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We investigate nonstationary electronic transport in noninteracting nanostructures driven by a finite bias and
time-dependent signals applied at their contacts to the leads. The systems are modeled by a tight-binding
Hamiltonian, and the transient currents are computed from the nonequilibrium Green-Keldysh formalism. The
numerical implementation is not restricted to weak coupling to the leads and does not imply the wideband limit
assumption for the spectral width of the leads. As an application of the method we study in detail the transient
behavior and the charge dynamics in single and double quantum dots connected to leads by a steplike potential,
but the method allows as well consideration of nonperiodic potentials or short pulses. We show that when the
higher-energy levels of the isolated system are located within the bias window of the leads, the transient current
approaches the steady state in a nonoscillatory smooth fashion. At moderate coupling to the leads and fixed
bias the transient acquires a steplike structure, the length of the steps increasing with system size. The number
of levels inside a finite bias window can be tuned by a constant gate potential. We find also that the transient
behavior depends on the specific way of coupling the leads to the mesoscopic system.
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I. INTRODUCTION

The dynamics of conduction electrons in open nanostruc-
tures modulated by time-dependent signals is an outstanding
problem in quantum transport theory. Extensive experimental
and theoretical work has been done especially on quantum
pumping1–6 �a detailed bibliography can be found in Ref. 7�
and photon-assisted tunneling �see Ref. 8 and references
therein�. In these phenomena one is interested in measuring
or computing the current response of a mesoscopic system
driven by time-dependent periodic signals applied either on
the system or on the attached leads. In particular, an unbiased
system subjected to two periodic potentials differing by a
phase lag generates a nonvanishing pumped current, pro-
vided one averages over the relevant period.4 If the signal
frequency is small, the pumping is adiabatic and can be de-
scribed by a “frozen” scattering matrix as is rigorously
shown in Ref. 9. A photon-assisted tunneling implies instead
high frequencies and the measured current displays satellite
peaks due to the additional sidebands.10

From the theoretical point of view, any calculation of the
current starts from defining the initial equilibrium state of the
system and the perturbation that drives it. One way is to start
with the connected system in the absence of the bias and then
to apply the bias adiabatically, performing linear response
calculations for the steady-state current. An alternative pic-
ture was proposed by Caroli et al.,11 which takes as the equi-
librium state the state of the decoupled system with the bias
already imposed on the leads. The perturbation here is in-
stead the coupling to the leads that is usually adiabatically
switched in the remote past and eventually reaches its full
magnitude at t=0. If one assumes that a steady state is
achieved, the Green functions depend only on time differ-
ences and the Keldysh formalism gives the corresponding
current in terms of Fourier-transformed quantities. Both pic-
tures were shown to be useful in capturing and explaining
important effects.

As for an ac signal, it can be included in the Green-
Keldysh approach as a time-dependent global shift of the
spectrum of the leads.12 Note that the occupation probability
�i.e., the Fermi function� of the leads stays time independent.
Therefore this procedure assumes somehow that an ac signal
is applied as well adiabatically. In the quantum pumping cal-
culations the pumping potential is applied to the system in a
steady state, be it subjected to a finite bias or not. Finally the
current �transient, time averaged, or steady state� is com-
puted from the Keldysh-Green function formalism.13

Here we aim to get some insight into a related topic: the
calculation of the transient current through a quantum dot
�QD� whose coupling to the leads is time dependent while
the bias applied to the leads is constant. There are consider-
ably fewer theoretical results on this issue �see the references
below�, and we were motivated also by recent increasing
interest in using suitable electric pulses to investigate relax-
ation processes in quantum dots by using pump and probe
measurements or transient current spectroscopy.14 As in the
well-known case of a turnstile pump15 these techniques im-
ply oscillating tunnel barriers so that the transport formalism
should deal with the nonlocal time-dependent coupling be-
tween the leads and the system.

The problem we want to look at is defined as follows: �i�
The system is disconnected at any time t�0, and the leads
are submitted to a constant bias which is included through
the difference between the chemical potentials of the leads.
�ii� At t=0 the leads are suddenly plugged to the system.
Physically this means that the tunneling barriers between the
leads and the system are set to be very high at t�0 and drop
suddenly at t=0 to an intermediate value that allows charge
transfer across the system. The simplest case of a constant
barrier height at any t�0 opens already the problem of the
existence of nonequilibrium steady states in the long-time
limit. In general and at a rigorous level, one can prove the
existence of such states when t→�,16 and moreover, a Lan-
dauer formula was shown to hold for the steady-state
current.17 The method we developed is able to check the
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passage from transient behavior to the steady-state regime
for specific systems, like many-level one- and two-
dimensional quantum dots. As we shall see, the onset of the
steady state for a given system depends on its structure
�number of levels�, on the measurement setup �the strength
of the coupling to the leads and the location of the contacts�,
and also on external parameters like gate potentials.

Although in the present work the numerical simulations
are restricted to the steplike coupling to the leads, our model
allows consideration of more general time-dependent poten-
tials between the leads and the central region. In particular
we can investigate the response of a system to nonlocal time-
dependent perturbations that can be switched on and off in-
dividually.

