r1=r2,
�1=�2=0.15r1, and a=0.1. As in the previous figure, the dotted line
represents the conductance of the unperturbed cylinder.
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where F�E� is a smooth function of E. It is worth mentioning
that the root singularity similar to Eq. �19� is present in the
electron density of states on the cylinder. It is convenient
to represent Qj�E� in the form Qj�E�= �Qj�E��exp�i� j�. One
can see from Eq. �19� that the argument � j�E� changes
abruptly by � /2 at the point Em

�2�. The behavior of the func-
tion � j�E� in the interval �Em

�j� ,Em+1
�j� � depends on the scatter-

ing length � j. In the case of the strong point potential �� j

�r�, the argument � j�E� decreases monotonically from � /2
to zero when the energy varies from Em

�j� to Em+1
�j� . In the case

of the large scattering length �� j �r�, the argument � j has a
maximum � j

max in the range � /2�� j
max��. Using Eq. �19�,

we obtain the following asymptotics for G11�
� in the vicin-
ity of Em

�2�:

G11�
� � G1�
� + G2�
� , �20�

where G1�
� is given by

G1 = G0
N�
� −
�Im Q̃1�2

�Q̃1�2
� , �21�

and G2�
� has the form

G2�
� = −
G0�a�2

�Q̃1�
	�
 − Em

�2�� sin 2�1 sin��1 + �2� . �22�

Here, G1�
� is the conductance of the single cylinder with
the point perturbation. This term is regular at the point 

=Em

�2�. The second term G2�
� in Eq. �20� is stipulated by the
influence of the second tube. Equation �22� shows that the
derivative of G2�
� has the root singularity at the point Em

�2�.
Two different line shapes are possible depending on the

value of �1. If �1�� /2, then sin��1+�2��0 and
sin�2�1��0 on both sides of Em

�2�. Under these conditions,
G2�
� is negative and reaches its maximal value G2=0 at the
point Em

�2�. Hence, the dependence G11�
� has a sharp peak at
the point Em

�2� �Fig. 6�a��. If �1�� /2, then the sign of G2�
�
is changed at 
=Em

�2� and the curve G11�
� has the form
presented in Fig. 6�b�.

It is obvious that at a finite temperature, the dependence
G11�
� is smooth and the asymmetric peaks resemble Fano
resonances. However, the origin of peaks and dips in the
conductance of crossed cylinders differs from the origin of
the Fano resonances. Fano resonances emerge from the co-
herent interaction of a discrete state and a continuum, while
the peaks and dips in the conductance G11�
� are stipulated
by root singularities in the density of states.

The second term in Eq. �15� has a step-down of amplitude
G0 at the point 
=Em. Hence, the amplitude of the conduc-
tance steps equals G0, in contrast to the case of unperturbed
cylinder where the amplitude equals 2G0.

Let us now consider the conductance G21 that corresponds
to the transmission of electrons from the first cylinder to
the second one. Conductance G21 determines transport prop-
erties of the system in the case when the contacts 1a and 1b
in Fig. 1 have equal potential V1 while the contacts 2a and 2b
have the potential V2. There are four ways for an electron to
pass from the first tube to the second one: 1a→2a, 1a
→2b, 1b→2a, and 1b→2b. Due to the symmetry of the
system, the transmission amplitudes of all the transitions are
equal. The transmission amplitudes tm�m

21 are determined in
the same way as tm�m

11 ,

tm�m
21 �E� =

iQ̃2

Q̃1Q̃2 − �a�2
. �23�

Using the Landauer formula and Eq. �14�, we obtain

G21�
� = 4G0
�a�2 Im Q̃1 Im Q̃2

�Q̃1Q̃2 − �a�2�2
. �24�

Here, the factor 4 is stipulated by four ways for the electron
to propagate from reservoirs marked 1a and 1b in Fig. 1 to
reservoirs marked 2a and 2b. The dependence G21�
� is rep-
resented in Figs. 7–9.

