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We present the results of a comparative ab initio study of single-walled SiC, BN, and BeO nanotubes (NTs)
in zigzag and armchair configurations. Within density functional theory, we employ self-interaction-corrected
pseudopotentials that were shown previously to yield reliable results for both structural and electronic prop-
erties of related bulk crystals. Using these pseudopotentials, we investigate the dependence of the atomic
relaxation, strain energy, Young’s modulus, and electronic structure on nanotube diameter and compound
ionicity. Qualitatively, the NTs of all three wide-band-gap compounds show similar radially buckled geom-
etries upon atomic relaxation, similar strain energy progressions with NT diameter and a saturation of Young’s
modulus as well as the band gap energy for large NT diameters. The band gap progression with NT diameter,
which is of crucial importance for device applications, is presented and analyzed in detail. For SiC and BN, the
calculated band gap energies of zigzag NTs vary much stronger for small and medium diameters than those of
their armchair counterparts showing a significant narrowing of the band gaps. In contrast, the band gap
progression in zigzag and armchair BeO NTs shows a very peculiar behavior for small diameters. No band gap
breakdown occurs and the gap goes through a minimum for zigzag BeO NTs. The qualitative difference in the
nature of the lower conduction band states in SiC and BN NTs, as compared to BeO NTs, and the increasing

ionicity of these compounds are shown to be responsible for the observed effects.
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I. INTRODUCTION

The initial discovery of carbon nanotubes (CNTs) by
lijima' in 1991 has sparked considerable interest in this kind
of nanosized one-dimensional structures due to their unique
physical properties and the associated potential for applica-
tions, e.g., in electronics and sensing. While experimental
observations indicate that CNTs preferentially exist in mul-
tiwalled configurations with an interwall distance compa-
rable to the spacing of planes in graphite, the generation of
single-walled structures consisting of a single rolled-up
graphene strip is technically feasible, as well. The chirality
and diameter of such NTs are uniquely specified® by the pair
of helical indices (n,m) defining the vector ¢,=na;+ma,,
where a;, a, are the unit vectors of a graphitic sheet.

In addition to CNTs, a considerable number of different
composite nanoscale tubular structures has either already
been fabricated, based on crystals such as BN, SiC, MoS,,
WSQ,3’6 or suggested, as in the case of BeB, and B,0,’
BeO,? or MgO®”!? NTs. Carbon, SiC, BN, and BeO NTs dif-
fer in their increasing ionicity. As a consequence, the prop-
erties of SiC, BN and BeO NTs are different from those of
the covalently bonded, homopolar CNTs. Most notably, the
electronic characteristics are strongly dependent on the type
of chemical bonding in these solids. While CNTs have been
found to be either metallic or semiconducting depending on
their helicity,>!"!2 previous studies have shown that both BN
and SiC NTs are semiconducting, their structural as well as
electronic properties depending in characteristic ways on the
chirality and the diameter of the NTs.!3-%’

Theoretically, BN NTs have been studied quite intensively
during the last decade on different levels of sophistication,'?
e.g., by tight-binding calculations,'3"'> density functional
theory (DFT) within local density approximation,'316-1°
(LDA) and hybrid functional calculations.?* Studying exci-
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tons in NTs, Park er al.?8 as well as Wirtz er al.? have more
recently carried out GW quasiparticle energy calculations on
a (8,0) or several selected BN NTs, respectively. SiC NTs
and defects in SiC NTs have been addressed only in the last
couple of years. DFT cluster or supercell calculations have
been reported?*2323-26 and very recently H and its interaction
with B acceptors and N donors in (8,0) zigzag and (5,5)
armchair SiC NTs have been studied employing hybrid den-
sity functional calculations, as well.?’ Concerning BeO NTs,
we are aware of only one very recent DFT-LDA study.?

An accurate determination of the band gap energy of NTs
is crucial both for applications in electronic devices as well
as from a more fundamental point of view. Within standard
DFT-LDA, band gaps of semiconductors and insulators are
significantly underestimated. Many of the studies reported so
far for the NTs considered in this work suffer from the usual
LDA shortcoming. To overcome this problem, we employ
self-interaction-corrected (SIC) pseudopotentials whose con-
struction has been described in detail before.3*-* Employing
these SIC pseudopotentials, we have previously obtained
bulk and surface electronic properties for a variety of semi-
conductors and insulators in very good agreement with ex-
perimental data and with the results of considerably more
elaborate quasiparticle calculations. Hence, we expect the
SIC approach to yield a reliable description of electronic
properties of NTs, as well.

