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We consider the effect of the curvature in fermionic dispersion on the observable properties of Luttinger
liquid �LL�. We use the bosonization technique where the curvature is irrelevant perturbation, describing the
decay of LL bosons �plasmon modes�. When possible, we establish the correspondence between the bosoniza-
tion and the fermionic approach. We analyze modifications in density correlation functions due to curvature at
finite temperatures, T. The most important application of our approach is the analysis of the Coulomb drag by
small momentum transfer between two LLs, which is only possible due to curvature. Analyzing the ac
transconductivity in the one-dimensional drag setup, we confirm the results by Pustilnik et al. for T dependence
of drag resistivity, R12�T2 at high and R12�T5 at low temperatures. The bosonization allows for treating both
intra- and interwire electron-electron interactions in all orders, and we calculate exact prefactors in the low-T
drag regime. The crossover temperature between the two regimes is T1�EF�, with � relative difference in
plasmon velocities. We show that ��0 even for identical wires, due to lifting of degeneracy by interwire
interaction, U12, leading to crossover from R12�U12

2 T2 to R12�T5 /U12 at T�U12.
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I. INTRODUCTION

The effects of the curvature of fermionic dispersion for
the observables in strongly correlated one-dimensional �1D�
fermionic systems were discussed by several groups
recently.1–7 One physical effect, which probes both the cur-
vature and interactions is the Coulomb drag effect. In a typi-
cal experimental setup, this effect is observed as nonzero
drag resistivity, R12=V2 / I1, with a dc current I1 flowing in
the “active” wire and the voltage bias V2 per unit length
applied to the second “passive” wire in order to assure I2
=0; see the review articles in Ref. 8.

It is generally agreed that the principal source of the drag
effect is the particle-hole asymmetry of the electronic sys-
tem. This was established in various works considering elec-
trons in higher spatial dimensions, D�1, both in the absence
of magnetic field9 and in the presence of it �see Ref. 10 and
references therein�. It was shown that the leading contribu-
tion to the drag effect is obtained in the second order of the
interwire interaction U12 and is schematically depicted by the
Feynman graph in Fig. 2. This contribution corresponds to
the virtual processes away from the Fermi surface and is
ultimately determined by the curvature of the electronic dis-
persion.

One naturally would expect that the curvature should be
also responsible for the drag effect in one spatial dimension
�1D�. However, the first study of the drag effect in 1D was
devoted to a different mechanism,11 specific for 1D and re-
quiring some additional conditions, we return to it below.
The study of the drag effect in 1D due to curvature of elec-
tronic dispersion was initiated only recently by Pustilnik et
al.1 The reason is that the drag effect depends both on the
curvature and the fermionic interaction, whereas it is known
that the interaction is very important in 1D and ultimately
leads to the notion of Luttinger liquid. The possibility to find
a complete solution, i.e., Luttinger liquid, for the interacting
system lies in the crucial simplification of the theory—the

linearization of the fermionic dispersion around the Fermi
energy. In most cases it is an innocent procedure and does
not influence the final result. The Coulomb drag effect is one
example where this usual theoretical trick with linearization
leads to the immediate disappearance of the observable
quantity in question. In their work,1 Pustilnik et al. �see also
Ref. 5� used the fermionic formalism, and found the drag
effect as the function of temperature, for different regimes.
Restricting themselves to the lowest order of interwire, as
well as intrawire interactions, they showed that R12�T2 for
equal wires and R12�T5 for nonequal wires. In this work we
check their results by another method and extend their treat-
ment beyond the lowest order of perturbation theory �PT� in
fermionic interactions.

To this end, we use the traditional tool for studying the
effects of interaction in 1D, known as the bosonization tech-
nique, which is devised for effective resummation of the ap-
pearing series in PT.12 Employing the bosonization we take
into account the inter- and intrawire interactions in all orders,
whereas the curvature of fermionic dispersion is treated as
perturbation. We show that it suffices to consider fourth or-
der in curvature when calculating low-temperature drag ef-
fect. At higher temperatures we perform the resummation of
most singular contributions in PT in curvature, incorporating
free-fermion results into bosonization language. In this
sense, our method is complementary to the analysis in Ref. 1
where the curvature was treated exactly and the interactions
in the lowest necessary order.

The issue of the curvature of fermionic dispersion in the
bosonization technique was rarely discussed previously.
Therefore, although we are ultimately interested in the drag
effect, we develop a systematic approach to Luttinger liquid
with curvature. It was shown long ago13,14 that the curvature
corresponds to the cubic terms in bosonic densities �plasmon
modes� of so-called right- and left-moving fermions near two
Fermi points ±kF, respectively. The appearance of these cu-
bic terms corresponds to the decay of bosons �plasmons� and
was previously derived in two ways via operator identities.
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We suggest yet another explanation for the appearance of the
cubic terms in the theory, an explanation referring to Green’s
function formalism and more pertinent to our discussion of
Coulomb drag. Besides that we discuss the modification of
the current operator, dynamic density correlations in isolated
wires, and the light-cone singularities at finite temperatures
T. Keeping T finite is important for our calculation, as the
drag effect is only due to inelastic processes of fermionic
interaction, and hence vanishes at T=0. We use the Kubo
formalism, which technically delivers the optical transcon-
ductivity, �ij���, in a one-dimensional system of two wires,
and eventually extract the dc drag resistivity, �ij

−1�0�. Given
our assumption of clean Luttinger liquids, it is a delicate
procedure and we discuss it in detail.

