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We present calculations of the breathing mode phonon frequencies of 4He and H2 physically adsorbed on the
outside surface of one or more carbon nanotubes. Two geometries are considered. The first is a single, isolated
nanotube, upon which the gas is adsorbed as a commensurate phase. The second is a quasi-one-dimensional
“groove” phase nestled between two nanotubes. While the computed breathing mode frequencies depend on
nanotube radius and the adsorbate, in general, they are of the same order of magnitude as those of the bare
nanotubes.

DOI: 10.1103/PhysRevB.76.085406 PACS number�s�: 68.43.Pq, 61.46.Fg, 63.22.�m, 68.49.Uv

I. INTRODUCTION

The problem of adsorbed phases of simple gases near car-
bon nanotubes has attracted much attention, due in part to the
intriguing possibility of studying one-dimensional �1D�
phases of matter and in part to potential applications, such as
gas storage, sensing, and separation. Experimental tech-
niques used to study such phases include scattering probes of
structure,1,2 thermal probes of energies,3–5 and spectroscopic
probes of the environment and dynamics of these films.6–8

Similar or identical techniques are also used to explore the
bare nanotubes, or nanotube bundles, in order to elucidate
their properties.9–11 Compared to many surface science ex-
perimental systems, the traditional signal-to-noise problem
of adsorption science is relatively less daunting for nano-
tubes because they are “all surface.”

In a recent paper,12 denoted as Paper I, Lueking and Cole
demonstrated interesting consequences of the fact that the
curvature of nanotubes means that the separations between
adsorption sites are larger than those between corresponding
sites on the basal plane surface of graphite. As a result of this
different geometry, distinctive commensurate phases on such
nanotubes are expected to occur; these are thus far unob-
served. The present paper addresses one way to study such
phases, by measuring the frequency of long-wavelength pho-
non breathing modes. Such modes have been studied previ-
ously for bare nanotubes, and their spectrum can be related
to the chirality of the tubes.13,14 In the present case, the mea-
sured spectrum can provide a stringent test of the theoretical
adsorption potential, a subject of considerable interest in its
own right because model potentials on nanotubes are often
constructed from simple, but questionable, assumptions
�such as pairwise additivity of interactions and transferability
to nanotubes of empirical graphite interactions15�. For speci-
ficity, the present calculations, like those of Paper I, are de-
voted exclusively to single-wall nanotubes �SWNTs�; the
generalization to multiwall cases is straightforward, in
principle.

Section II of this paper derives the general relationship
between the frequencies of the modes of the coupled gas-
nanotube system and those derived for two simpler prob-

lems: the bare nanotube ��NT� and the adsorbed film vibrat-
ing near an assumed rigid substrate ��AD�, respectively.
There, it is shown that the mode frequencies of the coupled
problem are numerically close in value to those of the two
“simpler” problems. Section III presents computations of
�AD for various gases in commensurate phases on single,
isolated nanotubes. Section IV considers a different geom-
etry, the “groove” phase situated between two tubes. That
situation is present either at the external surface of a bundle
of nanotubes or when a mat of close-packed, parallel nano-
tubes is laid out on a flat substrate surface. The calculations
of the adsorbate spectrum are carried out for the quantum
gases 4He and H2. Similar calculations have been presented
elsewhere �mostly for classical gases� in quasi-1D groove
phases.16,17 Section V summarizes the principal results of
this paper.

II. BREATHING MODES OF COUPLED ADSORBATE AND
SUBSTRATE

Breathing modes are cylindrically symmetric oscillations
of the nanotube and the adlayer. If one were to assume that
the nanotube is rigid �as is usually assumed in studying films
on graphite�, the potential energy of the adlayer can be ex-
panded in �assumed� small displacements about an equilib-
rium radial separation d0 with a quadratic form having a
force constant k�R� that depends on the nanotube radius R.
Adding to this energy is the energy associated with a hypo-
thetical deviation of the value R from its equilibrium value,
R0, that it would have in the absence of an adlayer. In the
small amplitude approximation, this, too, is a quadratic form,
with a force constant b. Adding to these fluctuation terms is
the energy of the adlayer’s interaction with the nanotube,
V0�R�, resulting in the total energy, denoted F�R ,d�:

F�R,d� =
b

2
�R − R0�2 + V0�R� +

k�R�
2

�d − d0�R��2. �1�

Expanding all functions of R in a Taylor series about R0,
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F �
b

2
�R − R0�2 + V0�R0� + V0��R0��R − R0� +

V0�

2
�R − R0�2

+
k�R0�

2
�d − d0�R0� − d0��R − R0��2. �2�

The classical equations of motion are

− MNTR̈ =
�F

�R
= V0� + kR�R − R0� − k0d0��d − d0� , �3�

− MALd̈ =
�F

�d
= k0�d − d0 − d0��R − R0�� , �4�

where MNT and MAL are the nanotube and adlayer masses,
respectively, k0=k�R0�, V0=V�R0�, and

kR = b + V0� + k0�d0��
2. �5�

For oscillatory motion, assume a solution

− R̈ = �2�R − R1� � �2�R ,

− d̈ = �2�d − d1� � �2�d ,

where constants �R1 ,d1� need to be determined by the con-
dition that all constant terms �i.e., not �R, �d� cancel,

MNT�2�R − kR�R + k0d0��d = 0 = V0� + kR�R1 − R0�

− k0d0��d1 − d0� ,

MAL�2�d − k0�d + k0d0��R = 0 = k0�d1 − d0 − d0��R1 − R0�� .

Solving the right-hand side gives

R1 − R0 = −
V0�

b + V0�
,

d1 − d0 = d0��R1 − R0� = −
d0�V0�

b + V0�
.

Solving the left-hand side gives

�2 =
1

2
� kR

MNT
+

k0

MAL
±�	 kR

MNT
−

k0

MAL

2

+
4k0

2�d0��
2

MNTMAL
� .

�6�

We show below that the term involving the square of the
derivative d0� is much less than 1. In this limit, the frequency
spectrum has two frequencies that might be expected on in-
tuitive grounds. One is �kR /MNT�1/2=�NT. This is just the
breathing mode frequency of a denuded nanotube. The sec-
ond mode’s frequency is �k0 /MAL�1/2=�AD, just what would
be computed for an adlayer’s vibration near a rigid nanotube.
These results for the small d0� limit are completely analogous
to the independent, decoupled vibrational and rotational fre-
quencies of diatomic molecules when the vibration-rotation
coupling is negligible.

The derivative of d0 with respect to R is determined in the
numerical calculations of the following section. The results
are as follows: for H2, d0��0.02 for small radii NT where the

1�1 phase is stable to d0��0.006 for large radii NT where
the 1��3 phase becomes stable. For 4He, d0� is not a strong
function of R, with a typical value d0��0.016. Under these
circumstances, the coupling term, involving d0�, makes a
small correction to the decoupled frequencies �NT and �AD
�for both adsorbates�. This correction may be evaluated by a
small d0� expansion which yields

�+ = �NT + �/�NT, �7�

�− = �AL − �/�AL. �8�

The shift term is proportional to

� = 1
2 �d0��

2�MAL/MNT��AL
4 /��NT

2 − �AL
2 �� . �9�

Since the frequencies and masses are comparable to one an-
other, the quantity �d0��

2 determines the relative importance
of this shift. Since �d0��

2�10−4, the shift ��+−�NT� of the
“nanotube mode,” �+, is small compared to �NT itself. We do
note a rough proportionality of the shift � to the adlayer
mass, which was found in recent experiments of Honda et
al.18 In the following sections, because the correction is
small, we proceed to compute the frequency of the adlayer
mode ��−� by neglecting the correction term proportional to
�; that is, we take �−��AD, equivalent to the assumption
that the nanotubes are rigid.