In this paper we report a comprehensive account of ab
initio DFT-SIC results on structural, elastic, and electronic
properties of a large variety of SiC, BN, and BeO NTs in
(n,0) zigzag and (n,n) armchair configurations with n values
ranging from 4 to 15 and diameters up to 25 A, respectively.
The numerical simplicity of our DFT-SIC approach allows us
to easily study a large variety of NTs on equal footing. The
calculated structural and elastic properties of SiC and BN
NTs corroborate earlier tight-binding and the selected DFT-
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LDA results. Only very few results on respective properties
of BeO nanotubes have been reported to date.® Applying our
DFT-SIC approach to the calculation of electronic NT prop-
erties of SiC, BN, and BeO NTs, we obtain significant im-
provements in the gap energies over standard DFT-LDA re-
sults for all nanotubes studied. Only the hybrid density
functional ~calculations®*?’ and the GW quasiparticle
calculations,”®?° which are considerably more demanding
than our DFT-SIC calculations, have arrived at similar gap
energy values for a few selected SiC and BN NTs. In par-
ticular, we address a most quantitative analysis of the effects
which the increasing ionicity of the chemical bond in these
tubular nanostructures has on their physical properties and
give a real-space analysis of the band gap progression with
tube diameter.

The paper is organized as follows. In Sec. II, we briefly
summarize the methodology of our calculations. In Sec.
IIT A, we report structural and electronic properties of the
underlying single graphitic sheets. Structural, elastic, and
electronic properties of SiC, BN, and BeO NTs in zigzag and
armchair configurations are addressed in Sec. III B. The op-
timal structural relaxation of these NTs is evaluated by total
energy minimization and the dependence of their elastic and
electronic properties on NT diameter is presented and dis-
cussed. A brief summary concludes the paper.

II. CALCULATIONAL DETAILS

We employ our nonlocal, norm-conserving ab initio SIC
pseudopotentials’®3® in  separable Kleinman-Bylander
form.>* The standard pseudopotentials entering their con-
struction are set up according to the prescription of
Hamann.?” We use the exchange-correlation functional of
Ceperley and Alder, as parametrized by Perdew and
Zunger.*® To expand the wave functions, we employ three
shells of atom-centered Gaussian orbitals of s, p, d, and s
symmetry per atom with appropriately determined decay
constants.?® The inclusion of both fairly localized and ex-
tended orbitals is necessary to achieve an appropriate repre-
sentation of the localized ionic bond states on the NT cylin-
der as well as the exponential decay of the wave functions
into vacuum. To appropriately describe also the nearly free
electron state in the lower conduction bands characteristic for
the hexagonal sheets, as previously discussed®® for the case
of BN, we place one shell of additional localized Gaussian
orbitals of s, p, d, and s* symmetry type with a decay con-
stant of 0.18 atomic units on planes in vacuum 1.5 a above
and below the hexagonal sheets, where a is the hexagonal
lattice constant. Rolling up the sheets into nanotubes, one
point of concern becomes immediately obvious. The addi-
tional orbital localization points inside and outside the tubes
constitute separate tubes. That on the outside causes no prob-
lem. Inside the tubes, however, localization points originat-
ing from opposite sides of the NT can come very close to one
another so that numerical instabilities could arise for small
tube diameters. To avoid such instabilities, we place the ad-
ditional Gaussian orbitals inside the tubes only along the
tube axis.

The properties of SiC, BN, and BeO graphitic sheets and
NTs are calculated within a supercell approach, using the
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TABLE I. Anion-cation bond lengths (in A) in SiC, BN and
BeO graphitic sheets and bulk crystals, as resulting from LDA and
SIC calculations. Experimental bulk-bond lengths are given for
comparison.

graphitic layer bulk crystal

LDA SIC LDA SIC Exp.
SiC 1.76 1.77 1.87 1.89 1.89%
BN 1.41 1.43 1.54 1.56 1.56°
BeO 1.52 1.53 1.63 1.65 1.65°¢

4From Ref. 43.
PFrom Ref. 44.
‘From Ref. 45.

efficient algorithm presented in Ref. 40. We use vacuum lay-
ers of approximately 12 A thickness in the lateral directions
of the respective systems so that unphysical interactions be-
tween neighboring sheets or NTs are avoided. In the case of
the graphitic sheets, we perform Brillouin-zone integrations
using 14 special k points in the irreducible wedge of the
hexagonal zone generated according to the prescription of
Monkhorst and Pack.*! Six and ten uniformly distributed
special k points along the NT axis are used for the treatment
of zigzag and armchair NTs, respectively.

Lattice constants of the graphitic sheets are optimized by
total energy minimization. For the NTs, the total energy is
evaluated for different unit cell lengths, while the positions
of the constituent atoms are allowed to relax until all com-
ponents of the calculated Hellmann-Feynman and Pulay
forces are smaller than 0.6 mRy/ap. Based on the resulting
total energy curves, ground-state properties are calculated
and the electronic structure is determined based on the fully
optimized geometry.*?

III. RESULTS

In this section, we first summarize structural and elec-
tronic properties of the underlying graphitic SiC, BN, and
BeO sheets, which serve as an important reference for re-
spective NTs, before we address NT properties themselves in
detail.

A. Graphitic sheets

The bond lengths for the three graphitic sheets, as result-
ing from our standard LDA and SIC calculations, are sum-
marized in Table I. Respective bulk-bond lengths of wurtzite
SiC and BeO as well as zinc-blende BN, as calculated
previously,3!-33 are given for reference in Table I in compari-
son with experimental values. The bulk-bond lengths calcu-
lated within SIC are in very good accord with experiment,
indeed. Therefore, we expect the bond lengths for the gra-
phitic layers calculated within SIC to be very accurate, as
well.