The plan for the paper is as follows. We set up the prob-
lem and discuss the identification of fermionic curvature
with decay of plasmon modes in Sec. II. The form of density
correlation functions is discussed in Sec. III; we show the
correspondence between fermionic approach and bosoniza-
tion here. The bosonization expression for current and con-
ductivity for one wire is discussed in Sec. IV. The transcon-
ductivity matrix for two wires is considered in Sec. V, and
the drag coefficient is obtained for the relatively simple case
of nonequal wires. The analysis of nearly equal wires is per-
formed separately, in most technically involved Sec. VI,
where the final results for R12 in low temperature regime
are discussed. We present our summary and conclusions in
Sec. VII.

II. SETTING UP THE PROBLEM

A. Hamiltonian

We consider spinless �spin-polarized� electrons in two
wires, with the forward-scattering short-range interaction
both inside and between the wires. The electrons in the ith
wire �i=1,2� are conventionally subdivided into right- and
left-going species, centered around corresponding Fermi mo-
menta, kFi=�ni, with the fermionic density ni. We go beyond
the linearized spectrum approximation, keeping quadratic
terms in dispersion.

As usual, we decompose the fermionic operator into
“slowly oscillating” chiral components

��x� = eikFx�R�x� + e−ikFx�L�x� , �1�

so that the smooth part of the fluctuating fermionic density is

��x� = �R
†�x��R�x� + �L

†�x��L�x� . �2�

Our Hamiltonian is given by four terms:

H =� dx�H1 + H2 + H12 + Hcur� ,

with the linearized interacting fermions in individual wires

Hj=1,2 = − ivFj�Rj
† �x�Rj + ivFj�Lj

† �x�Lj + Uj� j
2�x�/2, �3�

forward-scattering interaction between wires

H12 = U12�1�x��2�x� , �4�

and the terms describing the curvature of fermionic disper-
sion

Hcur = �
j=1,2

1

2mj
��Rj

† �i�x�2�Rj + �Lj
† �i�x�2�Lj� . �5�

The bosonization approach to the above system is the ap-
plication of the important representation of 1D chiral fermi-
ons as

�Rj =
1

�2�	
ei
Rj, �Lj =

1
�2�	

e−i
Lj , �6�

with 	 the ultraviolet cutoff. Here the bosonic fields 
R�L�,j
=
 j �� j, with primary field 
 j and its canonically conju-
gated momentum 
 j =�−1�x� j satisfying �
 j�x� ,
l�y��
= i� jl��x−y�.

In this bosonization notation,12 the Hamiltonian of the
system is rewritten as follows:

H =� dx�H1 + H2 + H12 + Hcur� , �7�

Hi=1,2 =
1

2�
�viJ��x�i�2 + viN��x
i�2� , �8�

H12 =
U12

�2 �x
1�x
2,

Hcur =
1

6�m1
�x
1�3��x�1�2 + ��x
1�2� + �1 ↔ 2� . �9�

Here and below I use the shorthand notation �x
1
=�
1�x� /�x, etc. The electronic density operator in Eq. �7� is
given by �i=�x
i /�. We follow the notation by Haldane,
with viJ=vFi=kFi /mi, viN=vFi+Ui /�. In the absence of H12,
Hcur, the dispersion of �plasmon� excitations is �i�q�=vi 	q	,
where vi

2=viJviN. The strength of the intrawire interactions
may be encoded in the Luttinger parameters, Ki=�viJ /viN; it
is convenient also to define the dimensionless interwire in-
teraction, u=�−1U12/�v1Nv2N.

It is seen that the Hamiltonian �7� contains an exactly
solvable quadratic-in-bosons part H1+H2+H12 and the cur-
vature acts as the interaction.

B. Curvature as interaction

In bosonization, the normally ordered parts of chiral fer-
mionic densities become

Rj 
 �Rj
† �Rj, Lj 
 �Lj

† �Lj , �10�

with � j =Rj +Lj =�−1�x
 j. The main statement of �Abelian�
bosonization, dating back to Tomonaga,15 is that the free
chiral fermions with linear dispersion are equivalent to the
quadratic form in chiral densities: −i�R

†�x�R=�R2. To-
monaga established this relation, studying the equation of
motion for the chiral density R with the fermionic Hamil-
tonian with linear dispersion. This observation was later cor-
roborated by Schick,14 who found that similar consideration
with the quadratic fermionic dispersion yields another impor-
tant relation:
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�R
† �i�x�2

2m
�R =

2�2

3m
R3. �11�

Another derivation of Eq. �11� was shown in the paper
by Haldane,13 who started with the fermion representation
�6�. Note that using Eq. �6�, one arrives also to the term
in the Hamiltonian, which constitutes a full derivative,
��x

2
R�x
R��x�R2�, which does not contribute to the dy-
namics. Confining oneself with the quadratic terms in the
fermionic dispersion, one obtains nothing beyond the terms
R2+L2 and R3+L3 in the bosonization language. The stability
issue for the cubic action is briefly discussed in the next
section.

