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We study the development of electron-electron correlations in circular quantum dots as the density is
decreased. We consider a wide range of both electron number, N�20, and electron gas parameter, rs�18,
using the diffusion quantum Monte Carlo technique. Features associated with correlation appear to develop
very differently in quantum dots than in bulk. The main reason is that translational symmetry is necessarily
broken in a dot, leading to density modulation and inhomogeneity. Electron-electron interactions act to enhance
this modulation ultimately leading to localization. This process appears to be completely smooth and occurs
over a wide range of density. Thus there is a broad regime of “incipient” Wigner crystallization in these
quantum dots. Our specific conclusions are �i� the density develops sharp rings while the pair density shows
both radial and angular inhomogeneity; �ii� the spin of the ground state is consistent with Hund’s �first� rule
throughout our entire range of rs for all 4�N�20; �iii� the addition energy curve first becomes smoother as
interactions strengthen—the mesoscopic fluctuations are damped by correlation—and then starts to show
features characteristic of the classical addition energy; �iv� localization effects are stronger for a smaller
number of electrons; �v� finally, the gap to certain spin excitations becomes small at the strong interaction
�large rs� side of our regime.
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I. INTRODUCTION

One of the fundamental quests in condensed matter phys-
ics research is to understand the effects of strong correlation
between a system’s constituent particles. A simplified system
of particular interest is the “electron gas,”1 in which conduc-
tion electrons interact pairwise via Coulomb forces while the
effect of atoms is ignored. It is well known that the electron
gas has a Fermi liquid ground state with extended wave
functions in the limit of high electron density, while when
the density is decreased, thereby increasing the interaction
strength, electrons become localized in space and order
themselves in a “Wigner crystal” phase.1 The interaction
strength is often parametrized by the gas parameter rs
= �cd /aB

*��1/n�1/d, where n is the electron density, d is the
spatial dimension, aB

* is the effective Bohr radius, and cd is a
dimension-dependent constant.2 In two dimensions, rs
=1/aB

*��n�1/2. The physics at intermediate rs continues to
offer puzzles, both from theory and experiments. There has
been numerical evidence in bulk two3–5 and three6,7 dimen-
sional �2D and 3D� systems that a single transition takes
place at rs

c,2D�30–35 and rs
c,3D�100. However, recent work

in 2D has predicted more complex phases and associated
transitions or crossovers around these critical values.8–14

While the experimental evidence is largely inconclusive,15,16

and in particular the way in which the transition occurs is not
known experimentally, the problem has drawn a great deal of
attention due to the hope of uncovering fundamental aspects
of correlation effects.

Over the past decade or so, small confined systems, such
as quantum dots �QD�, have become very popular for experi-
mental study.17,18 Beyond their possible relevance for nano-
technology, they are highly tunable in experiments and intro-
duce level quantization and quantum interference in a

controlled way. In a finite system, there cannot, of course, be
a true phase transition, but a crossover between weakly and
strongly correlated regimes is still expected. There are sev-
eral other fundamental differences between quantum dots
and bulk systems: �a� Broken translational symmetry in a QD
reduces the ability of the electrons to delocalize. As a result,
a Wigner-type crossover is expected for a smaller value of rs.
�b� Mesoscopic fluctuations, inherent in any confined
system,17,19 lead to a rich interplay with the correlation ef-
fects. These two added features make strong correlation
physics particularly interesting in a QD. As clean 2D bulk
samples with large rs are regularly fabricated these days in
semiconductor heterostructures,20 it seems to be just a matter
of time before these systems are patterned into a QD, thus
providing an excellent probe of correlation effects.

Circularly symmetric quantum dots have been a focal
point of theoretical attention for several years.21 Early calcu-
lations using density functional theory �DFT� within the lo-
cal spin density approximation showed a spin density wave
�SDW� signature for rs as small as 2.22,23 Unrestricted
Hartree-Fock �UHF�24 yielded both SDW and charge density
wave �CDW� features for rs�1. These were initially identi-
fied as signatures of strong correlations related to the analog
of a Wigner crystal in a finite system, often called a “Wigner
molecule.” However, SDW and CDW both break the funda-
mental rotational symmetry of the 2D circular dots. Indeed,
later calculations confirmed that these effects are largely ar-
tifacts of the approximations used.23,25–30 Projection methods
were then used to restore symmetries as a second stage
of the UHF calculations.31–35 DFT has been pushed toward
the large rs limit through the average spin density
approximation.36 However, the validity of all these
methods—those that reduce an interacting problem to an ef-
fective noninteracting one—remain questionable, particu-
larly for large rs.
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More demanding computational techniques, which treat
the correlations in an exact fashion, have also been applied to
this problem. For example, exact diagonalization �ED� is ac-
curate for small QDs,26,30,37 but becomes exponentially in-
tractable for dots with more than six electrons �N�6� and
rs�4. Path integral Monte Carlo �PIMC� has also been ap-
plied to large rs circular dots.38–42 One study38 found a cross-
over from Fermi liquid to Wigner molecule behavior at rs
�4, a value significantly smaller than the bulk rs

c,2D.
Another,40 using different criteria for the transition, found a
two-stage transition for rs larger than rs

c,2D. Although PIMC
treats interactions accurately, it has its own systematic and
statistical problems; for instance, it generates a thermal av-
erage of states with different L and S quantum numbers,
preserving only Sz symmetry. Since the energy for low-lying
spin excitations becomes very small in the low density limit,
the constraint on the temperature in order to access the
ground state becomes extremely stringent. In the absence of
a coherent picture, the role of correlations in QD remains an
open problem.

The most accurate method for treating the ground state of
strongly interacting quantum dots, in our opinion, is varia-
tional Monte Carlo �VMC� followed by diffusion Monte
Carlo �DMC�. This has been carried out in a number of cases
for high to medium density quantum dots.43–47 We discuss
this method in more detail below. Briefly, while there is a
systematic “fixed-node error,” it is considerably smaller than
the systematic and statistical errors of PIMC.

In this paper, we present a systematic study of circular
parabolic QDs over a wide range of interaction strengths
using an accurate VMC and DMC technique. We demon-
strate how strong interactions bring out the interesting as-
pects of the Wigner physics in QDs; a short report on some
aspects appeared in Ref. 48. Our main results are the follow-
ing:

�i� The development of inhomogeneities as the interaction
strength increases is completely smooth, with no discernible
special value below rs�18 for all N�20.

�ii� The density develops sharp rings but remains circu-
larly symmetric; the pair densities show both radial and an-
gular inhomogeneity.

�iii� The spin of the ground state follows Hund’s �first�
rule throughout our entire range of rs for all 4�N�20: it is
the maximum consistent with the shell structure, in contrast
to several previous claims.23,27,36,38,42 We do find many vio-
lations of Hund’s second rule—the value of the orbital angu-
lar momentum is not necessarily a maximum—but a modi-
fied second rule holds for small rs.

�iv� The addition energy curve first becomes smoother as
interactions strengthen—the mesoscopic fluctuations are
damped by correlation—and then starts to show features
characteristic of the classical addition energy, indicating in-
cipient Wigner crystallization.

�v� Localization effects are stronger for a smaller number
of electrons.

�vi� Finally, the gap to certain spin excitations becomes
small at the strong interaction side of our regime.