Recently there have been several theoretical approaches
to the transient regime. In Ref. 18 the time-dependent density
functional was used to compute the transient current in a
one-dimensional system submitted to a finite bias applied on
the leads. The coupling term does not depend on time, and
the system is in an equilibrium state in the absence of the
bias. Starting from this state the Kohn-Sham equation is used
to calculate the response of the system to the external bias.
The same techniques allow the calculation of time-averaged
current in one-dimensional quantum pumps.19 On the other
hand, Maciejko and co-workers20 have computed within the
Keldysh framework the response of a single-site dot for a
steplike or periodic signal applied to the leads, beyond the
wideband limit. In their approach the computation of the
time-dependent Green functions of the perturbed system uses
steady-state Green functions of the coupled and biased sys-
tem that have to be provided from density functional theory.
We believe that theoretical results regarding the transient re-
gime induced by time-dependent couplings of many-level
systems would complement these results.

The content of the paper is organized as follows: Section
II presents the model and the theoretical tools we use to
compute the transient current. We rely essentially on the non-
equilibrium Green-Keldysh formalism. However, in contrast
to most of the previous studies we allow a complex structure
for the central region coupled to leads �i.e., there is more
than one single localized level and the system can be as
complicated as we want: a single dot, a double dot, or an
Aharonov-Bohm interferometer�. Also we go beyond the
wideband limit approximation and we solve exactly the inte-
gral Dyson equation for the retarded Green function of the
coupled central region by a suitable numerical procedure. In
doing so we take into account all the scattering processes
between the leads and the sample.

Although the electron-electron interaction could presum-
ably play an important role in the transient behavior and the
formalism we use allows the inclusion of Coulomb terms in
the Hamiltonian, we do not take it into account in this work.
As is well known, the problem of the Coulomb interaction in
the Keldysh approach is mainly technical and implies suit-
able approximation schemes for the interaction self-energy.
We discuss the validity of our approach and possible ways to
include the electron-electron interaction at the end of Sec. II.
Section III gives an extensive discussion of the numerical
simulations for single and double dots. Section IV concludes
the paper.

II. FORMALISM

The systems we study in this work have a typical trans-
port configuration: a central region �S� coupled to two semi-
infinite leads �� and �� via a tunneling term �see Fig. 1 for a
schematical representation�. We shall use a tight-binding
�TB� description of the Hamiltonian which has the following
form:

H�t� = HS + HL + HT�t� , �1�

where HS describes the system, HL is the semiinfinite leads,
and HT�t� is the time-dependent tunneling term:

HT�t� = �
�=�,�

�
i��

�
m�S

Vim�t��ci
†dm + H.c.� . �2�

Here ci and ci
† denote the annihilation and creation operators

on the ith site of the lead �. Similarly dm and dm
† are the pair

of operators corresponding to the mth site from the central
region S. Vim�t� is the time-dependent hopping coefficient
between the ith site of the lead � and the mth site of the
central region. We take here a nearest-neighbor coupling so
the double sums in the above expression contain only pairs
of sites from the leads end point and the corresponding con-
tact region from the central system:

Vim�t� = �V��t� , if i,m nearest neighbors,

0, otherwise.
�3�

In this work we consider a steplike potential—i.e., V��t�
=V� if t�0 and zero otherwise. HS has a usual tight-binding
form

HS = �
m=1

N

��m + Vg�dm
† dm + �

�m,n�
tmndm

† dn. �4�

Here tmn are hopping terms and �m ,n� denotes nearest-
neighbor summation over the system sites. �m is the on-site
energy, and the diagonal term Vg simulates a plunger gate
potential applied on the system. N is the number of sites in
the central region. The spectral width of the tight-binding
lead is as usual w : = �−2tL ,2tL�, where tL is the hopping en-
ergy of the leads �we take the same hopping constant in
every lead�. In the numerical calculation we choose tL such
that it covers entirely the spectrum of the central region but
we do not assume it to be infinite, as is done in the wideband
limit approximation.

The central problem in electronic transport is to compute
the statistical average of the time-dependent current operator

α βS

αV (t)
βV (t)

FIG. 1. Schematic picture of the system. The steplike potential
is applied between the leads and the central region S at t=0.
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in a given lead �say, ��, J��t�=Tr	��t�j��t�
, using the statis-
tical operator ��t�. Notice that the time dependence of the
current operator appears only because of the time-dependent
coupling. Denoting by 	i�
 the end-point sites of the lead �
which are coupled to the sites 	m�
 of the central region and
by M the number of sites in the transverse direction of the
lead, the operator j� that gives the current flowing from the
lead � towards the sample has the form �we take the electron
charge as −e and e�0�

j��t� =
ie

	
�
i�=1

M

�
m��C�

Vi�m�
�t��ci�

† dm�
− dm�

† ci�
� . �5�

Since the statistical operator ��t� of the coupled system is not
easy to compute, it is useful to move the time dependence
entirely to the current operator by writing ��t� in terms of the
equilibrium statistical operator �0 of the disconnected sys-
tem. In general, the coupling to the leads is established at a
given instant t0 so that ��t�=�0 for t� t0. Then using the

unitary evolution Ũ of the full Hamiltonian in the interaction
picture with respect to the unperturbed one the solution of
the quantum Liouville equation is given by