The energy gaps of SiC, BN, and BeO graphitic sheets are
summarized in Table II. Respective calculated bulk band
gaps are given in comparison with measured bulk band gaps

085407-2



STRUCTURAL, ELASTIC, AND ELECTRONIC PROPERTIES...

TABLE II. Fundamental band gap energies (in eV) of SiC, BN,
and BeO graphitic sheets and wurtzite SiC and BeO as well as
zinc-blende BN bulk crystals, resulting from LDA and SIC calcu-
lations. Experimental bulk gaps are given for comparison.

graphitic layer bulk crystal

LDA SIC LDA SIC Exp.
SiC 2.58 3.94 2.12 333 3.33%
BN 4.51 6.31 4.45 6.13 6.10°
BeO 5.73 8.72 7.41 10.50 10.6°

4From Ref. 43.
"From Ref. 46.
‘From Ref. 47.

for reference, as well. The LDA bulk gaps underestimate the
experimental gaps very significantly, as usual. On the con-
trary, the SIC bulk gaps are in very good agreement with
experiment. In addition, the SIC bulk gap for the BN sheet of
6.3 eV is in good accord with the quasiparticle band gap of
6.0 eV, as calculated in Ref. 39, and in very good agreement
with the band gap of 6.3 eV, as following from hybrid den-
sity functional calculations.?* Hence, we expect our SIC
band gaps for the three graphitic sheets to be very accurate,
as well. Also the “ionic” X3.-X,,. bulk band gap of SiC, for
example, results from our calculations as 2.86 eV in reason-
able agreement with experiment (3.08 eV) and with the re-
sults of two quasiparticle calculations yielding 3.18 or
3.25 eV, respectively (see Ref. 32). In general, we observe
that the band gap increases for SiC and BN when going from
the bulk crystals to the graphitic sheets while it decreases for
BeO. This is intimately related to the basically different char-
acter of the chemical bond in heteropolar covalent as com-
pared to ionic compounds. For BN, which is fairly ionic
already, the crossover between these opposite tendencies is
almost reached.
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The electronic band structures of graphene and SiC, BN,
as well as BeO graphitic sheets are shown in Fig. 1. In con-
trast to metallic graphene, which exhibits the well known
characteristic degeneracy of 7 and 7 states at the Fermi
level occurring at the K point of the hexagonal Brillouin
zone, all three types of graphitic sheets investigated in this
work are wide-band-gap semiconductors or insulators. The
band gaps of the SiC and BN sheets are direct at K. The band
gap of BeO is indirect with the valence band maximum
(VBM) at K and the conduction band minimum (CBM) at I'.
Since the two atoms in the unit cell are not identical for SiC,
BN, and BeO graphitic sheets, the aforementioned degen-
eracy of the 7 and 7" states is removed. As a consequence,
the electronic properties of respective NTs can be expected
to be qualitatively different from those of carbon NTs. We
note in passing that the graphene band structure in the left
panel of Fig. 1 resulting from our DFT-SIC calculations is in
good agreement with the GW quasiparticle band structure
reported by Miyake and Saito.*3

For all three compounds, the valence bands consist of a
low-lying anionic s band and three upper mostly anionic s, p
bands. The latter originate in all three compounds from mix-
tures of anionic p and cationic s states. The uppermost of
these s, p bands has mainly s, p, character. Since the p,
orbitals are perpendicular to the graphitic layers their inter-
action is a fairly small 7-7 interaction giving rise to the
weaker dispersion of these bands, as compared to the other
two upper valence bands. The spatial dependence of the in-
teraction of the p, orbitals is the same as that of valence s
orbitals. As a consequence, the low-lying s and the upper s,
p, valence bands of the compounds have very similar disper-
sions, as is most obvious in Fig. 1. The anion p,, p, orbitals,
on the contrary, lie in the graphitic sheets giving rise to a
significantly different and larger dispersion, therefore. The
lowest conduction band in the SiC and BN sheets occurs at
the K point of the hexagonal Brillouin zone and has cationic
p, character. The lowest conduction band of the highly ionic
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FIG. 1. Band structure of graphene and graphitic SiC, BN, and BeO sheets along the high-symmetry lines of the two-dimensional
hexagonal Brillouin zone, referred to the Fermi level or to the top of the valence bands, respectively, as calculated within the SIC approach.
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M 20 FIG. 2. (Color online) Charge density con-
tours of the VBM and CBM states of graphitic
10 SiC (left panels) and BeO (right panels) mono-
layers (in 1072a;’) plotted in the [110]-[001]
0 plane containing the anion-cation bond, as calcu-
5 lated within the SIC approach. Anions and cat-
ions are depicted by red and black dots, respec-
tively. The VBM and CBM states for SiC and the
4 VBM state for BeO occur at the K point. The
CBM state for BeO occurs at the I' point.
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BeO compound occurring at the I' point, on the contrary,
mainly originates from anion s orbitals. We note in passing
that our band structure of the graphitic BN sheet in Fig. 1, in
particular in the energy range from —10to +10 eV, is in
very good accord with the respective GW quasiparticle band
structure as reported by Blase et al.®®