The organization of the paper is as follows. In Sec. II, we
describe the model and parameters for the quantum dots we
study. Section III discusses our technical tools, VMC and

DMC. We present our results in Sec. IV. We focus our atten-
tion first on the density and pair densities; it is these two
quantities that encode rich information on the correlation-
induced inhomogeneities. We then discuss the energy of the
ground and excited states. The interesting issue of spin cor-
relation in a QD in the large rs limit is addressed at the end
of the section. Finally, we present our conclusions in Sec. V.

II. MODEL AND PARAMETERS

We consider quantum dots with N electrons confined in a
circularly symmetric harmonic potential, Vcon�r�=m*�2r2 /2,
using the Hamiltonian

H = �
i=1

N �−
�2

2m*�i
2 + Vcon„ri…� + �

i�j

N
e2

�

1

�ri − r j�
, �1�

where m* is the effective mass of the electrons and � is the
dielectric constant of the medium. We consider 2D systems,
so that r2=x2+y2. This is because experimental dots made by
patterning GaAs/AlGaAs heterostructures have very strong
confinement in the z direction so that they are essentially two
dimensional. The last term in the Hamiltonian is the pairwise
Coulomb repulsion between electrons. The strength of this
interaction is characterized by the gas parameter, rs �in units
of the effective Bohr radius aB

*�, which is related to the av-
erage density of electrons, n̄	
n2�r�dr /N, by rs	��n̄�−1/2

�in 2D�. More physically, rs is essentially the ratio between
the potential and kinetic energy of the system, justifying its
identification as the interaction strength. We tune rs by vary-
ing � in Vcon�r�; this makes the confining potential more
narrow or more shallow, making the average density at fixed
N larger or smaller, thus controlling rs.

The confining potential prevents the electrons from flying
apart from each other, and thus an extra positive background
charge is unnecessary for the stability of the dot. In the limit
of weak interaction, the density and number of electrons in
the dot are related to the strength of the confinement by �2

=e2 / ��m*rs
3�N�. In general, the electron-electron interactions

tend to expand the dot, making the effective � smaller than
the bare �. This is quite significant for large rs, and so the
above simple relation between � and rs breaks down.

Circular parabolic confinement is a good description for
the experimental vertical dots, as well as for the few electron
lateral dots where electrons sit in the central region far from
the confining gates.49 In this paper, we assume that the cir-
cular geometry is preserved even at large rs, leaving the issue
of irregular dots47 for future study.

Throughout this paper we use effective atomic units in
which the length unit aB

* is � /m* times the Bohr radius aB,
and the energy is given in effective Hartrees, H*=m* /�2 Har-
trees. For GaAs, for example, m*=0.067me and �=12.4,
leading to aB

* =98 Å and H*=11.9 meV.
We have studied the Hamiltonian �1� for a wide range of

parameters. We varied � between 3.0 and 0.0075 for 2�N
�20. For the range of � considered, rs lies in the range 0.4
to 18.
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III. METHOD

Circular parabolic dots with noninteracting electrons are
described by single-particle orbitals, called Fock-Darwin
�FD� orbitals, specified by principal quantum number n and
azimuthal quantum number l. The energy of the orbitals is

En,l = �2n + �l� + 1��� . �2�

The effective interaction between electrons can be built into
the single particle problem within the framework of a mean
field theory, such as the DFT or UHF methods mentioned in
the Introduction. These introduce some interaction effects
into the single-particle wave functions—for instance, the re-
sulting orbitals are more extended than the corresponding
noninteracting Fock-Darwin orbitals.

As a starting point of our calculation, we use Kohn-Sham
�KS� orbitals 	
�r�, from a DFT calculation within the local
density approximation �LDA�. We then construct configura-

tion state functions �CSFs� that are eigenstates of L̂, S2̂, and

Sz
ˆ , each of which is a sum of a product of up- and down-spin
Slater determinants,

�i
L,S�R� = �

j=1

m

�ijDj
↑Dj

↓. �3�

R	�r1 ,r2 , . . . ,rN denotes collective coordinates of the N
electrons, and D↑, D↓ are Slater determinants of spin-up and
spin-down KS orbitals, respectively. The coefficients �ij are
determined by the requirement that �L,S�R� is an eigenstate

of L̂, Ŝ2, and Sz
ˆ .

The many-body trial wave function that we use is

T
L,S�R� = J �

i=1

NCSF

ci�i
L,S�R� , �4�

where the Jastrow factor J=JenJeeJeen is the product of
electron-nucleus, electron-electron, and electron-electron-
nucleus factors. By “nucleus” here we mean the center of the
harmonic external potential. The detailed form of the Jastrow
factor can be found in Ref. 50. The independent parameters
to be optimized are the ci and the parameters in J. The linear
combination of CSFs builds in the near-degeneracy correla-
tion in the wave function, whereas the Jastrow factor effi-
ciently describes the dynamic correlation that would other-
wise require a very large number of CSFs. The Jastrow factor
is so effective that only a small number of CSFs is needed.

In the very weakly interacting limit, the ground state con-
sists of simply filling the lowest energy single-particle orbit-
als. Both the circular and harmonic nature of the external
potential cause degeneracies in the noninteracting spectrum,
Eq. �2�, and hence in the noninteracting many-body spectrum
as well. Thus there is a definite “shell structure” in the ener-
gies of the many-particle states, much as in atoms. The shells
are full for N=2,6 ,12,20, . . .; for these values of N the
ground state clearly has L=0 and S=0. For intermediate val-
ues of N, the orbitals are filled so that the interaction effects
yield the lowest energy. For the total spin, Hund’s first rule,
familiar from atomic physics, applies here as well: the elec-
trons in the open shell arrange so as to have maximum pos-

sible spin in order to gain exchange energy. For instance, the
ground state for N=9 has S=3/2.

For all of the results shown in this paper, we use only
CSFs constructed from the lowest energy shells consistent
with the desired L and S: no intershell excitations are used.
Thus for the ground state, the CSFs we include are those for
the �possibly degenerate� noninteracting ground state. For a
closed shell and L=S=0, for instance, there is only one such
CSF. For an open shell, there can be more than one CSF
meeting our criteria; as an illustration, consider the L=S=0
state of N=8. Six electrons fill the lowest two shells while
two are distributed among the third shell’s three levels, �n
=1, l=0� and �n=0, l= ±2�. The desired state can be made in
two ways, by either putting both electrons in the former level
or putting one in each of the latter �in a singlet state�. We
always include both of these CSFs in our calculations for this
state. For a given N, we consider all L and S which can be
obtained with CSFs built from orbitals in the lowest energy
shell.

Selected cases are further checked by including more
CSFs. For N=3, 6, 7, 9, and 20, some �L ,S� values were
studied with CSFs which included up to two intershell exci-
tations. For the range of rs studied here, the energies of these
states were not significantly changed by including these ad-
ditional CSFs, giving confidence in the accuracy of our re-
sults.

We perform both variational Monte Carlo �VMC� and dif-
fusion Monte Carlo �DMC� calculations. Both the VMC and
the DMC energies are upper bounds to the true ground state
energy, EGS. The VMC energy, EVMC�EGS, is

EVMC =
� T

*�R�HT�R�dR

� T
*�R�T�R�dR

=� dREL�R�P�R� � �
i=1

NMC

EL�Ri� . �5�

Here, �a� the NMC Monte Carlo configurations are sampled
from P�R�= �T�R��2 /
�T�R��2dR, and �b� EL�R�
=T

−1�R�HT�R� is the local energy which is constant and
equal to the true energy in the limit that T is an exact
eigenstate. The variational parameters were optimized using
the variance-minimization method,51 and some of the results
were checked by using two recently developed energy mini-
mization methods.52,53

We use diffusion Monte Carlo �DMC� to project out the
best estimate of EGS starting with the optimized T. The
DMC method employs the importance-sampled Green’s
function,

G�R�,R,�� = T�R���R��exp�− H���R�/T�R� , �6�

to project out 0�R�T�R�, where 0�R� is the lowest en-
ergy state that has the same spatial and spin symmetry as
T�R�. As � becomes large, the amplitudes of higher energy
states decay exponentially compared to that of the ground
state. However, G�R� ,R ,�� is not known exactly for the
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Hamiltonian H of Eq. �1�, and a short time approximation to
exp�−H�� using the Trotter formula is used repeatedly to
achieve the desired projection. We use a refined algorithm
following Ref. 54 which has a very small time step error.