��t� = e−it�HS+HL�Ũ�t,t0���t0�Ũ�t,t0�*eit�HS+HL�. �6�

Then it can be shown �see, e.g., Ref. 22� that

J��t� = Tr��0TC�exp�− i

C

ds H̃T�s�� j̃��t��� , �7�

where TC is the ordering operator on the Schwinger-Keldysh
contour C that runs from t0 to t and back to t0. We remind the
reader that in the case of adiabatic coupling the statistical
operator becomes time independent only in the remote past
t0→−�. Both the coupling and current operators are written
in the interaction picture. Using the definitions of the lesser
Green functions in terms of the Heisenberg operators,

Gm�i�
� �t,t�� = i�ci�

† �t��dm�
�t�� ,

Gi�m�

� �t,t�� = i�dm�

† �t��ci�
�t�� , �8�

and the fact that they can be equally expressed in terms of
operators in the interaction picture �see Eq. �B4� in Ref. 12�
it follows that the current is given by a simpler relation

J��t� =
2e

	
�
i�=1

M

�
m�C�

Re�Vi�m�
�t�Gm�i�

� �t,t�� . �9�

At this point the standard Keldysh formalism requires the
application of the so-called Langreth rules13 in order to ex-
press the lesser Green function Gm�i�

� in terms of the Green
functions of the central region in the presence of the leads,
Gm�n�

�,R , and the Green functions of the isolated semiinfinite
lead, gi�j�

�,A. The latter can be analytically computed:

gi�,j�
A �t,t�� = i
�t� − t��

p=1

M

�p�i���p�j��

�

−2tL+Ep

2tL+Ep

dE ��E − Ep�e−iE�t−t��, �10�

gi�,j�
� �t,t�� = i�

p=1

M

�p�i���p�j��

�

−2tL+Ep

2tL+Ep

dE ��E − Ep�e−iE�t−t��f��E� . �11�

In the above equations Ep=2tL cos�p
 / �M +1�� is the energy
of the transverse channel p. These channels appear due to the
width of the leads which in the tight-binding description is
given by the number of the sites M in the transverse direc-
tion. More exactly, the many-channel lead is constructed by
taking M semiinfinite one-dimensional �1D� leads and by
coupling them through nearest-neighbor hopping constants.
Then �p�i��=� 2

M+1 sin� pi�


M+1
� is the transversal eigenfunction

associated with Ep, and ��E� is the density of states at the
end point of a semi-infinite one-dimensional lead:

��E� = 
�2tL − �E��
�4tL

2 − E2

2tL
2 . �12�

Finally, f��E� is the Fermi function in the lead �. The bias is
included in our approach as the difference between the two
chemical potentials of the leads, V=�L−�R.

Plugging all these elements in the current formula one
gets the main expression that will be numerically imple-
mented in the next section:

J��t� = −
2e

h
Im��

p=1

M

�
m�,n��C�



−2tL+Ep

2tL+Ep

dE

0

t

ds e−iE�s−t�

��m�,n�

�,p �E;t,s��Gm�n�

R �t,s�f��E� + Gm�n�

� �t,s��� .

�13�

We have introduced the energy and time-dependent quantity
�m,n

�,p , which takes also into account the M channels in the
lead:

�m�,n�

�,p �E;t,s� = �
i�,j�=1

M

��E − Ep��p�i���p�j��Vi�m�
�t�Vj�n�

�s� .

�14�

A similar formula can be written down for the current J�

flowing from the sample � towards the sample. We can
therefore define the total charge current

J�t� = J��t� + J��t� . �15�

One should have in mind that the total current is obtained by
adding as well the total displacement current edN�t� /dt �see
Ref. 23�. It is important to observe that in contrast to the
simple case of a single-site system the expressions for the
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two currents imply Green functions at different contacts. The
retarded and lesser Green functions are then to be computed
from the Dyson and Keldysh equations.13

GR�t,t�� = G0
R�t,t�� + 


0

t

dt1GR�t,t1�

0

t1

dt2�R�t1,t2�G0
R�t2,t�� ,

�16�

G��t,t�� = 

0

t

dt1GR�t,t1�

0

t�
dt2���t1,t2�GA�t2,t�� ,

�17�

where G0
R,A�t , t�� are the retarded and advanced Green func-

tions of the isolated central region and �R,� are the retarded
and lesser self-energies. G0

R�t , t�� has a simple expression in
terms of the discrete spectrum 	E�
 of the central region and
its localized eigenfunctions �� �clearly �=1, . . . ,N�:

G0,mn
R �t,t�� = − i
�t − t���

�

���m����n�eiE��t−t��. �18�

We emphasize the lower integration limit t=0 in Eqs. �16�
and �17�. This is due to the fact that there is no coupling for
t�0. In the adiabatic setup the coupling is established in the
remote past and one should set a lower cutoff in the numeri-
cal implementation. However, the Dyson equation still con-
tains two coupled integrals. The two self-energies above con-
tain information from the leads and are finite rank matrices
in the Hilbert space of the central region S ��=� ,��:

�mn
R �t,t�� = �

�

V��t�gi�,j�
R �t,t��V��t���mm�

�nn�
, �19�

�mn
� �t,t�� = �

�

V��t�gi�,j�
� �t,t��V��t���mm�

�nn�
. �20�

We stress that the indices of the leads’ Green function are
unambiguously determined as the neighbor sites of the con-
tact surface C�. In the single-channel case M =1 one recovers
simpler expressions. In particular the retarded Green function
of the lead can be expressed through the Bessel function of
the first kind:

g1�,1�

R �t,t�� =
− i
�t − t��J1�2tL�t − t���

2tL�t − t��
. �21�

We point out the difference between the exact form of the
retarded self-energy and the simple wideband limit expres-
sion �which simplifies to ��t− t�� up to some constants�. Note
that the retarded Green function gives the leads’ self-energy
and is a highly oscillating function. It will turn out in Sec. III
that this behavior has crucial effects on the transient current.
Another difficulty of Eq. �16� comes from the quadratic de-
pendence of the self-energies on the time-dependent cou-
pling. Clearly this prevents any partial Fourier transform
trick.