Keeping in mind a problem of drag effect, let us provide
yet another argument verifying the form of the curvature
term in bosonization. It is well-known that the multitail fer-
mionic loop diagrams in one spatial dimension are exactly
zero for the linear dispersion law. This statement is known as
the higher-loop cancellation theorem after the work by Dzy-
aloshinskii and Larkin.16 One can show, however, that the
presence of the curvature in fermionic dispersion leads to a
generally nonzero value for the processes given by the tri-
angle diagram. The expression for this diagram, character-
ized by three external vertices, can be easily calculated at
T=0 as

T =

q1q2q3��
i=1

3

	��i,qi��
��1q2 − �2q1�2 − �q1q2q3/2m�2 , �12�

	��,q� =
1

2�
ln

� − vFq + q2/2m

� − vFq − q2/2m
, �13�

with q3=q1+q2, �3=�1+�2 �see also Ref. 17�. One can
check that T vanishes in the limit m→�. Expanding Eq. �12�
to the leading order of m−1, one obtains the structure

1

2�m

q1

vFq1 − �1

q2

vFq2 − �2

q3

vFq3 − �3
, �14�

which corresponds to three density correlators for the linear
spectrum, �2��−1q / �vFq−��, attached to the above vertex,
2�2 / �3m�; factor 3! =6 comes from symmetrization. Sche-
matically, it is shown as Feynman diagrams in Fig. 1, where
fermion Green’s functions are shown by lines with arrows,
and double lines represent bosonic Green’s functions �21�.
Note that the leading-order drag diagram is given by the
“two triangles” fermionic diagrams in Fig. 2, with wavy lines
standing for U12.

9,10 Comparing it to Fig. 1 we see that the
drag coefficient should correspond to the “two stars” bosonic

diagram in the right-hand side of Fig. 2. Further observing
that interwire interaction, U12, is exactly included into the
Luttinger liquid formalism, Eq. �7�, we eventually arrive at
the diagrams depicted in Fig. 3 below. Note that passing
from Fig. 2 to Fig. 3 corresponds to the screening of inter-
wire interaction; see, e.g., Kamenev and Oreg.9 The RPA
resummation in the case of LL gives an exact result; how-
ever, the simplest bosonic diagram in Fig. 2 corresponds to
the optical transconductivity, rather than to dc drag effect, as
will be shown below. Before considering a general case of
two different wires, let us discuss the modification of density
correlations in one wire with the curvature term.

III. DENSITY CORRELATIONS

Let us first discuss the density correlation function for one
wire, with and without the Luttinger-liquid type interaction.
Such an analysis was previously done in Refs. 3 and 4, we
extend it for the case T�0 in all orders of intrawire interac-
tion. The bosonized Hamiltonian reads as

H =� dx�H0 + Hcur� , �15�

H0 =
1

2�
�vJ��x��2 + vN��x
�2� �16�

=�vF�R2 + L2� +
U

2
�R + L�2, �17�

Hcur =
1

6�m
�x
�3��x��2 + ��x
�2� �18�

=
2�2

3m
�R3 + L3� . �19�

The commutation rules for the chiral densities are

�R�x�,R�y�� = − �L�x�,L�y�� =
i

2�
�x��x − y� . �20�

Our choice of the interaction in the form U�R+L�2 corre-
sponds to the case g4=g2 in the more general form of the
Hamiltonian g4�R2+L2�+2g2RL.

�

�

�

�

�

�

� �

FIG. 1. Feynman diagrams representing nonlinear response of
the fermionic system. Two three-tail fermion loops correspond to a
boson decay process, see the text for discussion.

�

�

�

�

�

FIG. 2. First Coulomb drag diagrams in the fermionic formalism
and their bosonization counterpart, see the text for discussion.

� �

� �

� �
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� �

FIG. 3. Two boson diagrams for ac conductivity, obtained with
the use of continuity relation and equivalent to Fig. 4.
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A. Free fermions

In the absence of the mixing interaction term URL in Eq.
�17�, each chiral component is considered separately. In the
absence of the curvature, 1 /m=0, the bare boson retarded
right �left� Green’s function is independent of temperature
and given by

gR�L�
�0� =

1

2�

q

qvF � �� + i0�
, �21�

with �-function spectral weight.
Importantly, in this free case we know the exact expres-

sion for the correlation function of the right �left� moving
densities. The retarded �right� density propagator ��� ,q� can
be calculated at nonzero temperature as the fermionic loop
diagram,

� =� dk

4�

tanh��k/2T� − tanh��k+q/2T�
� + �k − �k+q + i0

, �22�

with �k=vFk+k2 /2m. Neglecting the terms of order of
T / �mvF

2�, we get

Im � =
m

4q

sinh��/2T�

cosh
qvF�� − 1�
4T

�cosh
qvF�� + 1�
4T

� , �23�

� =
q

4�wq
��
1

2
− i

	qvF	�� − 1�
4�T

� − �
1

2
− i

	qvF	�� + 1�
4�T

�� ,

�24�

� = �� − qvF�/wq, wq = q2/�2m� , �25�

with ��x� the digamma function. Restoring the real part of �
we used the rule

i tanh z → −
2

�
�
1

2
− i

z

�
�

for the analytic function in the upper semiplane of z. In the
limit of zero temperature we obtain