The mixed estimator for the DMC energy,

EDMC =
� 0

*�R�HT�R�dR

� 0
*�R�T�R�dR

, �7�

equals the ground state energy E0. However, mixed estima-
tors ODMC of operators that do not commute with the Hamil-
tonian, such as the density, have errors that are linear in the
error in T. On the other hand, the extrapolated estimators
2ODMC−OVMC and ODMC

2 /OVMC have errors that are qua-
dratic in the error in T. All of the data shown in this paper
for such operators is based on the extrapolated estimators,
labeled “QMC,” unless explicitly marked “VMC.”

The function which minimizes the energy in the absence
of any constraints has bosonic symmetry, but we are inter-
ested in the lowest Fermionic state. Consequently, compared
to the Fermionic state of interest, the bosonic component
grows exponentially fast. In the absence of statistical noise,
one could still employ symmetry to obtain the fermionic en-
ergy, but in a MC method the estimate for the energy has a
statistical error that grows exponentially with �. The fixed-
node approximation prevents this catastrophe by imposing
the constraint that the nodes of 0�R� are the same as those
of T�R�. The result of this constraint is that the fixed-node
DMC energy is an upper bound to the true energy. For flex-
ible wave functions with well-optimized parameters the
fixed-node error is typically very small.

In our circular quantum dots, since states with angular
momentum L are degenerate with those of angular momen-
tum −L, we are free to construct real wave functions by
choosing the linear combinations, T

L,S+T
−L,S and T

L,S

−T
−L,S. In this case we can use the fixed-node approxima-

tion. If instead we choose to employ states with definite L
then the wave functions are complex, and we must use the
fixed-phase approximation,55,56 the generalization of the
fixed-node method to complex wave functions. Usually the
fixed-phase error is comparable to and slightly larger than
the fixed-node error.

Technical considerations limit the present study to ap-
proximately rs�18. For larger rs, one expects that more
CSFs should be included in the trial wave function because
excitations across the shell gaps produced by the interactions
become more important. For example, for the N=6 ground
state �L=S=0� with �=0.01, inclusion of CSFs correspond-
ing to two intershell excitations lowers the energy from
0.689 228�5� to 0.689 202�5�. However, the variance optimi-
zation used for most of our results fails to lower EVMC or
EDMC if there are more than 3–4 CSFs in T �though it does
lower the fluctuations of the energy�. For a few cases, includ-
ing moderate and large rs and several N, we have done pre-
liminary calculations with higher orbitals by including all
determinants involving promotion of two electrons across a
shell gap �e.g., 10 CSFs for N=20�, using two recently de-

veloped energy optimization procedures.52,53 This, then, al-
lows for a change in the nodes of T�R�. We find that typi-
cally a multi-CSF calculation produces a slight decrease in
the energy for rs�15, with larger decreases per electron for
smaller N. The change in the spatial structure, as in the den-
sity and pair-density discussed below, is even smaller than
that in the energy.

IV. RESULTS

Examples of DMC energies from our calculations are pre-
sented in Table I. For the purpose of comparison, we also
include energies obtained using other techniques. The DMC
energies, which are an upper bound on the true ground state
energies, are lower than those obtained from the other meth-
ods, showing the accuracy of the method.

Further results are organized in six topical areas: the elec-
tron density, the pair density, real vs complex wave function,
the addition energy of the dot, the ordering of the different
�L ,S� states in energy, and the nature of the spin correlations.
The sensitivity of these results to aspects of the
methodology—VMC vs DMC, and the type of single particle
orbital—are discussed in the Appendix.

A. Spatial density profile

The evolution of the radial density of electrons, n�r�, as rs

varies is shown in Fig. 1. The ground state density at four
different rs is plotted for four values of N �7, 9, 16, and 20�.
With increasing rs, the electron-electron repulsion expands
the system spatially; note that the linear dimensions of the
dot scale roughly linearly with rs, as expected given the re-
lation between rs and the average density.

Figure 1 shows that increasing rs causes the density pro-
file to change dramatically. For small rs, the density is fairly
smooth, with some weak structure coming from the nonin-
teracting shell structure. We found that the weak structure in
n�r� for small rs is very similar to that obtained from Fock-
Darwin orbitals consistent with the shell filling. On the other
hand, large rs induces strong modulation in n�r�, resulting in
the formation of radial rings in the density profile. The rings
become sharp with increasing rs. Strikingly, once rs becomes
larger than 10–12, the number of rings is the same as in the
classical limit57 for that N: one ring for N�5, two rings for
6�N�15, and three rings for larger N’s up to 20. Further-
more, for these larger rs, the average number of electrons in
the outer ring �obtained by simply integrating the density
over that region� is mostly consistent with the classical
value.

If one employs wave functions of definite orbital angular
momentum quantum number L, both the total density and the
spin densities must be circularly symmetric �in two dimen-
sions�. Since our VMC and DMC methods do not break this
symmetry, we obtain circularly symmetric densities in all
cases. However, at sufficiently large rs even a small pertur-
bation of the circular symmetry would be sufficient to pin
electrons; in that case, the density would have the sharp
peaks of a Wigner localized state. In the absence of a pertur-
bation, the signature of localization is in the pair density, as
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discussed in the next subsection, even when it is absent in
the density. Alternatively, a symmetry broken density profile
is obtained when L is not fixed; this case is treated in Sec.
IV C.

We find that the formation of the rings and the increase of
their sharpness is completely smooth. To quantify this state-
ment, we define a quantity, the “fractional peak height”
�FPH�, that tracks the sharpness of the rings in n�r�. Its defi-

nition and dependence on rs is presented in Fig. 2. The FPH
is the ratio of the depth of the valley in n�r� between the two
outer rings to the “average” height of the rings, AB /AC. In
Fig. 2 the FPH always increases with rs as expected �see the
Appendix for the corresponding VMC result�. However, the
increase is surprisingly smooth for the whole range of rs
studied. We thus infer that its increase is not associated with
any special value of rs signifying a threshold or “onset.” The

TABLE I. The ground state energy of a circular 2D quantum dot obtained by three different computational
methods: diffusion quantum Monte Carlo �DMC�, full configuration interaction �CI�, and path-integral quan-
tum Monte Carlo �PIMC�. N, L, and S specify the number of electrons in the dot, their angular momentum,
and their spin. The energy is given in units of ��, the characteristic energy of the external parabolic confining
potential. �=1/�� �in atomic units� characterizes the strength of the interactions.