Given these, our strategy in solving the integral Dyson
equation relies on transforming it into an algebraic equation
of the form AX=B where A ,X ,B are generalized complex
matrices depending on both spatial and time arguments. To

this end we first plug the retarded self energy from Eq. �19�
into the Dyson equation �16� and discretize the time argu-
ments. Note that the variable t2 is defined on a denser grid
than the one used for t1. The inner time integral is evaluated
by a repeated four-point Gauss method, which turned out to
be accurate enough for the numerical results to be stable
when increasing the number of integration steps. This proce-

dure allows us to write the double integral as a matrix GR˜ Ã,

where Ã is actually a product of G0
R ,�R and some diagonal

matrices containing the Gauss weights needed in the integra-
tion procedure. Then the adjoint of the generalized retarded

Green function GR˜ is simply the solution of the algebraic

equation �1− Ã�*GR˜ *=G0
R˜ *. The true Green function is recov-

ered by turning back the mixed indices of GR˜ . We stress that

by solving the equation for GR˜ * the Dyson equation is solved
exactly. Moreover, no matrix inversion is required. This is
certainly an advantage in the numerical simulations since it
is known that matrix inversion is both memory and time
consuming. The advanced Green function is computed using
the identity Gij

A�t , t��= (Gji
R�t� , t�)* and the lesser Green func-

tion is derived from the Keldysh equation. Also, the time-
dependent occupation number can be computed as

N�t� = Im �
m�S

Gmm
� �t,t� . �22�

The current in the right lead, J�, has a similar expression. We
note that for a system with many sites one has to deal with
different contact Green functions besides replacing only the
Fermi function in the first term in the current formula. More-
over, in the nonstationary regime the current obeys the con-
tinuity equation J�+J�=−edN�t� /dt. Therefore the steady-
state identity J�=−J� is recovered when the occupation
number in the system becomes a constant. We shall discuss
this feature below.

In the Keldysh approach to time-dependent transport the
problem is to extract physical information from the two con-
tributions in Eq. �13�. In the simplest case of a single site and
within the wideband limit it was shown that the average
current obeys a Landauer-like formula. The effects of step-
like or harmonic time-dependent potentials applied adiabati-
cally to the leads were studied both in the WBL approach12

and beyond.20 However, to our best knowledge no transient
current calculation for a many-level structure beyond the
wideband limit has been performed within the Keldysh for-
malism.

Before presenting the numerical results we would like to
make some comments concerning the noninteracting ap-
proach taken in this work and possible extensions. The
electron-electron interactions are known to be important es-
pecially in weakly coupled quantum dot systems due to the
Coulomb blockade effect. Therefore our results are more ac-
curate at moderate or large coupling to the leads �most of the
plots shown in Sec. III correspond to this case�. On the other
hand, by neglecting the electron-electron interactions our
present calculation cannot fully capture the effect of the in-
duced displacement currents �see Ref. 23�. The displacement
current is defined as the variation of charge accumulated in
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the system. As we shall see in the next section, the occupa-
tion number of the dot N�t� given in Eq. �22� clearly depends
on time in the transient regime and reaches a constant value
in the steady-state regime. This shows that our approach
takes into account a displacement current though it is a non-
interacting one. In spite of this we believe that the features
we found in the transient behavior of many-level dots are
qualitatively correct, even without including the electron-
electron interactions. This is because the transient effects ap-
pear mainly due to the back-and-forth processes the electrons
experience once the coupling to the noninteracting leads is
established; our approach clearly takes all these processes
into account. The inclusion of the interaction would only
make the transition to the steady state longer as the Coulomb
repulsion could lead to a longer time needed to achieve a
constant occupation number in the system.

The inclusion of electron-electron interactions in theoret-
ical approaches to time-dependent transport presents some
technical difficulties but it is possible in our approach, fol-
lowing three steps: �i� computing the Green functions of the
noninteracting coupled system starting from the Green func-
tions of the disconnected subsystems �dot and leads�, as
shown above; �ii� using these functions, one has then to com-
pute the interaction self-energy in a perturbative framework;
and �iii� the interaction self-energy from step �ii� should be
introduced then into the corresponding Dyson and Keldysh
equations for the full Green functions. In the steady-state
regime, such an approach was taken in Ref. 24 in order to
describe the controlled dephasing effect. A similar strategy
was implemented for ac transport in Kondo regime by Lopez
et al.25

III. NUMERICAL SIMULATIONS

In all the plots the bias, the energy, the hopping constants
on the leads, the coupling strengths, and the gate potentials
will be expressed in terms of the hopping energy of the cen-
tral region tD which is chosen as energy unit. The current is
therefore given in units of etD /	 and the time expressed in
units of 1 / tD. Since the spectrum of the two-dimensional
discrete Laplacian covers the range �−4tD ,4tD�, we shall take
tL=2 in order to match it to the spectral width of the one-
dimensional lead �−2tL ,2tL�. We take also e=	=1. The cur-
rent given by Eq. �13� can be written as a sum of two con-
tributions

J��t� = J�
R�t� + J�

��t� , �23�

the � and R labeling emphasizing that the corresponding
term contains the lesser and retarded Green functions. We
shall consider for simplicity only single-channel leads.