Im � =
m

2q
��1 − 	�	� , �26�

� =
q

4�wq
ln

� − qvF − wq + i0

� − qvF + wq + i0
, �27�

with the step-function ��x�=1 at x�0.
Let us now discuss how these exact expressions relate to

the bosonization theory. Formally, the curvature term Hcur
has a scaling dimension 3, which is strongly irrelevant. The
common wisdom then would prescribe to treat it in the low-
est order of perturbation theory �PT� in the infrared limit,
q ,�→0. Comparing Eq. �27� and the bosonization expres-
sion �21�, one can see that the � function is a good approxi-
mation for the spectral weight in this limit. However, the
lowest PT contribution, with two bosons in the intermediate
state, leads to the self-energy part of the form

� = 2�
q

12m2

q2 + �2�T/vF�2

qvF − � − i0
. �28�

Note that in a quite unusual way18 the spectral weight
Im ��� ,q� is located exactly at the “light cone” of the bare
spectrum, �−qvF=0. The Dyson equation, gR

−1= �gR
�0��−1−�,

reads as

gR
−1 = 2��qvF − �

q
−

q

12m2

q2 + �2�T/vF�2

qvF − �
� . �29�

It means that instead of previous single pole �=qvF, we
have two poles separated by a distance �m−1q max�q ,T�.

Now we compare Eq. �29� with Eq. �24� by expanding �−1

in powers of m−1. We find that Eq. �29� is reproduced by Eq.
�24� in the order m−2. It suggests that bosonization produces
a correct asymptotic series in m−1, but at the energies close to
“light-cone” condition, an ever increasing number of PT cor-
rections should be taken into account, to arrive at the exact
answer �24�.

Interestingly, the bosonization predicts also that the fermi-
onic interaction of the form g4�R2+L2�, i.e., with g2=0, re-
sults only in the shift of the Fermi velocity, and therefore the
spectral weight � has the previous form �24� except for the
change, vF→vF+g4 /2�. This statement should be con-
trasted with an estimate for � obtained by resumming the
RPA series with the g4 term, i.e., �→ ��−1−g4�−1. One can
show that such resummation leads to a localized �-function
peak in Im �, similarly to a recent work6 where such a peak
was demonstrated for g2=g4. However, in the presence of
curvature, the RPA series does not exhaust all possible pro-
cesses, as the multitail fermionic loops do not vanish, Eq.
�12�. Hence the result of simple RPA resummation is differ-
ent from the answer by bosonization, which implies the mul-
titail fermionic processes, particularly, the “drag diagrams,”
Fig. 2.

B. Curvature in Luttinger liquid

Let us discuss now the modification of the theory in the
presence of the mixing interaction �g2RL in Eq. �17�. In this
case right and left chiral densities mix, but the quadratic
Hamiltonian which is the Luttinger model is still solvable.12

The corresponding u−v Bogoliubov transformation diago-
nalizes the Hamiltonian in terms of new chiral densities,

R̃ , L̃, which obey the same commutation relations �20�. Per-
forming this transformation, one obtains

H0 = �v�R̃2 + L̃2� , �30�

Hcur =
�1

3
�R̃3 + L̃3� +

�2

2
�R̃2L̃ + R̃L̃2� , �31�

�1 =
�2

m

3 + K2

2�K
, �2 =

�2

m

�K2 − 1�
�K

, �32�

with v2=vF�vF+U /��, K2= �1+U /�vF�−1. One can see from
Eq. �31� that apart from some rescaling of the old mass term,

R̃3+ L̃3, the effect of interaction gives rise to a new type of
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curvature vertex, which mixes new right and left densities.
The density correlation function �����q is determined

through the new variables R̃ , L̃ as

�����q = K��R̃ + L̃��R̃ + L̃���q.

Note that RL mixing, which was removed at the level of
quadratic action, reappears due to the curvature. The mixed

terms �R̃L̃� are nonzero in the case of both U�0 and m−1

�0, and it necessitates the consideration of the �retarded�
matrix Green’s function

G̃��,q� = 
�R̃R̃��q �R̃L̃��q

�L̃R̃��q �L̃L̃��q

� .

It is clear that the PT for bosons in the case K�1 contains
processes absent in the free fermion case K=1.

Let us calculate the boson self-energy in the second order
of PT. Denoting three types of boson loops as ARR ,ARL ,ALL,
one obtains

�RR = 2�1
2ARR +

1

2
�2

2ALL + �2
2ARL, �33�

�LL = 2�1
2ALL +

1

2
�2

2ARR + �2
2ARL, �34�

�RL = �LR = �1�2�ARR + ALL� + �2
2ARL. �35�

Off the light cones, �� ±vq, one has Im ARR=Im ALL=0
and all components of the imaginary part of the self-energy
are given by the quantity

�of f 
 �2
2ARL. �36�

We list here the form of the appearing �retarded� expres-
sions:

ARR =
1

48�3

q�q2 + �2�T/v�2�
qv − � − i0

, �37�

ALL =
1

48�3

q�q2 + �2�T/v�2�
qv + � + i0

, �38�

Im ARL =
�

2

�2 − v2q2

�4�v�3 �coth
� + vq

4T
� + coth
� − vq

4T
�� .