N �
rs

�approx.� L S
DMC

�this work�
CI

�Ref. 37� Sz

PIMC
�Ref. 38�

6 8 12.5 0 0 60.3251�3� 60.64

1 1 60.4027�3� 60.71 1 60.37�2�
0 2 60.3520�2� 60.73

0 3 60.3924�2� 60.80 3 60.42�2�
10 16.3 0 0 68.9202�5� 69.74

1 1 69.0568�7�
0 2 68.9254�6� 69.81

0 3 68.9458�4� 69.86

7 4 5.2 0 1/2 53.7351�3� 54.69

2 1/2 53.7265�2� 54.68

1 3/2 53.8183�2� 54.78

0 5/2 53.8357�2� 54.93

3 7/2 54.1633�1� 55.20

8 12.4 0 1/2 80.3846�4�
2 1/2 80.4925�4�
1 3/2 80.4795�4�
0 5/2 80.4135�3� 5/2 80.45�4�
3 7/2 80.5146�2� 7/2 80.59�4�

8 2 2.1 0 0 46.8070�4�
2 0 46.8746�4�
4 0 46.7793�3�
0 1 46.6787�3� 1 46.5�2�
2 1 46.7560�4�
1 2 46.9170�4� 2 46.9�3�
0 2 47.4058�4�
3 3 47.4035�3� 3 47.4�3�
0 4 48.1810�4� 4 48.3�2�

8 12.2 0 0 102.9402�4�
2 0 102.9464�4�
4 0 103.0465�4�
0 1 102.9263�4�
2 1 102.9198�4�
1 2 102.9280�4� 2 103.08�4�
0 2 103.1965�4�
3 3 103.0185�3� 3 103.19�4�
0 4 103.0464�4� 4 103.26�5�
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continuous thin lines are the best fits of our QMC results to
power-law behavior. Even though the best fit curve is ��rs
for small N �e.g., 7 and 9�, for larger N=16,20, it is nearly
linear. A large FPH signifies stronger radial localization as
the rings tend to decouple from each other. From Fig. 2, we
see that for the larger values of rs, small N dots are more
strongly radially localized for a similar interaction strength.

The FPH is, by construction, a sort of “peak to valley
ratio,” and the construction used here is not unique. How-
ever, we have checked for a few cases that a different con-
struction �e.g., the ratio between the height of the valley and
the outer peak� leaves our conclusions unchanged.

The smooth and featureless increase of FPH with rs de-
velops naturally from the radial structure created by nonin-
teracting shell effects. The latter can be physically thought of
as Friedel oscillations due to radial confinement. Our results
show that these oscillations smoothly grow into strong inho-
mogeneities, finally leading to radial localization. This sug-
gests that the electron-electron interactions are acting on
preexisting oscillations, namely those caused by noninteract-
ing interference effects, and smoothly amplifying them.

This point is further made by exploring explicitly the role
of electron-electron correlations in the density profile. We
show in Fig. 3 the density resulting from four successively
better treatments: noninteracting, DFT in the LDA approxi-
mation, VMC, and finally fixed-node QMC �extrapolated es-
timator�. We use the N=20 ground state for rs�15. As ex-
pected, we see that the interaction significantly modifies n�r�
at this large rs, first by greatly expanding the dot at the DFT
level compared to the noninteracting description, and then by
amplifying the inhomogeneous structures �e.g., rings�, as
seen by comparing the DFT and QMC results. We note that
the difference between the DFT and QMC densities is large
compared to the corresponding difference for real atoms,58

reflecting the fact that the dot is much more strongly corre-
lated.

B. Pair density

The issue of correlation induced localization of the indi-
vidual electrons cannot be addressed by looking at the den-

(a)

(b)

FIG. 1. Radial electron density n�r�=n↑�r�+n↓�r� in the ground
state for four values of N and four interaction strengths rs. �a� N
=7, �L ,S�= �0,1 /2�, �b� N=9, �L ,S�= �0,3 /2�, �c� N=16, �L ,S�
= �0,2�, and �d� N=20, �L ,S�= �0,0�. As rs increases, strong radial
modulation develops leading to ring structure in n�r�. The number
of rings for rs�10 is the same as in the classical limit �rs→��: two
for the first two panels and three for the last two. �The values of �
used are for N=7 and 9, �=0.8, 0.08, 0.02, and 0.01; for N=16,
�=0.269, 0.06, 0.02, and 0.01; and for N=20, �=0.8, 0.04, 0.02,
and 0.0075.�

FIG. 2. Evolution of the sharpness of the rings in n�r� with rs,
which measures the radial inhomogeneity in the dot. The sharpness
is quantified in terms of the “Fractional Peak Height” �FPH�, the
construction for which is shown in the inset, FPH=AB /AC. The
main panel shows the rs-dependence of the FPH for the N=7, 9, 16,
and 20 ground states �same states as in Fig. 1�. The lines show the
best fit of the data to power-law behavior. The FPH grows very
smoothly with rs for all N’s without any signature of a special
threshold value. Note that the rings sharpen faster for smaller N,
and that the FPH is nearly linear for the larger N’s.
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sity alone, which is manifestly rotationally symmetric for our
Hamiltonian. The formation of radial rings in the density
implies, as explained in the previous section, radial localiza-
tion of electrons—a feature special to circularly symmetric
confined systems. This symmetry is, however, broken when
one of the electrons is held fixed at a particular position.
Other electrons then organize themselves in the dot so as to
minimize their mutual interaction and kinetic energy; in par-
ticular, when the repulsion is strong enough, electrons local-
ize at the classical positions. Therefore, to address the ques-
tion of individual electron localization we turn to the pair
density.

The spin-resolved pair density, g����r0 ;r�, is defined as
the probability of finding an electron with spin �� at location
r when an electron with spin � is held fixed at r0, and the
total pair density is gT=g↑↑+g↑↓. These quantities detect, in
addition to radial rings, any angular structure induced by the
interactions.

We present in Fig. 4 g↑↓ and g↑↑ for the N=20 ground
state for weak, intermediate, and strong interaction strengths
�rs�0.4, 5, and 15, respectively�. The location r0 of the up-
spin electron is fixed at the outermost local maximum of the
density, i.e., on the center of the outer ring. The behavior of
g����r0 ;r� for small rs is well known: in this weakly inter-
acting limit, the “correlation hole” �the hole around r0 in g↑↓�
is much smaller than the “exchange hole” �the similar hole in
g↑↑�. This is because an opposite spin electron can come
arbitrary close to the fixed one, while a same spin electron is
forbidden to be in its vicinity by the Pauli exclusion prin-
ciple. We see that the correlation hole becomes bigger with
rs, becoming comparable in size to the exchange hole by

intermediate interaction strength �rs�5�. At the same time
that the correlation hole becomes bigger, so do the closest
peaks in the antiparallel-spin pair density, but not those in the
parallel-spin pair density. This is a reflection of the fact that
g↑↓ integrates to N /2 while g↑↑ integrates to N /2−1.

Figure 4 shows that increasing rs induces weak angular
modulation in g����r0 ;r�, in addition to the radial ring struc-
tures. �Sensitivity to the initial single-particle orbitals used is
presented in the Appendix.� Because of the continuous de-
velopment toward sharper angular structure, we view the
higher rs regime as showing “incipient Wigner localization.”