A. Single site

We start this section by discussing the case of a single-site
dot which allows a qualitative discussion of the transient
regime and of the transition towards the steady state. The site
is coupled to single-channel leads �i.e., N=M =1�. Both leads
are coupled suddenly to the system with the same strength
U—i.e., V�=V� : =U. The bias is applied symmetrically to

the leads—i.e., ��,�=�0±eV /2, �0 being the chemical po-
tential of the unbiased leads. We observe that for �0=0.0 the
single eigenvalue of the isolated system E0=0.0 is located in
the middle of the bias window W= ��0−eV /2 ,�0+eV /2�. As
we shall see later on, the position of the eigenvalues of the
system within the bias window has important implications on
the transient current. The free retarded Green function of the
single-site system is simply G0

R=−i but the full retarded
Green function is still given by the integral Dyson equation
and an analytic solution is not at hand.

Figure 2�a� gives the transient current for different values
of the bias V and of the coupling amplitude U and reveals
that the parameter that controls the shape and the amplitude
of the oscillation is the coupling strength U. At moderate
coupling U=0.75 the steady state �SS� is achieved fast but an
oscillatory behavior is observed at U=0.95. The case U
=1.15 is beyond the perturbative regime and the steady state
is not achieved in the selected time range. As the bias in-
creases the current saturates for values of V that exceed the
spectrum of the leads �i.e., for V�8�, emphasizing the non-
linear transport regime. In turn, the bias affects neither the
amplitude nor the period of the oscillations. This is due to the
fact that in our model, as in all approaches based on the
Keldysh formalism, there is no term in the Hamiltonian to
describe the voltage drop across the sample, the bias being
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FIG. 2. �Color online� �a� The transient current for one site
coupled to single-channel leads. We present curves for different
values of the coupling strength U and of the bias V. �b� The effect
of the coupling amplitude U on the occupation number. The bias is
fixed to V=1.0 and kT=0.0001.
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included only via the Fermi functions of the leads.
In Fig. 2�b� we plot the occupation number of the reso-

nant site N�t� for the same parameters as in Fig. 1�a�. The
behavior with respect to U is similar. A few more things
worth to be noticed: �i� In the steady-state regime the occu-
pation of the site is 1/2. �ii� As U increases while the bias
stays constant the occupation number reaches its maximum
value faster and the value corresponding to the steady state
decreases. �iii� Comparing Figs. 2�a� and 2�b� it can be seen
that there is no clear relation between the principal maximum
of the current and the one of the occupation number; in fact,
the electrons are accumulating in the system even after the
current starts to decrease towards the steady state.

Figure 3 shows the two contributions to the current J�
R and

J�
� for V=1.0 and several coupling constants considered in

Fig. 2. A physical significance of these two currents was
proposed in Ref. 12 for the single site case. Although both
Green functions at the contacts appearing in the current for-
mula are “dressed” by the leads’ self-energy, one could view
J�

R as the current flowing towards the sample and J�
��t� as the

current from the sample to the lead �. One notices that the
currents have opposite signs. Another observation is that the
lesser contribution is responsible for the total current oscil-
lations since J�

R saturates quickly. However, at small times J�
R

grows faster than J�
�, leading thus to a fast increase of the

transient.
In order to understand the nature of the oscillations in the

transient current and their dependence on the coupling
strength U it is useful to rewrite the current formula, Eq.
�13�, in a more useful form �since we consider a single-site
system, there is only one contact site and the indices of the
Green functions can be omitted�

J��t� = − 2U2 Im

0

t

ds�GR�t,s�F1�s,t� + G��t,s�F2�s,t�� ,

�24�

where F1 ,F2 are two oscillating integrals:

F1�s,t� = 

−2tL

2tL

dE f��E���E�e−iE�s−t�, �25�

F2�s,t� = 

−2tL

2tL

dE ��E�e−iE�s−t�. �26�

One can easily observe that actually F2�s , t� can be expressed
through Bessel function of the first kind:

F2�s,t� =

�t − s�J1�2tL�t − s��

2tL�t − s�
. �27�

For fixed t, F2 is an oscillating function of s whose oscilla-
tion amplitudes increase with s. F1 does not have a simple
analytical expression but it has a similar behavior.

The oscillatory behavior of the current is clearly decided
by the convolution in Eq. �24�. Besides the oscillations of F1
and F2 one expects as well a complex behavior of the Green
functions. We recall that the Dyson equation counts the infi-
nite back-and-forth tunneling processes involving the leads
and that the amplitudes of these events are even powers of U.
Now, the higher-order terms in the Dyson equation contain
multiple integrals of products of the leads’ self-energy which
is highly oscillating �see Eq. �21�� Therefore, if U�1, there
will be only a few low-order significant contributions from
the complicated lead-sample scattering. The critical value
U=1.00 corresponds to the onset of the nonperturbative re-
gime, and the method we use for solving the Dyson equation
captures as well this situation, taken into account all contri-
butions.