�39�

Note that the anomalous �appearing for K�1 only� contri-
bution ARL is ultraviolet divergent, which will be reflected in
the appearance of UV cutoff 	�EF in the real part of ARL.
Seeking a function ARL, analytical in the upper semiplane of
�, one can restore Re ARL using the rule

i coth �� → −
2

�
�
− i

��

�
� +

1

i��
.

Such a recipe of analytical continuation delivers Re ARL up
to a constant �ln�T /	� multiplied by ��2−v2q2�, as will be
seen shortly.

In the limit of T=0, the expression for ARL is simplified,

Im ARL = �
�2 − v2q2

�4�v�3 ���2 − v2q2�sgn � , �40�

Re ARL = −
1

�4�v�3 ��2 − v2q2�ln�q2v2 − �2

	2 � . �41�

Importantly, this part of � vanishes at the light cone for T
=0 and remains finite �and purely imaginary� for T�0, in
contrast to the singular contributions ARR ,ALL. Notice the
appearance of UV cutoff 	 in Eq. �41�, which replaces tem-
perature in this limit.

Neglecting for a moment the singular �purely real� parts
ARR ,ALL, we write the Dyson equation in the form

G̃−1 = 
g̃R
−1 − �of f − �of f

− �of f g̃L
−1 − �of f

� , �42�

with gR,L
−1 given by Eq. �21� with the change vF→v. Some

calculation shows then that the Green’s function defined for
the initial fields 
 ,� is given by


��
,�
� ��
,���
���,�
� ���,���

� =
�q2

Det

Kv �/q

�/q K−1�v − �of f/��
� ,

�43�

with

Det = q2v2 − �2 −
q2v
�

�of f ,

and � standing for spatial derivative in Eq. �43�.
As a result, the density correlations are given by

�����q =
1

�2 ��
 � 
��q =
Kvq2/�

q2v2 − �2 − q2v�of f/�

=
vF

�

q2Z

q2v2 − �2 , �44�

Z−1 = 1 −
q2v�of f

��q2v2 − �2�
. �45�

In the limit T=0 we have

Z−1 = 1 − ��q/kF�2ln
v2q2 − �� + i0�2

	2 , �46�

� =
K�K2 − 1�2

64
, �47�

and kF=mvF=Kmv. The obtained logarithmic correction to
the residue Z should be regarded as a first term in a series in
m−1. This correction is increasingly important at the energies
close to the light-cone condition, �→v 	q	, and corresponds
to the first term in the expansion of power-law singularity at
�→v 	q	, which is discussed in Ref. 5.

Away from the light cone, when the real part of the loga-
rithm in Z can be neglected, we obtain the contribution to the
spectral weight at ��0:
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Im �����q �
�

kF
2

vFq4

�2 − q2v2���2 − v2q2� , �48�

which shows a tail at higher energies, 	� 	 � 	qv	. This result
was obtained earlier in Refs. 1, 3, and 4.

Finite temperatures, T� 	� 	 , 	qv	, lead to the following
modification:

q2v
�

�of f � i�
q

kF
2 4��T , �49�

and from Eq. �44� it appears that the bosonic excitations are
characterized by damping

� � ± vq + 2i��T�q/kF�2. �50�

However, this “damping” should not be viewed as the char-
acteristic linewidth because it is smaller than the previous
estimate for the width of the spectral width of the density
correlator in the noniteracting case, 	�−vq 	 �Tq /kF. This
wider spectral width comes from the omitted terms ARR ,ALL
which intervene close to the light cone condition �= ±vq.
The finite-T “damping” due to interaction manifests itself in
the enhanced amplitude of the tails in the density correlator,
and instead of Eq. �48� we obtain

Im �����q �
�

2kF
2

vFq4

��2 − q2v2��coth
� + vq

4T
�

+ coth
� − vq

4T
�� �51�

�
�

kF
2

4vFq4�T

��2 − q2v2�2 , �52�

which is parametrically larger than Eq. �48� at 	�−vq 	 ��
�T, and is nonzero also at 	� 	 � 	qv	. In the lowest order of
intrawire interaction Eq. �51� was obtained in Ref. 4. It
should be stressed again that Eqs. �48� and �51� are appli-
cable only for 	�−vq 	 �kF

−1 	q 	max�T ,qv�.

IV. ac CONDUCTIVITY OF SINGLE WIRE

Let us discuss the coupling to electromagnetic field in
bosonization and its modification due to curvature. We start
from a general expression for the kinetic term in the Hamil-
tonian,

Hkin =
1

2m
�†�− i � − eA�2� − ��†� , �53�

with �=c=1 and � the chemical potential. Using the above
representation ��x��eikFx+i
R +e−ikFx−i
L, and denoting

�R = kFx + 
R, �L = kFx + 
L,

one can represent Hkin in the presence of eA as

Hkin =
1

2�
� ��x�R − eA�3

6m
− ��x�R�

+
1

2�
� ��x�L + eA�3

6m
− ��x�L� . �54�

Slightly digressing here, we note that in this notation kFx
is clearly a zero �classical� mode of the bosonic fields �R,L
which is obtained from Eq. �54� by variation over these
fields. Note that the zero mode kFx corresponds to a local
minimum of the action corresponding to Eq. �54�, while the
action is formally unstable with respect to a choice �x�R,L
→−�. The latter unphysical choice of “classical” vacuum
can be ruled out by imposing the hard-core condition,
�x�R,L�0 for all x. It means that the local fluctuations of the
density should not lead to negative values of total electronic
density, �x
R�−kF, etc. Quantizing these fluctuations
around the classical vacuum as explained, e.g., in Ref. 19,
one arrives to the above picture of Luttinger liquid plus cubic
“interaction” terms. A similar approach was proposed earlier
in Ref. 20.