To focus further on this angular modulation, we plot
g����r0 ;r� along the outer ring on which the up spin is fixed
in Fig. 5. We see that the angular oscillations in gT, g↑↓, and
g↑↑ are damped and weak in comparison with the radial
modulation. For the intermediate value of rs, notice the small
but clear oscillations of g↑↓ and g↑↑ all the way around the
ring; these oscillations are out of phase with each other, so
that there is a small amplitude spin pair-density wave. The
period of this wave is approximately �F /2 where the Fermi
wavelength �F is given by the effective 1D density in the
outer ring ��F

�1D�=4/n�1D��.
The angular oscillations grow continuously as a function

of rs, as in the case of radial modulation. We find that the

FIG. 3. The effect of correlations on the radial density at differ-
ent stages of approximation for the N=20 ground state �L=0, S
=0� with rs�15 ��=0.01�. The noninteracting density nFD �dashed�
from Fock-Darwin orbitals is much too compact and has very weak
radial structure. In the LDA result, nLDA �dotted�, the mutual elec-
tronic repulsion makes the dot greatly expand in the radial direction
compared to nFD. Both the VMC result �dash-dotted line� and QMC
extrapolated estimate �solid� show much stronger inhomogeneous
structure due to correlation that the QMC methods build in through
the Jastrow factor.
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FIG. 4. �Color online� Evolution of the spin resolved pair den-
sities, g����r0 ;r�, for the N=20 ground state �L=S=0�. rs increases
from the top to the bottom; g↑↓ is on the left while g↑↑ is on the
right; r0 is chosen near the outer ring of the dot. During the initial
increase of correlation until rs�5, the “correlation” and the “ex-
change” hole become fully developed. A further increase of rs pro-
duces short-range order as seen from the bumps along the outer ring
near r0. The range of these angular oscillations as well as their
amplitude increase gradually with rs, suggesting the term “incipient
Wigner localization” for this regime.
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total pair density is almost featureless even for rs signifi-
cantly greater than 1. Short-range correlations set in for rs
�10; the period in the lower panel is approximately the in-
terparticle spacing of electrons in the outer ring �or equiva-
lently 4kF

�1D��. Even at the largest rs studied here, the weak-
ness of these oscillations suggests that the electrons remain
essentially delocalized on each ring.

One of the intriguing features in the spin resolved pair
density in Fig. 5 is a bump at �=�. At this position, which is
diametrically opposite to the fixed up electron, g↑↑ decreases
while g↑↓ increases compared to their average value �the ef-
fect of the bump disappears from gT�. We find a similar fea-
ture for several N’s with different L ,S combinations when
rs�5. The feature becomes more pronounced as rs increases.
We lack a detailed understanding of this “bump” at this time;
however, we suspect that its origin lies in the nature of the
spin correlation between electrons, which will be discussed
further in Sec. IV F.

We have also studied the pair density with the position r0
of the fixed up electron at different locations. Figure 6 shows
the spin-resolved pair densities for the N=20 ground state at
rs�15 with r0 chosen on the middle ring �upper panel� and
at the center59 of the dot �bottom panel�. These plots, to-
gether with those of Fig. 4, suggest that the angular modula-
tion is produced primarily in the same ring as the fixed elec-
tron, while the other rings remain little affected. This is an
indication that even though the FPH at rs�15 is substan-
tially smaller than its maximum value of 1, the radial local-
ization of the electrons is rather strong so that the rings es-
sentially decouple from each other.

We have studied the pair density for several different N
over a wide range of rs. As an example, the pair density for
a small dot, N=6, in its ground state �a filled shell case� is

shown in Fig. 7 for three values of rs. �The case N=9, cor-
responding to a half-filled shell, was shown in our previous
paper, Ref. 48.� In the classical limit �rs→��, two rings are
expected for N=6—a single electron in the center and an
outer ring containing the remaining five. Note that the rs
�16.3 result is quite consistent with this classical structure.
The way in which the total modulation is shared between g↑↓
and g↑↑ near �=� is surprising �see Fig. 7�d��: all of the
modulation is in g↑↓ while g↑↑ is constant and smaller. We
also notice that compared to N=20 for similar rs, the angular
oscillations in this case are stronger. From our extensive
study, we find, using results for both pair density and density

FIG. 5. Evolution of the angular modulation in g����r0 ;r� along
the outer ring for the same cases as in Fig. 4. g↑↓ is shown by the
dotted line and g↑↑ by the dashed line. The solid line represents the
spin-summed pair-density gT. The location of the fixed electron r0

defines �=0. Note the clear oscillations and the resulting spin den-
sity modulation in the middle panel. In the lower panel �strongest
interactions�, a strong feature at �=� is present.
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FIG. 6. �Color online� Spin resolved pair densities with the fixed
electron chosen on the middle ring �top panel� or in the center of the
dot �bottom panel�. The parameters are the same as in the bottom
panel of Fig. 4.
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FIG. 7. �Color online� Pair densities for the N=6 ground state
�L=S=0, a closed shell configuration�. gT for a fixed electron on the
outer ring is shown for �a� rs�4.5 and �b� rs�16.3. The corre-
sponding angular modulation of the spin-resolved pair densities is
shown in �c� and �d�. The magnitude of the angular modulation is
clearly larger than that for N=20 at similar values of rs �compare
with Fig. 4�: electrons are more localized in smaller dots.
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�previous section�, that modulation caused by correlation ef-
fects is stronger when N is small.

C. Real vs complex trial wave-function

In the absence of a magnetic field, one has the choice, as
discussed in Sec. III, of working with either a complex or a
real wave function. �In fact, for a circularly symmetric po-
tential, one has that choice even in the presence of a mag-
netic field.� A real T is a superposition of the degenerate
states with angular quantum number L and −L, so T is no

longer an eigenfunction of L̂. As a result, the angular part of
the wave function has sin�m�� and cos�m�� terms instead of
exp�im�� �m is an integer�. While the electron density com-
ing from a complex wave function with definite L must be
circularly symmetric, a real wave function may have angular
structure for states with L�0.

A calculation using real wave functions which shows an-
gular modulation is presented in Fig. 8. The spin-resolved
density for N=19 electrons in the L=3, S=1/2 state is
shown using both real and complex orbitals. We emphasize
that the strong modulation seen in the top panels is not in-
trinsically related to strong correlation �though we find that
the modulation amplitude increases with rs�; in particular, the
modulation is found even for small rs. Furthermore, the
modulation disappears in calculations using complex wave
functions, even for large rs, as it must. Oscillations of a simi-
lar nature are found in the pair density—any modulation in
the density must be tracked in the pair density. Thus we
conclude that to identify the correlation induced inhomoge-

neities in a L�0 state, it is important to use a complex T
that has a fixed L.

A disadvantage of using a complex wave function is,
however, that the systematic error is typically slightly larger
�fixed phase instead of fixed-node approximation�. As a re-
sult, energy estimates are more accurate when T is real.

D. Addition energy

The addition energy, �2E�N�, is defined as the second
difference of the ground-state energy with respect to the
number of electrons, N, on the dot,

�2E�N� 	 EGS�N + 1� + EGS�N − 1� − 2EGS�N� . �8�

The addition energy can be accessed experimentally through
the spacing between conductance peaks in a Coulomb block-
ade transport measurement;17–19,21 of the various quantities
that the we discuss in this paper, �2E is the simplest to
measure experimentally. The leading term in the addition
energy of quantum dots is the charging energy. Single par-
ticle effects and corrections to the simple charging model
cause the addition energy to vary with N. For example, in the
noninteracting limit of our Hamiltonian �1�, the spectrum
is given by Eq. �2�, and thus the total many-body energy is a
sequence of straight line segments of increasing slope.
One finds �2E�N�=�� for the “magic numbers”
N=2,6 ,12,20,30, . . . and zero otherwise. These special N’s
correspond to closed shell structures for which �2E�N� has
peaks above its baseline charging value because of the extra
stability provided by the gap between shells. Weak residual
interactions beyond charging produce further small peaks in
�2E for half-filled shells, N=4,9 ,16,25. . .. The general oc-
currence of such peaks is referred to as “mesoscopic fluctua-
tions;” they are always present in a confined system.