III. BREATHING MODES OF ADSORBATE ON A SINGLE
TUBE

The numerical method of Paper I was used to compute the
adlayer angular frequency �AD for He and H2 in commensu-
rate phases on single, isolated nanotubes. In brief, the ground
state potential energy Vmin for an adsorbed layer is computed
for �N ,0� zigzag SWNTs of various N, i.e., variable radius R.
NT with radii in increments of N=3 were considered to ac-
commodate the �3 phase. For each value of R, three possible
commensurate phases were considered: the �3��3 R30°
phase, the 1�1 phase, and a striped 1��3 phase. The last
two phases are displayed in Fig. 1. The radii of the NTs
considered here are in the range where the 1�1 phase is the
most stable phase for He adsorption and either the 1�1 or
the 1��3 phase is the most stable phase for H2 adsorption
�see Table I�. The familiar �3��3 R30° stable phase is
known to be the stable phase for He and H2 on planar graph-
ite, but higher density adlayers are accommodated on the
tubes due to curvature, as described in Paper I. �Paper I in-
dicates that the transition to the �3��3 R30° phase occurs
for a �42,0� NT for H2 adsorption and at radii greater than a
�200,0� NT for He adsorption.� By investigating the depen-
dence of the energy on the adsorbate distance d �Fig. 2� and
minimizing, one obtains the equilibrium value �d0� and the
corresponding potential energy Vmin, tabulated below. Fig-
ures 3 and 4 display the dependence of d0 on the radius of
the tube for the most stable phases. The second derivative of
the potential energy with respect to adlayer distance yields a
breathing mode force constant, k0=V��d0�=m�AD

2 . The cor-
responding potential energy Vmin includes both adsorbate-
adsorbate interactions and adsorbate-adsorbent interactions,
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as described in Paper I; in these calculations, the atomicity of
the NT is important and the adsorbate-adsorbent interaction
for each carbon atom is included in the ground state energy.
In the table, we present an estimate of the total energy per
adparticle:

Eest = Vmin + ��AD/2. �10�

The second term is the zero-point energy associated with the
breathing mode; it is a significant energy, as discussed below.
Omitted from this estimate is the contribution from circum-
ferential quantum fluctuations, i.e., zero-point motions tan-
gent to the nanotube. In an Einstein-like model, this “miss-
ing” energy would be ��CI, including two tangential degrees
of freedom per particle, with an average frequency we call
�CI. Although we have not calculated this energy, an esti-
mate can be obtained from calculations and measurements
carried out for helium and hydrogen films in commensurate
phases on graphite;19–21 these results are ��CI �40 K for
hydrogen and ��CI �15 K for helium, with an isotope de-
pendence varying approximately as the inverse square root
of the mass. These circumferential energy estimates are
smaller than the tabulated radial frequencies: ��AD is
220–230 K for H2 and is �100 K for a 4He film adsorbed
on a zigzag NT. These results are only slightly dependent on
NT radii.

Note that the zero-point energy varies for H2, but not for
He. This difference is likely due to a switch of the stable
phase for H2 in the range considered.
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FIG. 3. Dependence of d0 on R for H2 adsorption. Values shown
in the figure are for the striped phase, which is the most stable phase
for NT with radii from 5 to 14 Å. The value of d0� is a slowly
varying function of radius, with the variation increasing at large
radius.
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FIG. 1. ��a� and �b�� Nanotube projected onto two dimensions
by unrolling the cylindrical graphite sheet. Adatoms � *� are ar-
ranged in �a� a 1�1 phase and �b� a striped 1��3 phase. �c� The
transverse cross section shows the tube radius R, the equilibrium
adsorption distance d, and radial atom nearest neighbor distance rir.

TABLE I. Summary of stable phase parameters and breathing
mode frequencies for commensurate phases on various SWNTs,
with radius given. Note that the conversion from K to cm−1 is
1 K�0.695 cm−1.