Note that we can obtain Eq. �54� also by including vector
potential in the U�1� phase according to ��x��ei�R−ie�dxA

+e−i�L−ie�dxA. The cubic terms in eA generated by two terms
in Eq. �54� cancel each other. In a more general case of
nonparabolic band dispersion, ��k�, the Peierls substitution,
k→k−eA, leads to higher powers of eA in the gradient ex-
pansion of ��k−eA�. The recipe for tackling this case was
outlined long ago by Luttinger and Kohn21 and amounts to
retaining only eA and �eA�2 terms in such an expansion,
while discarding higher terms as unphysical.

Upon thermodynamic averaging of Hkin, the diamagnetic
term, ��eA�2, gives the usual value, kF / ��m�=Kv /�. This is
the zero-mode contribution, whereas terms linear in �x

yield zero. The term linear in vector potential has a structure

eA

2m
��kF + �x
L�2 − �kF + �x
R�2�

= �−1eA�vF�x� + m−1�x��x
� .

The last expression means that the electric current is given
by the expression

j = − e�−1�vF�x� + m−1�x��x
� . �55�

This expression is confirmed by the immediate application of
the continuity equation, �xj=−�t�= ie�−1��x
 ,H�, and using
the bosonized Hamiltonian �15�. The first term in Eq. �55� is
usual for LL, the second term appears due to the fluctuation
of the Fermi velocity when changing the density.

The Kubo formula expresses the conductivity via the re-
tarded Green’s function of the uniform current,

���� =
�j j�q=0,� − �j j�q=0,�=0

i�
. �56�

The subtraction of the diamagnetic term �j j�q=0,�=0 should be
performed when using direct representation �55�. If one cal-
culates first the density correlator and uses the continuity
equation afterwards,

�j j�q=0,� = lim
q→0

�2q−2����q,�,

then the diamagnetic contribution is subtracted automati-
cally.

Using the above result, Eq. �44�, we have
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���� =
vF

− i��
, Re ���� = vF����; �57�

i.e., the conductivity of one wire is not affected by the tem-
perature, interaction, and curvature, in accordance with Gi-
amarchi and Millis.22 It should be stressed that this conclu-
sion assumes our above choice g2=g4=U, i.e., physical
charge-charge interaction; we do not consider models with
g2�g4 which would correspond to current-current interac-
tion and to modifications of Eq. �57�.

We also comment here on the equivalence of two ways of
calculation of ����, via Eq. �55� and via the continuity equa-
tion. Using Eq. �55� for the �j j� correlation function, one
obtains a bosonic propagator ��x� ,�x��, and bosonic loops of
the form m−2��x��x
 ,�x��x
�. From Eq. �43� the average
��x� ,�x�� is vanishing in the limit q→0, and subtracting the
diamagnetic contribution vF /�, one arrives at Eq. �57�. The
bosonic loop terms give zero, as will be seen shortly.

The mixed terms in the �j j� correlator, m−1��x� ,�x��x
�,
are zero in all orders of perturbation theory. It is trivial to see
in lowest order of m−1 because the mixed average contains
three bosons. In the next order, one has a diagram with a
bosonic loop and the Green’s function attached to it. This
Green’s function bears the zero external momentum and fi-
nite � and hence vanishes. The same argument about zero
contribution to conductivity can be applied to any diagram
containing external lines carrying zero momentum, particu-
larly in the two-wire situation. Hence apart from the
�-function contribution produced by conventional bosoniza-
tion, we have to discuss only loop diagrams in Fig. 4 and
their dressing by the interaction, m−1.

V. ac CONDUCTIVITY, TWO WIRES

For the system described by the Hamiltonian �7�, we wish
to compute the transresistivity, i.e., the voltage drop in one
wire, caused by the current in another wire. Technically, we
use the Kubo formula and calculate the conductivity, not
resistivity. We consider the drag effect which is caused
purely by electronic interaction, and in the absence of disor-
der in wires. In this situation, one expects a �-function con-
tribution to the conductivity, which should be separated from
the proper drag contribution, seen in the limit �→0. Let us
first discuss this small-� limit.

A. dc limit

A general form of transconductivity in the limit �→0 can
be found when starting with the transresistivity matrix

R̂���= ��̂����−1. Exactly at �=0 the voltage drop in both
wires should be absent when the drift charge velocities,
�ji /kFi, in both wires coincide. In order to see it suffices to
make a Galilean transformation to the coordinate frame mov-
ing with the drift velocity.1 We combine this observation
with the third Newton law, equaling the forces acting on both
wires, i.e., E1kF1=−E2kF2, with Ei the electric field induced
in the ith wire, and represent the complex-valued impedance
as a series in �:

R̂��� = �r0
 kF1
−2 − kF1

−1kF2
−1

− kF1
−1kF2

−1 kF2
−2 � − i�Â + �2Â2 + ¯ ,

�58�

with the transresistivity given by R12=�r0 / �kF1kF2�.
In the absence of interwire interaction U12 in Eq. �7�, Eq.