The dispersion of the lowest conduction band of BeO is
basically parabolic and thus nearly free-electron (NFE) like.
The physical origin and the NFE character of the respective
lowest conduction band at I' in BN has been discussed in
detail previously.'**°

The VBM states of the SiC and BN graphitic sheets are
largely similar, as are the CBM states. The CBM state of the
BeO graphitic sheet, on the contrary, shows very significant
differences to the CBM states of the SiC and BN graphitic
sheets. To highlight this difference, we compare in Fig. 2 the
charge density contours of the VBM and CBM states of SiC
and BeO graphitic sheets. The figure clearly reveals that the
VBM state has anionic p, character in both compounds giv-
ing rise to a fairly small dispersion of the respective upper-
most valence band. The CBM state of the SiC graphitic sheet
is of Si p, character, as noted before, while that of the BeO
sheet has O s character. It is largely different from the former
state exhibiting its NFE character. This has important conse-
quences for the electronic properties of BeO, as compared to
SiC and BN NTs.

B. Nanotubes

In this section, we first briefly summarize structural and
elastic properties of the investigated N'Ts in comparison with
the pertinent literature and then turn to a more detailed dis-
cussion of their electronic properties.

1. Structural and elastic properties

When strips of graphitic SiC, BN, or BeO sheets are
rolled up into single cylindrical tubes the anions and cations

relax from their ideal atomic positions. The cations move
slightly inward towards the tube axis, while the anions move
outward with respect to their ideal positions. This reduces the
total energy of the system since the electron-electron repul-
sion is lowered. As a result, the NT surface becomes buck-
led. After relaxation, the radial geometry of the tubular struc-
tures is characterized by two concentric cylindrical tubes,
with an outer anionic and an inner cationic cylinder. The
strength of the buckling is defined by the radial buckling
parameter

ﬂzfa_Fm (1)

where 7, and 7, are the mean radii of the anion and cation
cylinders, respectively. The values for the radial buckling
resulting from our SIC calculations are shown in Fig. 3. For
more quantitative comparisons they are summarized in Table
III, as well. Obviously, there is no dependence of 8 on NT
helicity in all three cases. For BN NTs this fact has been
observed previously already by Hernindez et al.'> For all
three compounds, the radial buckling decreases with increas-
ing NT diameter and vanishes in the limit of very large NT
diameters. The absolute values for B are larger for SiC than
for BeO and BN NTs, which can basically be explained by
the larger Si-C bond length (see Table I).

Next we address the strain energy necessary to form a NT,
i.e., the energy per atom necessary to roll up the graphitic
strip into tubular form. It is defined as the difference in total
energy per atom between a NT and the respective graphitic
sheet

1 1
By = - S, @)
NT

where Nyr is the number of atoms in the NT unit cell.
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FIG. 3. (Color online) Radial buckling 8 (in A) of (,0) zigzag
(open symbols) and (n,n) armchair (filled symbols) SiC, BeO, and
BN NTs as functions of the tube diameter d. Squares, triangles, and
circles represent results for SiC, BeO, and BN, respectively. The
solid and dashed lines are drawn to guide the eye.

In Fig. 4 the strain energy resulting from our SIC calcu-
lations is plotted as a function of the average tube diameter.
Respective values are also summarized in Table III. The
strain energies for SiC and BN NTs in Fig. 4 are fairly simi-
lar. For BeO NTs it is significantly lower (up to about d
~12 A) due to the much higher ionicity of this compound,
as compared to SiC and BN. Rolling respective sections of
graphitic BeO layers up into NTs needs less energy, as can be
inferred from the band structure and the charge densities of
the graphitic BeO layer (see Figs. 1 and 2). The O 2p. va-
lence band is very narrow. The charge density of the CBM
state is mainly localized at the O atoms. Around the Be at-
oms it is fairly smooth and small. In all three cases, the strain
energy approaches zero for large NT diameters only very
slowly since the NTs become equivalent to graphitic sheets
only for very large diameters. Figure 4 shows that the strain
energy is also independent of the NT helicity. Its progression
resembles a classical ~d~2 law. For BN NTs, our ab initio
results calculated within the SIC framework corroborate re-
spective values calculated previously within tight-binding,'*
nonorthogonal tight-binding,!®> or standard LDA.'%2!22 For
SiC NTs, our calculated progression of the strain energy with
tube diameter is in good agreement with that calculated by
Zhao et al.** within DFT-LDA.