The addition energy as a function of electron number is
shown in Fig. 9 for three values of �. As N increases at fixed
�, the dot grows larger but the confinement potential forces
the density to increase as well, causing rs to decrease slightly
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FIG. 8. �Color online� Spin-resolved density calculated with a
real �top� or complex �bottom� wave function. Up- and down-spin
densities for N=19 with L=3, S=1/2 are on the left and right,
respectively. The real trial wave function mixes angular momenta L
and −L and so breaks the rotational symmetry, leading to angular
modulation in the density. The complex trial function has eigen-
value L and shows no angular structure �within our statistics�. Thus
angular modulation occurs in the density if the L symmetry is bro-
ken by construction; such modulation is not due to correlation
effects.

FIG. 9. Addition energy �normalized by ��� as a function of N
for three different � and for the classical limit �Ref. 57� �rs→�,
multiplied by an arbitrary scale�. As interactions strengthen because
of decreasing �, the mesoscopic fluctuations in �2E become
weaker. Note that this happens more readily for small N. Features in
the �=0.01 trace at small N are remarkably similar to those found
in the classical limit, indicating that electrons are nearly localized
for small N.
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with increasing N. In the regime of current experimental
quantum dots ��=0.28 corresponding to rs�2�, our result is
similar to previous studies:21 a base value caused by charging
modulated by shell effects give strong �weak� peaks for filled
�half filled� configurations. Upon increasing the average rs
��=0.04, middle trace�, we find that the strength of these
peaks weakens, signaling a reduction in the mesoscopic fluc-
tuations as a result of electronic correlations. In particular,
notice that the peak at N=6 has disappeared completely. The
fact that the �2E curve is smoother for small N indicates that
correlations are stronger in that regime, a result consistent
with our inference from densities and pair densities.

Upon further decreasing �, and so increasing rs, �2E�N�
becomes smooth at large N, with a weak remnant of the shell
effects. However, the behavior for small N has changed com-
pletely: it is no longer smooth. Note in particular a new peak
that appears at N=7. To show the origin of this peak, we plot
for comparison the addition energy in the classical limit us-
ing the ground state energy data of Bedanov and Peeters.57

Clearly, the nature of fluctuations in the classical limit is very
different from those in the noninteracting limit: the peak at
N=7 can be understood as due to the extra stability of the
classical configuration. The remarkable similarity of our re-
sult for small N at rs�16 with the classical result strongly
indicates that electrons in this regime are well localized.

We emphasize that these changes in the nature of the fluc-
tuations of the addition energies occur gradually, and happen
over different rs ranges for small and large N. Our study
indicates that, first, the noninteracting fluctuations die out
and, then, the classical fluctuations creep in.

E. Reordering of states in energy

The shell structure present in circular quantum dots in the
weakly interacting limit suggests, in analogy with atoms, that
the orbitals within a shell should be filled in the ground state
so as to follow Hund’s rules: the spin should be the highest
possible �first rule� and the angular momentum should be the
maximum consistent with the first rule �second rule�. Implicit
in the rules is the definition of a shell, containing orbitals that
are either exactly or approximately degenerate in energy. In
atoms, orbitals with the same principal quantum number, n,
and the same angular quantum number, l, are exactly degen-
erate, while orbitals with the same n but different l have an
accidental degeneracy in the noninteracting limit because of
the Coulomb potential. The self-consistent potential splits
this degeneracy to favor states with low l. In quantum dots,
orbitals with the same radial quantum number, n, and the
same �l� are exactly degenerate, while orbitals with the same
value of 2n+ �l� have an accidental degeneracy in the nonin-
teracting limit because of the harmonic potential. The self-
consistent potential splits this degeneracy to favor states with
high �l�. In atoms, the gain in exchange energy is insufficient
to overcome the energy splitting and so orbitals with the
same n and l constitute a shell for the purpose of defining
Hund’s rules. In contrast, for dots, for the range of rs of
interest, the exchange energy overcomes the orbital splitting
and so orbitals with the same 2n+ �l� define a shell. Since the
exchange interaction is present in both atoms and dots,

agreement with Hund’s first rule is expected for weakly in-
teracting dots. However, there is no reason to expect Hund’s
second rule to hold, but one can enunciate a modified Hund’s
second rule—states that occupy orbitals with high �l� are
favored—which should hold for weakly interacting dots.

Taking N=9 as an example, we show in Table II results
for the low-lying states at three values of rs; the level struc-
ture and pair densities are shown in Fig. 10. Note that the
ground state has S=3/2 as expected from Hund’s first rule.
At small rs, the higher spin states lie at progressively higher
energy because they involve promotion across one or more
shell gaps: the kinetic energy cost of such a promotion is too
large for any interaction effects to overcome. For instance, a
transition from the �L ,S�= �0,3 /2� state to the �0,7 /2� state
involves promoting the spin-down electrons in the �n , l�
= �0,1� , �0,−1� orbitals to spin-up electrons in the �n , l�
= �0,3� , �0,−3� orbitals. The S=9/2 state requires a further
promotion of the spin-down electron in �n , l�= �0,0� to the
�1,1� orbital.

Note that �L ,S�= �0,3 /2� is the ground state for all three
values of rs, in agreement with Hund’s rules. As expected,
there are numerous violations of Hund’s original second rule
in the different spin cases but the modified rule discussed
above holds at small rs. For example, �1� for N=9 in the S
=1/2 sector �Table II�, the L=2 state �with the �n , l�= �0,2�
orbital doubly occupied and the �n , l�= �0,−2� orbital singly
occupied� has a lower energy than the L=4 state �with the
�n , l�= �0,2� orbital doubly occupied and the �n , l�= �1,0� or-
bital singly occupied�, and, �2� for N=8 �see Table I�, the
ground state at rs�2 is �L ,S�= �0,1� rather than �2,1�.

As a function of rs, there are two examples in Table II of
reordering of excitations: First, in the S=1/2 sector, the L
=0 and L=4 excited states interchange their position by rs
�6.7, and then by rs�16 the L=0 state replaces L=2 as the
lowest energy state. Second, as the strength of the interac-
tions increases, the S=7/2 excitation becomes progressively
of lower energy, interchanging with both S=5/2 states by
rs�6.7 and then with the three S=1/2 states by rs�16.

In general, we find that Hund’s first rule is very robust:
according to our data, it can be used for the ground state spin
throughout the range 4�N�20 and ��0.01, corresponding
to rs�16. For instance, Tables I and II show that the first
rule works well for N=6–9, both at small and large rs. In
this respect we disagree with the PIMC results of Ref. 38
which predicted violations for all these cases. We believe the
lack of sufficient statistical accuracy in Ref. 38 led to that
erroneous conclusion. Note, for instance, that the statistical
error in the PIMC energies is often larger than the energy
differences between different S states that we find.

The only problematic case for Hund’s first rule is N=10.
Here for ��0.04, we find that a state with spin 0 �the state
�0,0�� becomes essentially degenerate within the accuracy of
our calculation with the expected S=1 ground state �2,1�.
Determining the true ground state in the low-density regime
in this case must await further work. The near degeneracy of
these two states has been noted previously.43,46,60 The reason
is clear from the level diagram in Fig. 10: the kinetic energy
difference in moving an electron between the n=1 and 0
orbitals �due to the small splitting between states having dif-
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ferent principal quantum numbers n� very nearly equals the
exchange energy of one pair of spins. In fact, N=10 is the
only N in our range for which promotion of an electron
across the intrashell gap results in a gain in the exchange
energy of just one pair of electrons, explaining why it is the
only inconclusive case. The next such situation occurs at N
=28, when the fifth shell is nearly filled.