Radius
�nm� Stable phase

Eq. dist
�Å�

Vmin

�K�
��AD

�K�
Eest

�K�

Hydrogen

0.23 1�1 2.78 −527 227 −413

0.35 1�1 2.82 −545 223 −434

0.47 1��3 2.82 −516 231 −401

0.59 1��3 2.84 −537 234 −420

0.70 1��3 2.85 −552 234 −435

0.82 1��3 2.85 −562 232 −446

Helium

0.23 1�1 2.51 −166 101 −115

0.35 1�1 2.53 −181 105 −129

0.47 1�1 2.56 −189 104 −137

0.59 1�1 2.58 −193 101 −142

0.70 1�1 2.58 −195 105 −143

0.82 1�1 2.60 −196 100 −146
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FIG. 2. H2-NT interaction for a 1��3 �stripe� phase adsorbed
H2 layer interacting with a �12,0� SWNT.
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For comparison with these breathing mode energies of the
adlayer, we note that experimental measurements of energy
levels of single particles near graphite have been obtained
from bound state resonance �“selective adsorption”� energies
deduced from molecular beam scattering data for graphite.
The measured values for the ground state energy are
−480±5 K for H2 and −144±2 K for 4He.22,23 The corre-
sponding vibrational excitation energies are 170 and 65 K,
respectively. In comparing these graphite-derived values
with the energies computed for a NT’s adlayer, there are
several differences, having opposite effects, to consider. Two
factors make the NT less attractive than graphite: �a� the
nanotubes’ adsorption potential arises from a single surface,
while the graphite potential has �30% contribution from the
semi-infinite subsurface layers, and �b� the nanotube surface
is curved, reducing the attraction to some extent. The com-
peting factor for the NT adlayer �increasing both its binding
energy and the force constant� is that the adlayer’s breathing
mode frequency includes the mutual interaction effects,
which are considerable, compensating for the two factors
mentioned above.

It is intriguing to observe that the total estimated energy
for the NT adlayer is very similar �within 10%� to the ground
state energy of a single 4He or H2 molecule. In contrast, for
both adsorbates, the adlayer breathing mode is significantly
larger than that of a single particle; for example, in the H2
case, the former is about 220 K while the latter is 170 K. We
do not know why these quantities behave somewhat differ-
ently; the three environmental differences cited above, with
competing signs, prevent us from offering a simple interpre-
tation.

IV. MODES OF QUASI-1D FILM WITHIN A GROOVE

In this section, we evaluate the spectrum of transverse
modes for the quantum gases He and H2 confined in
quasi-1D phases in the groove between two nanotubes. We
take the z axis to lie parallel to the groove and the tubes’
axes, while the x axis is parallel to the vector between the
center of one tube and that of the other nanotube. Similar

studies of this spectrum were carried out previously for other
gases confined within the groove.16,17 As expected, there ex-
ist, in addition, longitudinal phonon modes �not studied here�
propagating in the z direction, which are acoustic, with
speeds determined primarily by the speed of sound of the
�strictly� 1D phase, as determined by ground state calcula-
tions of these phases.24,25 The two branches of transverse
modes occur at higher frequencies, arising when the admol-
ecules vibrate perpendicular to the �z� direction of the
groove. These modes are the focus of this section. In the
specific circumstance considered here, the groove phase den-
sity � equals that ��0� of the 1D equilibrium phase, so that
the transverse mode frequencies at long wavelength are de-
termined solely by the gas-surface interaction. The reason is
that the transverse motion at this specific density affects the
gas-gas interaction energy only to higher �quartic� order than
the �gas-surface interaction� energy which enters the calcu-
lation of the phonon frequency. This fact means that the
long-wavelength transverse frequencies are just those of an
independent vibration of individual molecules in the groove.
Because this statement would not be valid at finite wave-
length, such modes would require a self-consistent phonon
theory because of the large zero-point effects present for
these highly quantum adsorbates. Such a self-consistent,
quasi-1D theory, the analog of treatments of three-
dimensional quantum solids, is beyond the scope of the
present study. In any case, based on experience with other
gases in this environment, we expect that the effect of the
interparticle interaction on these modes is so small as to be
negligible; the modes are essentially at constant frequency,
independent of wavelength.