Another interesting structural feature of NTs is their be-
havior under uniaxial strain along the NT axis. It is described
by Young’s modulus, which is conventionally defined as the
second derivative of the total energy with respect to the
strain €

1 &E

=— —| 3
Vo 0€ | - ®)
where V) is the equilibrium volume. As the volume for a
hollow cylinder is Vy=2wLROR=:Sy0R it is necessary to
adopt a certain convention for the shell thickness OR in the
case of single-walled NTs. Here we follow the suggestion of
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TABLE III. Structural, elastic, and electronic properties of SiC,
BN, and BeO NTs. Tube diameters d and radial buckling parameters
B are given in A, strain energies E, in eV per atom, modified

Young’s moduli Y, in TPa nm, and band gap energies E, in eV.

(n,m) d B E, Y, E,
SiC
(4,0) 4.09 0.230 0.396 0.115 0.62
(5,0) 4.99 0.189 0.238 0.143 1.16
(6,0) 5.90 0.158 0.169 0.149 1.81
(7,0) 6.85 0.133 0.129 0.154 2.38
(8,0 7.80 0.116 0.104 0.156 2.56
(9,0) 8.75 0.102 0.087 0.160 2.81
(10,0) 9.71 0.091 0.075 0.161 3.04
(15,0) 14.52 0.060 0.046 0.166 342
(4,4) 6.73 0.141 0.121 0.157 3.14
(5,5) 8.38 0.109 0.087 0.162 3.47
(6,6) 10.07 0.089 0.067 0.164 3.49
(7,7) 11.73 0.075 0.056 0.165 3.63
(8,8) 13.40 0.065 0.048 0.166 3.65
9,9) 15.07 0.057 0.043 0.167 3.72
(10,10) 16.77 0.051 0.039 0.168 3.74
(15,15) 25.16 0.035 0.030 0.168 3.78
BN
(4,0) 3.35 0.149 0.479 0.227 3.04
(5,0) 4.08 0.122 0.301 0.246 3.45
(6,0) 4.83 0.101 0.218 0.259 3.95
(7,0) 5.60 0.085 0.171 0.263 4.78
(8,0) 6.37 0.073 0.140 0.267 4.89
(9,0) 7.15 0.064 0.118 0.269 5.25
(10,0) 7.99 0.057 0.102 0.273 5.51
(15,0) 11.85 0.037 0.063 0.278 5.83
(4,4) 5.49 0.089 0.168 0.268 5.75
(5,5) 6.87 0.068 0.123 0.272 5.72
(6,6) 8.23 0.055 0.096 0.274 6.06
(7,7) 9.59 0.046 0.080 0.275 6.08
(8,8) 10.95 0.040 0.069 0.276 6.11
9,9) 12.31 0.036 0.061 0.277 6.22
(10,10) 13.67 0.032 0.055 0.278 6.24
(15,15) 20.48 0.022 0.041 0.279 6.27
BeO
(4,0) 3.59 0.156 0.208 0.095 8.69
(5,0) 4.37 0.126 0.134 0.107 8.16
(6,0) 5.17 0.104 0.100 0.111 7.86
(7,0) 5.98 0.089 0.079 0.117 7.71
(8,0) 6.81 0.076 0.067 0.119 7.67
9,0) 7.63 0.067 0.058 0.121 7.78
(10,0) 8.46 0.060 0.052 0.122 8.03
(13,0) 9.95 0.052 0.044 0.123 8.65
(15,0) 12.61 0.039 0.038 0.125 8.70
(4,4) 5.85 0.092 0.077 0.124 7.27
(5,5) 7.30 0.072 0.058 0.123 7.75
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TABLE III. (Continued.)

(n,m) d B E, Y, E,

(6,6) 8.74 0.059 0.049 0.124 8.17
(7,7) 10.18 0.049 0.043 0.126 8.65
(8,8) 11.62 0.042 0.040 0.126 8.73
(9,9) 13.07 0.037 0.037 0.127 8.75
(10,10) 14.54 0.033 0.035 0.127 8.77
(15,15) 21.82 0.021 0.032 0.128 8.78

Ref. 15 and describe the NT stiffness independent of 6R by a
modified Young’s modulus

1 &#E

s 92| (4)

which is related to the standard Young’s modulus by Y
=YOR. In Fig. 5 we show the progression of the calculated
values for Y, with NT diameter. Respective values are sum-
marized in Table III. For BN, SiC, and BeO NTs the modi-
fied Young’s moduli reach saturation already at fairly small
diameters d~ 10 A. Significant differences between arm-
chair and zigzag configurations are not to be noted. The satu-
ration values of Y, are 0.28, 0.17, and 0.13 TPa nm for BN,
SiC, and BeO, respectively. Those for BeO NTs are smallest
which correlates with the low strain energies (see Fig. 4).
The ratio of the Young’s moduli for BN and SiC NTs is in
good agreement with that of the bulk moduli of BN and SiC.
Our results corroborate the respective tight-binding results of
Hernéndez et al.'> They are in quantitative agreement with
the few DFT-LDA values given in the latter reference. The
deviations between our ab initio results and the tight-binding
results' are in the order of 2% for the NT diameters and
about 10% for the Young’s moduli. We note in passing that
we have also calculated all structural and elastic properties of
the NTs presented above within standard LDA. Since struc-
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FIG. 4. (Color online) Strain energy of SiC, BN, and BeO (n,0)
zigzag (open symbols) and (n,n) armchair (filled symbols) NTs as
functions of the tube diameter d. See caption of Fig. 3 for further
details.
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FIG. 5. (Color online) Modified Young’s moduli Y (in TPa nm)
of (n,0) zigzag and (n,n) armchair BN, SiC, and BeO NTs as a
function of the tube diameter d. See caption of Fig. 3 for further
details.

tural properties follow from DFT-LDA with a good level of
confidence (see Table I), only small deviations up to 1%
occur.