The single example of a clear violation of the first rule
that we have encountered is for N=3 when ��0.028: the
�0,3 /2� state is lower in energy than the Hund’s rule ground
state �1,1 /2�. Our results for the energies are essentially the
same as from a configuration interaction �CI� calculation37

and hence not shown here. �For small N, CI calculations
produce very precise energies.� The first rule violation in this
case is probably due to the fact that instead of paying the
Coulomb cost of doubly populating the spatially localized l
=0 orbital, electrons prefer to populate the more delocalized
l=1 orbital.

We see a trend toward violation of the first rule at our
largest rs for small N; this may indicate an actual violation
for rs larger than was possible in this study. For example, for
N=9 and �=0.01 in Table II, the highly spin-polarized state
�0,7 /2� becomes degenerate with the usual Hund’s rule
ground state �0,3 /2�, to within our numerical accuracy. It is
clear from the shell structure why S=7/2 is favored: once
the gain in exchange energy favors promotion of a spin-
down electron in orbital �0,1� across two shell gaps to a
spin-up electron in �0,3�, the �0,−1� electron will be pro-
moted to �0,−3�, thus explaining why S=7/2 becomes lower
in energy than S=5/2. On the other hand, S=9/2 requires
promotion across three shell gaps and so is not necessarily
favored. Similarly, it is expected that for N=6, the relative
energy of state �L ,S�= �0,2� would decrease substantially at
large rs compared to both the Hund’s rule state �0,0� and the
fully polarized state �0,3�. For N=7, the corresponding state
is �0,5 /2�. This is indeed the result seen in Table I.

Finally, we present the spin-summed pair densities, gT, for
different spin states for N=9 in Fig. 10. It is clear that the
more polarized states are better localized: as expected, ex-

change acts to keep the electrons apart. This is a rather ge-
neric feature in our study for a wide parameter range.

F. Nature of spin correlation

The last topic we address is the nature of the spin corre-
lation in the dots for our larger values of rs. For values of rs
by which angular modulation in the pair density has devel-
oped, the radial localization is already strong, restricting the
motion of the electrons in the radial direction. Thus, the elec-
tronic behavior in this limit is perhaps best described in
terms of a quasi-one-dimensional �1D� system on a circular
ring. Effective spin interactions and the resultant correlations
have been studied extensively in quasi-1D and 2D over the
years.61–63 Recently, for instance, Klironomos et al. have
shown that in a quasi-1D system “ring exchange” processes
dominate at intermediate rs, leading to novel ground states.63

Our results on circularly symmetric quantum dots suggest
that the the nature of the spin structure depends on the an-
gular momentum quantum number L. We illustrate this by

TABLE II. The energy �in units of ��� of several low-lying
states �identified by L and S� of a circular 2D quantum dot for N
=9 and three values of rs. Note the reordering of states in energy as
the interaction strength increases; in particular, the S=7/2 state be-
comes nearly degenerate with the ground S=3/2 state at large rs.

L S
�=3.0

�rs�0.49�
�=0.04
�rs�6.7�

�=0.01
�rs�15.8�

0 1/2 32.4874�1� 96.3487�4� 146.5469�9�
2 1/2 32.3993�1� 96.3375�4� 146.5558�9�
4 1/2 32.4387�1� 96.4594�4� 146.5746�8�
0 3/2 32.3365�1� 96.2531�4� 146.4651�8�
3 3/2 33.0545�1� 96.4594�4� 146.5701�9�
1 5/2 34.3464�1� 96.6618�4� 146.6323�8�
4 5/2 33.5959�1� 96.4836�3� 146.5892�8�
0 7/2 34.7717�1� 96.4718�3� 146.4651�7�
1 9/2 36.6964�2� 96.8211�2� 146.6712�7�
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FIG. 10. �Color online� Pair density and level structure for N
=9 and �=0.01 �rs�15.8�. The spin-summed pair density, gT, is
shown for the lowest energy state in each of the five possible spin
sectors; a spin-up electron is fixed on the outer ring of electrons.
The states in the top row are the lowest in energy and degenerate
within our statistical error ��0,3 /2� is the Hund’s rule state�. For
each of these states, the filling of the orbitals in the trial wave
function is shown. The classical configuration for this N is 2 elec-
trons in the center with 7 in the outer ring; this configuration is
clearly discernible in the pair densities of the higher spin states.
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taking the simplest example, a four-electron dot. Figure 11
shows the spin-resolved pair densities for three different low-
lying states �L ,S�= �0,1�, �2,0�, and �0,0� for rs�18. The
fixed spin-up electron is at �=0 on the single ring. We find
that the probability of finding the other electrons is maxi-
mum at the classical locations—�=� /2, �, and 3� /2. But
the spin of the electron at these locations depends crucially
on the quantum numbers L and S of the state. The ground
state is �0,1� �the Hund’s rule state�, for which the uncon-
strained electrons �two up and one down� are equally likely
to occupy any of the remaining three classical positions.

More interesting situations occur for the states �2,0� and
�0,0�, for which there are an equal number of up and down
electrons and which differ only in total angular momentum.
The L=2 state shows clear antiferromagnetic correlations.
The L=0 state is rather unusual: the �=� position is occu-
pied by a down electron, while the remaining up and down
electron are equally distributed over locations �=� /2 and
3� /2. We interpret this equal weight of up and down elec-
trons as representing a spin lying in the plane; thus, this state
corresponds to a spin-density wave with wave vector � /2. It
is interesting to note that the L=0 state has lower energy than
the L=2 state �energies are given in Fig. 11�—the antiferro-
magnetic state is disfavored. The ordering of these two states
is opposite to that in the weak rs limit and is another example
of a violation of Hund’s second rule. How the value of L is
responsible for the spin correlation �for a given S=0� is not
settled yet and will be pursued in future studies. Similar re-
sults were found for other cases of small N as well; for large
N, there is little angular localization of electrons on each
ring, making any conclusion unreliable. However, notice that
the unusual spin correlation here results in an unexpected

surplus of down spins directly opposite the fixed up spin; to
that extent, the feature here for N=4 is similar to that at �
=� noted for N=20 in Sec. IV B above.

V. CONCLUSIONS

The emerging picture for the correlation-induced inhomo-
geneities in circular dots appears to be quite different from
that in the bulk. First, the absence of translational symmetry
in the radial direction introduces radial localization of the
electrons in rings well before individual electrons localize.
This is clearly against the conventional notion of a single
transition or crossover from a weak to strong correlation re-
gime. The radial localization can be tracked by the density
due to the broken translational symmetry; angular localiza-
tion is reflected in the pair density, which does not respect
the rotational symmetry of the Hamiltonian. It is clear from
our study that at a given rs, radial localization is stronger
than angular. This is expected due to the circular geometry.
We also note here that the rings in the density could in prin-
ciple be directly observed using scanning tunneling micros-
copy. In some of the low-density electron gas systems, reso-
lution may be limited by the fact that the electrons are buried
below the surface.20 Systems have been developed, however,
in which the electron gas is near or at the surface,64–66 and it
is these systems which provide the best opportunities for
observation of density rings.