One can see from Eq. �24� that the conductance G21�
�
vanishes when the Fermi energy 
 coincides with Em

�j�. Using
Eq. �19�, we get the following form for G21�
� in the vicinity
of Em

�j�:

2.8 3.2 3.6
2.0

2.5

3.0

2.8 3.2 3.6

G
11

/G
0

µ/ε
1

(a)

µ/ε
1

(b)

FIG. 6. Conductance G11 versus the Fermi energy 
 at r2

=1.1r1 and a=10. �a� �1=�2=0.3r1 ��1�� /2� and �b� �1=�2

=5r1 ��1�� /2�. The arrow marks the point 
=Em
�2�.
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FIG. 7. Conductance G21 versus the Fermi energy 
 at r1=r2,
�1=�2=3r1, and a=5. The inset represents the same dependence in
the vicinity of 
=4�.
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G21�
� = �Al�Em
�j� − 
� , 
 → Em

�j� − 0

Ar
	
 − Em

�j�, 
 → Em
�j� + 0,

� �25�

where Al and Ar are positive factors. One can see that the
dependence G21�
� exhibits a sharp kink at the point Em

�j�

�Fig. 7�. The kink is stipulated by the root singularity in the
density of states. Similar line shape had been found earlier in
the conductance of the quantum cylinder with one-
dimensional leads.49 An asymmetric conductance peak ap-
pears in a vicinity of the point 
=Em

�j�. The form of the peak
is similar to the Fano resonance line shape; however, the
dependence G21�
� at T=0 is not smooth, in contrast to the
Fano curve.

Let us determine the maximal value of the conductance

G21�
�. Using real variables � j =Re Q̃j / Im Q̃j and �

= �a�2 / �Im Q̃1 Im Q̃2�, we can express the conductance
G21�
� in the following form:

G21��1,�2,�� = 4G0
�

��1�2 − � − 1�2 + ��1 + �2�2 . �26�

If ��1, then G21 as a function of �1 and �2 has only one
maximum G21=4G0� / ��+1�2 at �1=�2=0. It is obvious that
G21�G0 in this case. The condition �1=�2=0 is equivalent
to Re Q1=Re Q2=0. That is possible only in the case of
identical tubes and large scattering lengths. In the opposite
case of strong point perturbation �� j �rj�, the function
Re Qj�E� has no zeros and the maxima of the conductance
are situated near the minima of Re Qj�E� �Fig. 9�. In this
limit, the maximal value of the conductance is smaller than
G0.

An additional maximum G21=G0 appears at �1=�2
=	�−1 in the case ��1 �Fig. 7�. That means that the cou-
pling between wave functions on different nanotubes is
strong. The conductance G21 decreases with decreasing of
the coupling. Therefore, the conductance G21 never exceeds
G0. We relate this result to limited transparency of the point
contact. We stress that the result is not trivial because the
sum in Landauer’s equation �6� contains many terms. The
condition �1=�2 is satisfied only if the tubes are identical.
Hence, the conductance G21 reaches its maximal possible
value only in the case of identical tubes and strong coupling
between the wave functions ��a��1�.

If the radii of tubes are different, then the number of
zeros on the dependence G21�
� increases because Em

�1�

�Em
�2� �Fig. 9�. The maximal value of the conductance G21 is

also smaller than G0 in this case.

V. CONCLUSION

The electron transport in crossed conductive nanocylin-
ders is investigated using the Landauer-Büttiker formalism.
An explicit form for the conductance G11 as a function of the
Fermi energy 
 is obtained. We have shown that the conduc-
tance of each tube contains resonance dips stipulated by the
backscattering of electrons on the contact. The maximal
value of dips does not exceed a unit of the conductance
quantum. Positions of dips depend on parameters of the con-
tact. In the case of identical tubes, the conductance can ex-
hibit no more than two dips on each plateau. If the radii of
tubes are different, then the dependence of the conductance
on the Fermi energy contains asymmetric peak-dip structures
of the form given by Eq. �4�. The dips and peaks are stipu-
lated by the root singularities in the density of states. It is
worth mentioning that the asymmetric peaks and dips have
been observed experimentally in the conductance of many
carbon nanotube based systems, in particular, in crossed
nanotubes.18 The asymmetric line shapes were attributed to
Fano resonances that emerge from the interference of the
bound states with the continuum. Results of the present pa-
per provide alternative possible explanation of the asymmet-
ric peaks and dips. According to our results, they might
originate from the root singularities in the density of states.

The conductance G21, which is related to transmission of
electrons from the first cylinder to the second one, has the
resonance nature. The maximal value of the conductance G21
is a unit of the conductance quantum. The condition of maxi-
mal transmission is satisfied only if the tubes are identical.
Similar results have been obtained in Ref. 23 for several
crossed junctions of small nanotubes. It should be noted that
the resistance of the value 16.8 k��G0

−1 has been observed
experimentally18 for crossed carbon nanotubes at T=4.2 K.
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