2. Electronic properties

Most fundamentally, it turns out that all SiC, BN, and
BeO NTs investigated are semiconducting, as was to be ex-
pected on the basis of the electronic properties of the respec-
tive graphitic sheets. They span a huge range of band gap
energies from 0.5 to about 9 eV. Thus many nanoelectronic
applications employing band gap energies of such a large
range are conceivable. The band gaps are direct at I" for
(n,0) zigzag NTs—with the notable exception of the (4,0)
NTs—and indirect for (n,n) armchair NTs. The band struc-
ture of the NTs results from backfolding of the graphitic
sheet bands onto the I'-X line of the one-dimensional NT
Brillouin zone and concomitant band splittings and shifts due
to scattering of the sheet electrons at the NT lattice whose
symmetry is reduced with respect to the sheets. This back-
folding increases the number of bands drastically for large n.
Figure 6 shows a few exemplary results. The SiC and BN
(10,0) zigzag NTs exhibit a direct gap at I' while the SiC and
BeO (6,6) armchair NTs show indirect gaps from a k point
on the I'-X line to the X point or the I" point of the one-
dimensional Brillouin zone in the former or latter case, re-
spectively. Our band structure for the BeO (6,6) armchair NT
is in good agreement with the respective DFT-LDA result
reported in Ref. 8 with the notable exception that our band
gap is approximately 3 eV larger than the one reported in the
latter reference.

Figure 7 shows the progression of the band gaps with tube
diameter. The respective values are summarized for further
comparison in Table III, as well. Several interesting features
are to be noted. First, there is a qualitative similarity regard-
ing the evolution of the band gaps in SiC and BN NTs. Both
show significant differences between zigzag and armchair
configurations, i.e., very pronounced helicity effects although
their structural and elastic properties are virtually indepen-
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FIG. 6. Sections of the band structure of SiC and BN (10,0)
zigzag as well as SiC and BeO (6,6) armchair NTs along the high-
symmetry line I'-X of the one-dimensional NT Brillouin zone. All

energies are referred to the VBM which is defined as the zero of the
energy scale.

dent of helicity. The same general behavior was found by
Zhao et al.?* for SiC NTs and by Okada et al.,'® Xiang et
al.*! and Guo et al.?? for BN NTs in their DFT-LDA results.
The absolute band gap values reported previously,'21-23
however, are significantly smaller than our values due to the
well known underestimate of band gaps in LDA. It is inter-
esting to note that the deviations between our band gap val-
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FIG. 7. (Color online) Fundamental gap of SiC, BN, and BeO
(n,0) zigzag and (n,n) armchair NTs as functions of the tube di-
ameter d. See caption of Fig. 3 for further details.
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ues and those of Okada et al.'® and Guo et al.*? are not

constant but span a range from about 1 to 1.7 eV showing
that it is not fully appropriate to just apply the same constant
upward shift to the LDA conduction bands of all NTs as is
often conjectured. The band gaps calculated within hybrid
density functional theory for SiC NTs (Ref. 27) and BN
NTs,?* on the contrary, are in good accord with our results.
For example, Gali®’ finds gap energies of 2.28 and 3.30 eV
for (8,0) and (6,6) SiC NTs, respectively, to be compared to
our values of 2.56 and 3.49 eV and Xiang et al.’* report gap
energies of about 6.2 eV for armchair BN NTs with diam-
eters larger than 12 A which compare favorably with our
respective values for the (9,9), (10,10), and (15,15) BN NTs,
respectively (see Table IIT). For large NT diameters our cal-
culated band gaps converge towards the limiting values of
the band gaps of the respective graphitic sheets. For smaller
diameters, the band gaps of SiC and BN armchair tubes show
only a small dependence on tube diameter while those of the
zigzag tubes exhibit a strong diameter dependence. For very
small diameters, the differences of their gap energy from that
of the respective graphitic sheets is very pronounced, indeed.
In particular, the gap of SiC zigzag tubes reduces dramati-
cally with decreasing diameter almost approaching a band
gap collapse. The different band gap progressions of zigzag
and armchair NTs is related to different changes in the bond-
ing and charge density topology in the NTs with respect to
those in the graphitic sheets as we will discuss below.