We give in Fig. 4 the 3D plots of the imaginary parts for
the retarded and lesser Green functions at coupling strength
U=1.20, which leads to oscillations of the transient. These
are the relevant quantities in the current formula since it
turns out that the real part of GR and of F2 are vanishingly
small �not shown�.

One observes that GR�t ,s�=0 for s� t and, more interest-
ingly, that GR�t ,s� and G��t ,s� exhibit pronounced oscilla-
tions as time varies and reach a limit value as s approaches t.
In the case of the retarded Green function this limit is con-
stant and equals −i, which is simply the value of the unper-
turbed retarded Green function. This feature is easy to under-
stand by looking at the Dyson equation and noticing that
when s→ t the integration range of the inner integral shrinks
considerably so that at almost equal times the perturbed
Green function resembles the unperturbed one. This argu-
ment is not restricted to the single-site case we are discuss-
ing. Also, since the spectrum of the discrete Laplacian is
symmetric, the unperturbed retarded Green function will al-
ways be real and therefore the real part of the full Green
function will always be vanishingly small, as we shall check
numerically in the many site case. In contrast, the limit of
Im G� as s→ t is not a constant with respect to t but shows
oscillations that disappear as t increases. In the particular
single-site case the limit value of G� is clearly the occupa-
tion number of the site, whose oscillations were shown al-
ready in Fig. 2�b�.

Figures 5�a� and 5�b� show 3D maps of the imaginary part
of the lesser Green function and emphasize the role of the
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FIG. 3. �Color online� The two contributions to the transient
current in the left lead. J�

R�t� is always positive while the lesser
contribution J�

��t� is negative. The chosen values for the coupling
strength U are given in the figure. The bias V=1.0 and kT
=0.0001.
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coupling strength on the transient. At moderate coupling U
=0.75 one observes small amplitude oscillations except for
s� t, in clear contrast to the case U=1.20 where pronounced
oscillations exist even for large time differences. Inspecting
the real part of the function F2 given in Fig. 5�c� we see that
it does not depend on t when s� t and that this gives the
main contribution to the integral �24�. It is now clear from
Figs. 5�a� and 5�c� that the corresponding current will be
nearly stationary once the sample is charged �i.e., for t
�0.75�, because by increasing t the “off-diagonal” contribu-
tions are very small �some cancelations being possible as
well�. When U increases the integral will collect instead non-
negligible contributions from the entire range �0, t� and
therefore the current will oscillate. These observations lead
to the following statement: The steady state will be achieved
at instant ts if for any t� ts there are no contributions for
long-time differences—i.e., when both contact Green func-
tions GR�t ,s� and G��t ,s� vanish for s� ts. It is easy to ob-
serve that this condition implies the well-known criteria for
the steady state G�t ,s�=G�t−s ,0�.

B. Many-site case

We consider now the more interesting case where the cen-
tral region has more than one level. Figure 6�a� emphasizes

the qualitative differences between the transients of 1D sys-
tems with N=2,4 ,6 ,8 sites. A general feature is that as the
size increases the transient develops a “shoulder” which is
not met in the single site case. For N=2 a second smaller
slope of decrease is noticed for t� �1.6:2.5�. For N=4 the
system experiences few very different regimes before reach-
ing the steady state. It first decreases faster up to t�1.25. For
a short time a small hill develops around t�2; then, the
decrease continues but clearly at a smaller rate. Finally, for
t�3.25 the current approaches the steady state very slowly.
A similar behavior is observed for N=6 and N=8, the main

FIG. 4. �Color online� The imaginary parts of the retarded �a�
and lesser �b� two-time Green functions of the coupled single site.
The bias V=1.0 and the coupling strength U=1.2. The oscillations
seen along the “diagonal” in �b� corresponding to almost equal
times are responsible for the oscillations of the occupation number.

FIG. 5. �Color online� The imaginary part of the lesser two-time
Green function for the moderate coupling U=0.75 �a� and strong
coupling U=1.2 �b�. �c� The real part of the oscillating function F2.
The bias V=1.0.
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difference being that the shoulder is longer and the interme-
diate slope is smaller. The patterns described above suggest
that there are some intermediate regimes, some of them be-
ing characterized by a rather stable current. Figure 6�b� em-
phasizes that at lower coupling U=0.50 the transient is even
smoother and for N=4,6, and 8 one notices the formation of
clear steps.