Second, the transition between the weak and strong cor-
relation regimes is surprisingly broad. In fact, the completely
smooth evolution of the FPH with rs suggests the absence of
any crossover scale at all. Note that the “smoothness” goes
far beyond the the usual “rounding” of a phase transition in a
finite system in which a distinct change of slope occurs in the
crossover region.

Third, the correlation strength depends not only on rs but
also on the number of electrons in the dot: it is typically
stronger for smaller N, as evident from our results for FPH,
pair density, and addition energy. In particular, the nature of
the mesoscopic fluctuations in addition energy is very differ-
ent for small and large rs. While they are determined by the
noninteracting shell effects for small rs, the structure of the
classical configurations dictates the fluctuations for large rs.
As rs increases, first the noninteracting fluctuations are
smoothed out, and then the classical fluctuations set in. Our
results indicate that the value of rs where the change takes
place depends on N. Thus for confined systems, the change
from the weak to strong correlation regime is not universal.

Fourth, the ground state spin is consistent with Hund’s
�first� rule throughout the range of our study, 4�N�20 and
rs�18. At large rs, the excitation energy of certain strongly
spin-polarized states become small but they do not become
the ground state. It would be interesting to see if these po-
larized states become energetically favorable for even larger
rs. The extent of inhomogeneity in the dot shows a clear
dependence on the spin state, with stronger localization oc-
curring for larger spin polarization. While the degree of elec-
tron localization is insensitive to the angular momentum L of
the state �for the small L here�, the nature of the spin-
correlation �its spatial pattern, for instance� is closely con-
nected to L in an intriguing manner.

E=0.517267(5) E=0.519033(9)E=0.517267(5) E=0.519033(9)E=0.517267(5) E=0.519033(9)E=0.517267(5) E=0.519033(9)E=0.516821(6)E=0.516821(6)E=0.516821(6)E=0.516821(6)

L=0L=0L=0L=0
S=0S=0S=0S=0S=1S=1S=1S=1

L=0L=0L=0L=0 L=2L=2L=2L=2
S=0S=0S=0S=0

(32,32)
(32,32)
(32,32)
(32,32)

(−32,−32)

(−32,−32)

(−32,−32)

(−32,−32)

gggg

gggg

FIG. 11. �Color online� Nature of spin correlation in the three
low-lying states for N=4 at large rs ��=0.01, rs�18�. Top and
middle panels show g↑↓ and g↑↑, respectively. Notice that the prob-
ability of finding electrons at a given location depends crucially on
the L and S quantum numbers. The schematic spin correlation is
given in the lower panel. Interestingly, antiferromagnetic correlation
occurs for L=2, S=0 which has the highest energy among these
three states.

GHOSAL et al. PHYSICAL REVIEW B 76, 085341 �2007�

085341-12



These conclusions disagree with much of the previous
literature, the majority of which predicts a single, small
crossover scale accompanied by significant deviations from
Hund’s rule. Because our method yields the lowest energies
for quantum dots to date �the method is strictly variational�
and involves less severe approximations, we believe the
present results to be more accurate.

Finally, we close with a comment on the connection be-
tween these results for circular dots and those for the bulk
two-dimensional electron gas. We speculate that with in-
creasing N, the deep interior of the dot will behave much the
same as the bulk system while the radial rings will persist
near the boundary, reflecting the circular confinement. Be-
cause of the rings, much of the physics discussed here will
persist locally near the boundary.
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APPENDIX: SENSITIVITY OF RESULTS
TO METHODOLOGY

In this appendix, we address two interrelated issues: �1�
the difference between VMC, DMC, and QMC results
�where the latter denotes results obtained from the extrapo-
lated estimator�, and �2� the variation caused by using differ-
ent orbitals in the Slater determinant part of the trial wave
function. We will see that the latter is a very small effect.
With regard to the first issue, we show that the DMC step is
definitely needed.

We start by comparing VMC and DMC energies. Table III
shows the energies for two cases, the ground state of N=6 at
rs�4.5 �a full shell case� and the ground state of N=9 at

rs�16 �a half filled shell case�. The improvement brought
about by the DMC step is substantial in the high rs case:
DMC energies for other spin states are given in Table II,
from which we see that the splittings among the low lying
spin and angular momentum states is substantially less than
the improvement provided by DMC over the VMC energies.
Thus, for getting the correct ordering of states in the strong
correlation regime, the DMC step is critical.

This is further demonstrated in Fig. 12 where the frac-
tional peak height �FPH, see Sec. IV A for the definition�
obtained from VMC is compared to the full QMC result for
the N=20 ground state. Interestingly, the VMC result does
show a feature at rs�4, namely a kink in the FPH vs rs
curve, which goes away in the full result. This demonstrates
the insufficient accuracy of VMC in even the modest rs�5
regime.67

One may worry at this point whether the extrapolated es-
timator that we use for the density is breaking down, as there
appears to be such a large difference between VMC and

TABLE III. Dependence of the ground state energy on the Slater determinant part of the trial wave
function. Three different types of orbitals were used in forming the Slater determinant: orbitals from a DFT
calculation in the local density approximation �LDA�, from a Hartree �H� or Hartree-Fock calculation �HF�,
and from the noninteracting problem �Fock-Darwin orbitals, FD�. The energy after the variational quantum
Monte Carlo �VMC� step and the final diffusion quantum Monte Carlo �DMC� energy are given. N, L, and S
specify the number of electrons in the dot, their angular momentum, and their spin. The energy is in units of
��, the characteristic energy of the external parabolic confining potential. Note that the type of orbital used
makes little difference in the DMC energy.

N �
rs

�approx� L S
Orbital

type VMC DMC

6 0.07 4.5 0 0 LDA 3.02265�9� 3.018020�1�
HF 3.0243�3� 3.01872�1�
FD 3.0229�5� 3.01816�1�

9 0.01 15.8 0 3/2 LDA 146.759�1� 146.4726�6�
H 146.764�1� 146.4755�6�

FD 146.728�1� 146.4761�6�

FIG. 12. Growth of the fractional peak height �FPH� for the N
=20 ground state from the QMC extrapolated estimator �solid sym-
bols� compared to the less accurate VMC results �open symbols�.
Note that the VMC estimate alone shows a break point in the slope
near rs�4. Thus, a DMC calculation, with its better treatment of
the interactions, is necessary to produce the smooth behavior of the
FPH as a function of rs.
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DMC for the FPH at rs�4. Figure 13 addresses this point:
the electron density obtained in both VMC and DMC is
shown at the point of maximum deviation in the FPH values.
It is clear that the change in density is, in fact, reasonably
small, and so we expect that the extrapolated estimator will
be accurate.

We now turn to the effect of using different single-particle
orbitals on our result. We have performed calculations using
three types of orbitals to construct the Slater determinants in
the trial wave function Eq. �4�: orbitals from a DFT calcula-
tion within LDA, orbitals from a Hartree or Hartree-Fock
calculation, and orbitals obtained by solving the noninteract-
ing problem, the Fock-Darwin states. First, VMC and DMC
energies for these three types of orbitals are shown in Table
III for the two cases discussed above. Notice, first, that all
three types of orbitals give very good energies. The DMC
step reduces the spread in the energies. The final energy
differences are much smaller ��5% � than the splittings
between the low lying spin and angular momentum states.

The effect of changing the type of orbital is also negli-
gible in the spatially resolved quantities. As an example, we
show in Fig. 14 the pair density obtained using LDA orbitals
�our usual procedure� and the difference obtained using Har-
tree or Fock-Darwin orbitals. The difference is clearly very
small. Thus, for all of the conclusions in this paper, any of
the three types of orbitals could have been used.
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