In contrast, the progression of the band gap energy of
BeO NTs is remarkably different (see Fig. 7). First of all,
there is no discernible difference between zigzag and arm-
chair tubes, except for the (7,0) zigzag and (4,4) armchair
NTs. Second, for zigzag NTs of very small diameter, the gap
is not strongly reduced, as in the case of SiC and BN, but
goes through a minimum and opens up again, instead. In Ref.
8 the authors conclude on the basis of their DFT-LDA results
that the band gap of BeO NTs is independent of chirality.
Our results confirm this notion for zigzag and armchair NTs.
At the same time, the authors conclude that the band gap is
independent of the NT diameter amounting to about 5 eV for
all BeO NTs considered.® Our results clearly reveal that this
latter conclusion does not apply. Instead, the gap energies
depend on nanotube diameter for d<10 A and their values
range from 7.3 to 8.8 eV (see Fig. 7 and Table III).

Figure 8 shows the calculated VBM and CBM energies
(full symbols) of all investigated zigzag SiCNTSs, referred to
the vacuum level ES" of the SiC graphitic sheet as the
common energy reference. In addition, the open symbols
represent the respective energy positions as resulting from
simply backfolding the graphitic sheet bands. The figure
clearly reveals that the dominant contribution to the gap nar-
rowing originates from a change of the energy position of the
lowest conduction band occurring as a consequence of the
increasing NT curvature. In particular, the energy decrease of
the CBM turns out to be entirely monotonous. The variation
of the energy position of the VBM, on the contrary, is not
monotonous for small diameters d<10 A. The differences
between the monotonous CBM and the nonmonotonous
VBM curves explains the discontinuous slope of the band
gap progression for zigzag SiC NTs, as shown in Fig. 7. This
peculiar progression is thus related to the more intricate de-
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FIG. 8. (Color online) Progression of the VBM and CBM ener-
gies in zigzag SiC NTs as a function of tube diameter d. Full sym-
bols result from NT calculations while the open symbols follow
from backfolding the bands of the graphitic SiC sheet. The solid
and dashed lines are drawn to guide the eye.

pendence of the VBM on NT diameter for small diameters
and the respective discontinuous change of the neighbor con-
figurations and interactions between occupied atomic orbitals
across the interior of the NT cylinder.

To elucidate the physical origin of the particular band gap
progressions in SiC, BN, and BeO NTs, we first address the
qualitatively similar progressions for SiC and BN NTs (see
Fig. 7) focussing on SiC NTs, for that matter. Thereafter, we
discuss the band gap progression for BeO NTs.

While most of the previous literature on BN NTs dis-
cusses the origin of the band gap progression with tube di-
ameter in k space,'3"!” we follow here a complementary line
of reasoning by addressing its origin in real space using SiC
and BeO NTs as examples. When a strip of graphitic SiC is
rolled up into a NT, changes in the charge density occur.
These are different for zigzag and armchair NTs because of
their fundamentally different geometry. The charge densities
of the VBM and CBM states of the graphitic SiC sheet,
shown in the left panels of Fig. 2, reveal their anionic and
cationic p, character, respectively. When rolling the strip up
into tubular form its curvature generally decreases the dis-
tance between neighboring sites to a certain extent. Much
more importantly, the respective charge densities start to
overlap inside the cylinder. Especially for zigzag NTs, this is
a very pronounced effect while it is much smaller for arm-
chair NTs. This is illustrated in Fig. 9 by charge density
contours of the CBM state at the K point for the (5, 5) arm-
chair and at the I" point for the (9, 0) zigzag SiCNT. We
concentrate in the following on the CBM states because they
are mainly responsible for the band gap narrowing, as shown
above. In both cases, the contours are drawn in a plane per-
pendicular to the NT axis containing an anion-cation ring for
the armchair and a cation ring of the double-ring structure for
the zigzag NT because the latter gives rise to the CBM. One
can see that in the armchair NT (upper panel), the charge
density remains localized at the cations and is distorted on
the inner side of the ring only slightly in the bond direction
towards the anions due to the curvature of the NT. In con-
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FIG. 9. (Color online) Charge density contours of the CBM
states (in 10_3“1_;3) of the one-dimensional Brillouin zone at the K
point of a (5,5) armchair (upper panel) and the I'" point of a (9,0)
zigzag (lower panel) SiC NT. The contours are drawn in planes
perpendicular to the NT axis containing an anion-cation ring for the
armchair and a cation ring for the zigzag N'T. Anions and cations are
again depicted by red and black dots, respectively.