Because these modes of the groove phase are transverse
and the potential energy in the groove is not cylindrically
symmetric, the relevant spectrum involves two distinct fre-
quencies. These are both determined from a single force con-
stant for the film, called kNT, which is evaluated from the
substrate’s potential energy field. That field is the sum of
contributions from the two tubes, which we assume to have
identical radii R; the more general case of distinct radii can
be evaluated, if needed, from the adsorption potential of a
single nanotube, U�r�, which is cylindrically symmetric.
Lacking more detailed information about the chirality of the
two nanotubes, we ignore discrete substrate atom effects on
the potential and thus compute the frequencies from expres-
sions derived previously for adsorption near a nanotube
made of continuous carbon, i.e., smeared out atoms.16,17 The
result in this case is that the two transverse mode frequencies
satisfy

�Tx�q� = �kx/m�1/2, �11�

�Tz�q� = �kz/m�1/2. �12�

By analyzing the geometry of the groove phase, we de-
duce the force constant values from the interaction U�r�. Ex-
panding this function about the minimum, at r0, one gets a
force constant kNT=U��r0�. Then, by analyzing the groove
geometry, we get

kx = 2kNT cos2 � , �13�

do'= 0.016
R2 = 0.9613
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FIG. 4. Diamonds indicate the dependence of d0 on R for He
adsorption. Values shown in the figure are for the 1�1 phase,
which is the most stable phase for the range of radius shown. The
nearly straight line indicates that the value ��0.016� of d0� is a weak
function of radius, and one linear fit is shown.
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kz = 2kNT sin2 � . �14�

Let us define �NT= �2kNT /m�1/2. Then, �Tx�q�=�NT cos �
and �Tz�q�=�NT sin �. In these preceding expressions, the
factor 2 arises from the additive contributions of the two
nanotubes adjacent to the groove. � is the angle between the
line joining the tubes and the line from the center of a nano-
tube to the equilibrium position of the adatom. If the latter
position lies at a height H above the plane containing the
tubes’ centers, and these centers are a distance d apart, then
�=tan−1�2H /d�=cos−1�d / �2rmin��, where rmin is the equilib-
rium radial distance of the adsorbed particle above a single
nanotube. Table II provides representative values of the vari-
ous quantities, based on the assumption that d=2R+3.35 Å,
the constant 3.35 Å being the separation between the tubes.

These frequencies are approximately a factor 1.5 larger
than those found for the geometry discussed in the previous
section, a single nanotube. The principal reason for this dif-
ference is the fact that two nanotubes contribute to the re-
storing force in the groove case. That factor gives rise to a
factor 21/2 in the frequency, roughly the observed ratio of
frequencies. This interpretation of the results is simple al-
though both the mutual interactions and the atomicity of the

surface play a role in the single nanotube case, while they
play no role in the groove phase.

V. SUMMARY

In this paper, we have computed the long-wavelength
spectrum of breathing modes of the quantum gases 4He and
H2 in two geometries. The contributions to these modes’
frequencies arise from the substrate nanotubes, and these
forces dominate the determination of the frequency explored
here. The geometry of the first mode, discussed in Sec. III, is
that of a commensurate phase adsorbed on a single nanotube.
In that case, the mutual interactions between the adsorbed
particles and the adsorption interaction contribute to the re-
storing force. The second geometry is that of a quasi-1D gas
within the groove between two nanotubes. In that case, at the
equilibrium density, the mutual interactions do not contribute
to the restoring force because the long-wavelength motion
changes no interparticle spacings.

The resulting frequencies in the groove phase are of order
140 K for 4He and of 326 K for H2. They are a factor �1.5
smaller for the commensurate phase on a single tube. The
relationship between the results for the different geometries
is attributed to the significantly stronger forces in the groove
phase. The relationship between the frequency values for the
two gases is qualitatively consistent with expectation based
on the adsorption forces.
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