�57� shows that r0=0, Â2=0, and Â=� diag�vF1
−1 ,vF2

−1�. We

make a natural conjecture, that r0 , Â, and Â2 allow Taylor
expansions in u. It follows then, that for ��r0vJkF

−2 the first
two terms in Eq. �58� are of the order of r0kF

−2, and the third
term is ��r0kF�−2O�u�, i.e., it contains an additional small

factor O�ur0�. Therefore one can invert R̂���at small �, re-
taining only the first two terms in Eq. �58� and taking the

above nonperturbed value of Â.
The resulting complex-valued conductivity is obtained as

�̂��� = �̂1��� + �̂2��� , �59�

�̂1��� =
�−1d−1

+ 0 − i�

vF1vF2

−1m2
−2 m1

−1m2
−1

m1
−1m2

−1 vF1
−1vF2m1

−2 � ,

�̂2��� =
�−1d−1

r0d − i�

 m1

−2 − m1
−1m2

−1

− m1
−1m2

−1 m2
−2 � ,

d = m1
−2vF1

−1 + m2
−2vF2

−1 . �60�

Interestingly, Eq. �59� provides the universal, i.e., indepen-
dent of details of fermionic interaction, relation between the
drag resistivity and the drag conductivity in the small-�
limit,

R12 Re	��12�	�→0 = �c + c−1�−2, �61�

with c2=m1kF1 / �m2kF2�. The right-hand side of Eq. �61� is
always less than 1/4, the latter value is achieved for equal
wires.

In the continuum media, the integral of ���� over all
frequencies should not depend on the interactions in the sys-
tem, this independence is known as the optical sum rule �see,
e.g., Ref. 23 and references therein�. From Eq. �59� we re-
store this statement:

Re �
−O�r0d�

O�r0d�

d��̂��� � �
vF1 0

0 vF2
� , �62�

which means that the spectral weight of the part �̂2��� is
large at �vF and is concentrated at the lowest energies. Re-
grettably, this is the worst accessible region for bosonization
analysis, as will be seen shortly.

φ θ

θ φ
+

φ φ

θ θ

FIG. 4. Two boson loop diagrams formally contributing to ac
conductivity. The labels �
, etc., at boson lines refer to the boson
fields as discussed in text.
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We can cast Eq. �59� in the form

�̂��� =
�−1

− i�

vF1 0

0 vF2
� +

�−1r0

��� + ir0d�

�
 m1
−2 − m1

−1m2
−1

− m1
−1m2

−1 m2
−2 � , �63�

and identify the first term here with the bare bosons contri-
bution �57�, then the second term is entirely the effect of the
curvature. At larger �, we have the expansion

Re � �
r0m−2

�2 + r0
2d2 �

r0d

�2 −
r0

3d3

�4 + ¯ .

The drag effect, r0d�0, is absent without curvature, and
bosonization treats the curvature as perturbation. It means,
particularly, that calculating the dc drag resistivity starting
from the Kubo formula, �56�, one should seek a lowest order
contribution to Re ���� behaving as �−2. Such a contribution
should arise in the higher-than-second order of m−1, and the
next important term, �−4, is found in even higher order of
PT. Our approach in determination of r0 as the coefficient
before the �−2 term in conductivity is thus similar to memory
function formalism.24

Below we prove that apart from the singular �=0 contri-
bution, the matrix �̂��� is given by

�̂��� = �d���
 m1
−2 − m1

−1m2
−1

− m1
−1m2

−1 m2
−2 � . �64�

This degenerate matrix cannot be inverted and one needs the
complete representation �59� in order to obtain R12. From
now on we discuss the real part of the drag conductivity
�d���.

B. Optical transconductivity

For the Hamiltonian �7�, the bare Green’s function defined
for the vector �= ��x�1 ,�x
1 ,�x�2 ,�x
2� is found as

G = ��
v1J �/q 0 0

�/q v1N 0 U12/�

0 0 v2J �/q

0 U12/� �/q v2N

�
−1

. �65�

It shows that the excitation spectrum has two branches �+q
=v+ 	q	 and �−q=v− 	q	 with the sound �plasmon� velocities

v±
2 =

1

2
�v1

2 + v2
2� ±�1

4
�v1

2 − v2
2�2 + u2v1

2v2
2, �66�

we assume v+�v−�0 below. We also focus on the case of
almost identical wires, v1�v2=v and small u, when v+
�v−�v and

� 
 �v+ − v−�/v− � ��v1 − v2�2/v2 + u2 � 1. �67�

Let us discuss the first diagrams appearing in bosonization
analysis of transconductivities. As shown above, the linear-
in-boson components of the currents �55�, ��i, produce the
�-function contribution to the conductivity. This is the first
term in Eq. �63�.

The proper transconductivity part, �d��� in Eq. �64�, is
generated by the second term of the current operator in Eq.
�55�. Schematically, it is given by two diagrams, depicted in
Fig. 4. These bosonization diagrams correspond to the usual
fermionic ones, Fig. 2, after we identify Fig. 2 with Fig. 3 in
the approach using the continuity relation, and notice that the
external tail Green’s function becomes constant in the limit
q→0, ��0.