When the coupling strength U is increased the transient
shows oscillations but they are fewer than in the single site
�not shown�. Since the two oscillatory integrals over energy
in the current formula and both self-energies do not depend
on the number of sites in the system, the above size effects
should be explained only by the behavior of the contact
Green functions. We show in Fig. 7�a� and 7�b� the imagi-
nary parts of the the contact Green functions G11

R,� of the
four-site system for a strong coupling U=1.25 �it turns out
again that the real part of G11

R is vanishingly small�. Compar-
ing with Fig. 4 it is obvious that for the four-site dot the
Green functions have a more regular behavior and in particu-
lar the occupation number of the contact site 1 shows milder
oscillations than the occupation number of the single site.
Figure 7�c� gives the Im G11

R �t1=10, t2� as a function of t2 for
different couplings and reveals that at weak coupling to the
leads the full retarded Green function is close to the unper-
turbed one and the electron dynamics inside the system must

resemble the one of the isolated sample. Indeed, the curve at
U=0.25 follows the oscillations of the free Green function
which is also given in the figure �the curve corresponding to
U=0.0�. We plot the imaginary part since it turns out again
that the real part is vanishingly small, so it does not contrib-
ute considerably to the retarded current. As U increases the
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FIG. 6. �Color online� �a� The transient current in the left lead
J��t� for different sizes of the 1D central region. The number of
sites, N, is indicated in the figure. In �a� the coupling to the leads is
U=0.75 and in �b� U=0.50. By decreasing U the shoulders in �a�
turn to clear steps in �b�. The bias is fixed to V=2.0 and kT
=0.0001.
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Green function changes and shows clear oscillations imposed
by the leads’ self-energy.

The analysis performed so far has focused on the behavior
of the transient current as the intrinsic parameters of the sys-
tem �i.e., its size and the height of the tunneling barriers at
the contacts� are varied. Nevertheless, in a typical transport
experiment these parameters are fixed and one usually mea-
sures the current by varying the bias or a plunger gate volt-
age. From steady-state current measurements it is well
known that the role of such a gate potential is to bring one or
more levels of the quantum dot within the bias window
�BW�. We show in what follows that at fixed bias and given
coupling strength to the leads one can tune the transient cur-
rent with a gate potential. Moreover, by inspecting the tran-
sient behavior as the gate potential is varied, it is possible to
extract some information about the number of states within
the bias window or above it. We will make the discussion for
the four-site dot. The gate potential is simulated by the diag-
onal term Vg added to the on-site energy of the system. We
fix the bias window to W=2.0, and for convenience we set
�R=0.0. Figure 8�a� gives families of transients for coupling
strength U=0.75 and various values of Vg specified in the
figures. Figure 8�b� shows the four levels of the isolated
quantum dot as the gate potential scans the range �−4:4�.
The Vg values chosen in Fig. 8�a� correspond to different
locations of the levels with respect to BW. The bottom curve
is irregular and settles down to a vanishing current because
in this case there is no level within the BW. We note, how-
ever, that a nonvanishing transient current still develops
shortly after the coupling is established. At Vg=−1.0 the
highest level is located in the BW and the transient is smooth
and already shows the additional shoulder noticed previ-
ously. The same thing happens when two states lie in the BW
�at Vg=0.0�, the difference being that the steady-state current
increases considerably. For Vg�0.50 it is clear from the
structure of the spectrum that one cannot have more than two
states in the BW and that the levels pass gradually above it.
We found it interesting to look at the transient currents for
those gate potentials that still allow two states in the trans-
mission range while pushing one or two states above BW.
One notices that for Vg=1.0 the steady-state currents do not
distinguish the different spectral structure involved in trans-
port, while the transient current is very sensitive to it.

In the case of the six-site QD the shoulder in Fig. 4 is
more pronounced because at Vg=0.0 there are exactly three
states inside the bias window. We want to point out that since
we have neglected the Coulomb interaction, our simulations
cannot capture the transport through many-body excited
states of the quantum dot. Tunneling processes involving
such states would lead to a minipeak structure of the current
maxima as a function of the gate potential applied to the
system �see Ref. 26�. We can consider, however, that our
results should describe qualitatively the transport involving
more levels because for small dots the bias required to cover
the ground state of N electrons is much higher that the exci-
tation energies.

Now we investigate two more features of the transient
regime: the time-dependent charge filling of the central re-
gion and possible effects due to different shapes of the

system or of the various ways in which one can couple the
leads. Besides the four-site 1D system discussed so far we
consider also a 2�2 quantum dot. Both systems are submit-
ted to the same bias and have equal coupling to the leads.
However, in the case of the 2D quantum dot one can use
different contacts for plugging the leads. We discuss two
situations: �i� a symmetric configuration in which the leads
are attached to the opposite corners of the system—namely,
at sites 1 and 4—and �ii� an asymmetric coupling when we
use the first and third sites as contacts. Figure 9�a� reveals the
changes induced in the transient curves in each case. The
remaining subfigures show the occupation number Ni�t� of
each site i=1,4 for the 1D system and the two configurations
considered. Inspecting Figs. 9�a� and 9�b� we see that �i� the
contact sites 1 and 4 are the first to be populated due to their
proximity to leads. �ii� Since �����, the right-contact site
�the fourth� gains less charge at a lower rate than the left-
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FIG. 8. �Color online� �a� The transient current for different
values of the gate potential applied on the four-site quantum dot for
U=0.75. �b� The spectrum of the system as function of the gate
potential. It can be checked that the additional shoulders observed
in �a� develop when there is at least one state of the QD in the bias
window and no state above it. Other parameters: V=2 and kT
=0.0001. Note that the bias is applied asymmetrically—that is,
��=0.0.
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contact site �the first�. Both N1 and N4 show a steplike be-
havior for a short period �around t=1�. This coincides with
the increased occupation number on the middle sites. We
note also that the step in the occupation of the contact site N1
ends when it is equaled by N2. All sites are then continuously
filled up to the steady-state value. The occupation number on
the right contact is smaller than the other ones which attain
roughly the same value 0.65. �iii� The steplike behavior of
the transient currents in the range �1:1.75� corresponds to
the almost constant population of the contact sites in the
same interval. The symmetric configurations are still charac-
terized by a smooth transient but we notice that the step
appears now later that in the 1D case. Figure 9�c� confirms
again that this stable regime is assigned to a constant flow in
the contact site. Also it reflects the fact that the charge is
equally distributed in sites 2 and 3 which are located sym-
metrically with respect to the leads. In the asymmetric ge-
ometry the transient is rather similar to the one of the 1D
system up to t=2.8 but then drops to a lower steady-state
value. The occupation numbers show that the fourth site car-
ries more charge than the contact sites in the steady state.
This means in our opinion that part of this charge simply
accumulates and is not participating in transport. More inter-
estingly, we note that in contrast to the symmetric geometry
N2 and N3 are different in the transient regime but reach the
same value in the steady state. We mention that time-
dependent simulations were performed recently in the case of