trast, the charge density contour of the (9, 0) zigzag SICNT
(lower panel) very clearly demonstrates that a major redistri-
bution of the charge density takes place inside the tube build-
ing up a ringlike distribution. The former p, components of
the charge density on the SiC graphitic sheet are pushed
towards each other and a significant rehybridization leads to
a ringlike charge density on the inner side of the tube. The
former atomic character of the sheet states is entirely lost on
the inner side of the NT. The CBM energy is lowered, there-
fore, and the fundamental energy gap is reduced with respect
to the graphitic sheet. The p, components of the cation orbit-
als on the outside of the NT are only slightly affected show-
ing even less coupling between neighboring cations on the
ring than in the graphitic sheet. The effects described above
are even more pronounced for NTs with smaller diameters
giving rise to an even stronger band gap reduction. Respec-
tive charge-density contours of the CBM state of (4, 0), (8,
0), and (10, 0) zigzag SiCNTs at the I" point are compared in
the left panels of Fig. 10. Note the dramatic increase of the
charge density within the nanotube when 7 is decreased from
10 to 4.
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FIG. 10. (Color online) Charge density contours of the CBM
states (in 10"3a§3) at the I" point of the one-dimensional Brillouin
zone of (4,0), (8,0), and (10,0) SiC (left panels) and BeO (right
panels) zigzag NTs. The charge densities for SiC and BeO NTs are
plotted in a plane perpendicular to the NT axis containing a Si or an
O ring, respectively, since the CBM of zigzag SiC NTs is made up
of Si p orbitals, while that of zigzag BeO NTs is made up of O s
orbitals. For further details, see caption of Fig. 9. Note that all
charge densities are plotted on the same absolute scale so that they
can be compared quantitatively.

In contrast, the insensitivity of the gap of BeO NTs to
helicity seems to be related to the particular charge density
topology of the CBM state in the graphitic BeO sheet (see
the lower right panel of Fig. 2). The bottom of the conduc-
tion bands in BeO NTs originates from localized O s and
very extended Be 2s states (of NFE character) which are not
strongly influenced by rolling up the graphitic BeO strip into
zigzag or armchair NTs. Thus, there is no helicity-induced
difference in the gaps of both types of NTs. The peculiar
dependence of the gap on NT diameter showing a minimum
at a value of about 7 A for the (8, 0) NT is more intricate.
The charge density of the CBM state in (n,0) zigzag BeO
NTs is shown for n=4, 8, and 10 in the right panels of Fig.
10. The figure clearly reveals the different character of the
CBM states of the BeO NTs (right panels), as compared to
the respective CBM states of the corresponding SiC NTs (left
panels). Generally speaking, an increasing interaction be-
tween second-nearest neighbors, i.e., between anions or cat-
ions across their respective rings, respectively, broadens cor-
responding anion- and cation-derived bands. As a result, the
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energy gaps between the related bands become smaller. For
armchair SiC NTs, e.g., there is no interaction across the
interior of the NT cylinder (see the upper panel in Fig. 9) so
that the gap energy remains close to its sheet value. For
zigzag SiC NTs (see the left panels in Fig. 10) the interaction
is minimal for the (10, 0) NT and increases down to the (4,
0) NT. Thus the gap decreases with decreasing n or tube
diameter d, respectively, and is smallest for the (4, 0) zigzag
SiC NT. For BeO zigzag NTs, on the contrary (see the right
panels of Fig. 10), the interaction across the interior of the
tube cylinder is small for the (10, 0) NT, becomes largest for
the (8, 0) NT and becomes smaller again for the (4, 0) NT.
Thus the (8, 0) zigzag BeO NT has the smallest gap.

IV. SUMMARY

We have reported a comprehensive comparison of struc-
tural, elastic, and electronic properties of compound semi-
conductor nanotubes with increasing ionicity, as studied by
ab initio density functional theory employing self-
interaction-corrected pseudopotentials which yield accurate
band gaps, in particular. The progression of the radial buck-
ling, strain energy, Young’s modulus and energy gap with NT
diameter has been investigated and related to the increasing
ionicity of the SiC, BN, and BeO NTs considered. For all
zigzag and armchair NTs investigated, we find that the struc-
tural and elastic properties are largely independent of NT
helicity while the electronic structure of SiC and BN NTs
very sensitively depends on it. This is not the case for BeO
NTs. The origin of the peculiar helicity dependence of the
gap energy in SiC and BN zigzag NTs and its helicity inde-
pendence in BeO NTs has been analyzed in detail. In particu-
lar, we have elucidated why no large band gap narrowing
occurs for small diameter zigzag BeO NTs, as opposed to
zigzag SiC and BN NTs. To this end, we have analyzed the
nature and origin of the band gap progressions and the pecu-
liar differences of it between SiC and BN NTs, as compared
to BeO NTs, by considering most relevant charge density
contours which highlight crucial differences between the re-
spective NTs and allow us to explain the different progres-
sions of E, in SiC and BN NTs, as compared to BeO NTs.
The structural and elastic properties of SiC and BN NTs, as
resulting from our ab initio calculations, are in good agree-
ment with previous DFT-LDA results and corroborate re-
spective earlier tight-binding results on BN NTs. For BeO
NTs, our results appear to be the first comprehensive account
of their structural and elastic properties. Concerning elec-
tronic properties of SiC, BN, and BeO NTs, our results con-
firm the qualitative outcome of previous tight-binding and
DFT-LDA calculations and are in quantitative accord with
selected hybrid density functional results on a few SiC and
BN NTs available in the literature. This should be valued in
view of the fact that our DFT-SIC calculations, treating all
NTs studied on equal footing, are numerically not more de-
manding than any standard DFT-LDA calculation on NTs.
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