an Aharonov-Bohm ring starting from the Schrödinger
equation.21

We discuss now briefly the behavior of the total particle
current J�+J� which is given in Fig. 10 along with its two
components �the + sign is due to the fact that the current J�

represents the current from the lead � to the system and
therefore has opposite sign�. As already mentioned, only in
the steady state does one have the identity J�=−J�. Conse-
quently, the net current J�+J� vanishes. However, in the
transient regime the two currents, although having similar
shape, differ significantly.
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FIG. 9. �Color online� �a� The transient in the left lead J��t� for the 4�1 system and for the 2�2 system in the two configurations of
the leads as mentioned in the text. �b�, �c�, �d� The occupation numbers Ni�t� of the ith site for the three cases considered in Fig. 9�a�. �b�
1D system, �c� symmetric configuration, and �d� asymmetric. Other parameters: U=0.75, V=2.0, and kT=0.0001.
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To substantiate further the previous analysis we present in
Fig. 11�a� the contour plot of the current as function of time
and gate potential for the �2�2� site quantum dot coupled to
the leads in the symmetrical configuration. Figure 11�c� gives
the spectrum of the system as the gate potential varies. The
middle eigenvalue is doubly degenerated. When the levels
are either below or above the bias window �W=1.0 starting
from �R=0.0� the transient oscillates for quite a long time
before passing to the steady state. We also observe that in

these two extreme limits the transient oscillations are quali-
tatively different. For Vg�−4 the current shows decreasing
oscillations towards the steady state. In contrast, for Vg�4
one remarks faster oscillations and, more importantly, nega-
tive values of the transient. Since in this regime all the levels
are above the bias window and there is no way to pass elec-
trons to the right lead, it is clear that the negative current in
the left lead is just the reflected one. We underline that this
effect is due to the fact that we have considered a finite
spectral width of the leads and that similar features were
reported for the single-site case.20 As expected, as the system
approaches the stationary regime the current shows three
maxima associated with the passage of the localized levels
through the bias window. Actually the levels turn to reso-
nances when coupling the leads to the system, but since one
has to deal with a time-dependent Hamiltonian, it is difficult
to characterize the location and width of these resonances in
the transient regime. This is why in the 3D plot one cannot
distinguish between different resonances at times t�3.0.
Figure 11�b� presents the transient current for the same 2
�2 system except that the hopping parameters t13 and t24 are
reduced to 0.5. In this case one can view the system as a
double dot, each dot composed of two sites. As the spectrum
from Fig. 11�b� shows, the degeneracy is lifted and the level
spacing diminishes. As a consequence in the long-time re-
gime one gets two broader peaks, since the four levels are
now grouped into pairs.

All the features presented above emphasize that the tran-
sient regime of the many-level structures is quite different
from the single-level system.

IV. CONCLUSIONS

We have performed transient current calculations for a
many-level finite system coupled suddenly to semiinfinite
biased leads. Our method is based on the nonequilibrium
Green-Keldysh machinery. We find numerically an exact so-
lution of the integral Dyson equation which is solved as an
algebraic equation. By analyzing the behavior of the retarded
and lesser Green functions we explain qualitatively the shape
of the transient current and the passage to the steady state.
The amplitude of the coupling to the leads controls essen-
tially the convergence to a steady state. We have identified
nontrivial effects of the many-level structure of the system
and presented an intuitive picture of the charge filling by
studying the occupation number inside the system. By in-
creasing the system size the shape of the transient current
and the evolution towards the steady state differs signifi-
cantly from the single-site oscillatory behavior and depends
crucially on the number of electronic states available in the
bias window. We predict that a steplike structure could be
observed in transient current measurements by applying a
gate potential on the system that tunes the higher levels
within the bias window. Different transients are expected to
appear as well when different coupling geometries of the
leads are used.

The present method can be used for studying the response
of mesoscopic systems to more complicated time-dependent
couplings to the leads: pulses having different lengths and
decaying rates and nonperiodic signals.
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FIG. 11. �Color online� �a� The 3D map of the transient current
for a �2�2�-site QD as a function of time and gate potential Vg.
The maxima are related to the spectrum of the isolated system given
in �c�. �b� The 3D map of the transient current for 2�2 the double
dot t24= t13=0.5. Other parameters: V=1.0, U=0.50, and kT
=0.0001. �c� The spectra of the two systems as a function of the
gate potential. The lines mark the bias window.
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