After a lengthy calculation, sketched in the Appendix , we
obtain

�d��� = u2 � sinh��/2T� v1
2v2

2v+
−1v−

−1�v+ + v−�−5

8 sinh
 v+�

2T�v+ + v−��sinh
 v−�

2T�v+ + v−��
+ �v− → − v−� , �68�

�d�0� = T
uv1v2

v+v−
�2 v+

3 + 3v+v−
2

2�v+
2 − v−

2�3 . �69�

The first observation about the obtained optical conductivity
is that �d��� is nonzero solely due to the interwire interac-
tion u. Second, at ��T the second term in Eq. �68� is ex-
ponentially small and the first one produces linear-in-� op-
tical conductivity,

�d��� � u2vF�/EF
2 , � � T . �70�

Unusually, there is no upper boundary for this regime in the
theory, and Re �d���� 	�	 until 	� 	 �EF. At the same time,
the integral contribution of higher frequencies into the opti-
cal sum is small, �d� �����u2vF, i.e., only a fraction of the
above value �62�.

In the case of identical wires, v1=v2
v, coupled by a
weak interaction, one has u�1 and the new velocities v±
=v�1±u. The optical conductivity then takes the form

�d��� �
u2� coth��/4T�

128v3 +
� sinh��/2T�

8u3v3 sinh2��/2uT�
. �71�

One sees the appearance of a smaller energy scale uT�T in
this case and parametric enhancement �d�0��T /u; we return
to this point below.

Overall, the function �68� is a smooth function of �, not
exhibiting the internal crossover at ��r0d�m−4 as sug-
gested by Eq. �63�. The region of applicability of the expres-
sion �68� can be estimated by using the “broadened” propa-
gators �24� instead of �-function-like �21�, during calculation
of �d���. This estimate shows that the finite bosons’ line-
width becomes important in the formula �68� at ���0
=T2 /mv2, in accordance with Ref. 18. Using this estimate as
a crossover energy from Eq. �68� to the Lorentzian form
�63�, we can write �d��0��r0 /�0

2 and thus find r0 up to a
numerical coefficient. Remarkably, this simple method gives
a correct value of r0 at lowest T, but it wrongly estimates a
crossover to the high-temperature regime, discussed below.
We see that the estimate of r0 requires going beyond the
lowest order of curvature and we suggest a way to calculate
it in the next section.
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C. Alternative representation of �d„�…

In this section we derive another representation for �d���,
which explicitly recovers the matrix structure �64� and shows
the overall prefactor u2 in �d���. For infinitesimal u this
representation yields the well-known formula for the drag
coefficient.

We rewrite the Kubo formula as

���� =
��t j�t j�q=0,�

i�3 �72�

and use the equation of motion �t j= i�H , j� and Eq. �55�.
Some lengthy, but straightforward, calculation verifies that
the commutation with the terms H1 ,H2 ,Hcur produces full
derivatives with respect to x, which vanish for the uniform
currents. The only surviving terms come from H12 in Eq. �7�
and are

�t j1�x� = U12m1
−1�1�x�2, �73�

�t j2�x� = U12m2
−1�2�x�1 � − U12m2

−1�1�x�2, �74�

modulo full derivatives. It is immediately seen that the struc-
ture �64� is reproduced, and the scalar drag conductivity is
given by

�d��� =
U12

2

i�3 ��1�x�2,�1�x�2�q=0,�. �75�

Comparing to Eq. �63�, we obtain at ��r0d

r0 =
U12

2

�
Im��1�x�2,�1�x�2�q=0,�. �76�

For the infinitesimal U12 the cross terms, ���1 ,�x�2�, in
the average �75� can be neglected, and a comparison with Eq.
�63� at �→0 gives

r0 = �U12
2 � q2dq d�

�2��2

Im �1�q,��Im �2�q,��
2T sinh2��/2T�

, �77�

which corresponds to previous findings.1,9 It is also worth
noting that our Eq. �76� for transresistivity exactly corre-
sponds to Eq. �18� in Ref. 25. We should stress, however,
that the exact formula for the case of clean Luttinger liquids
is given by Eq. �75� and Eq. �76� should be regarded as the
high-energy asymptote of the expression �63�.

D. Nonequal wires

We consider now the case of two wires, which are
coupled by infinitesimal U12 and are characterized by non-
equal plasmon velocites. In this case we can use Eq. �77�
and the results of Sec. III B. In the absence of curvature
and intrawire interaction, the formula �44� with Z=1 gives
r0=0 in Eq. �77�. The first nonvanishing contribution is
given by Eq. �51�, and we obtain

r0 =
U12

2 vF1vF2

16�T�v1
2 − v2

2� � q5dq

sinh
�v1 − v2�q

4T
sinh

�v1 + v2�q
4T

� � �2

v1kF2
2 sinh�v1q/2T�

+ �1 ↔ 2�� . �78�

In the important case of almost identical wires, when �
= �v1−v2� /v�1, we can omit the wire index in the prefac-
tors and expand sinh��v1−v2�q /4T���vq /4T. Recalling
that the transconductivity is R12=�r0 / �kF1kF2�, we obtain

R12 �
8�4U12

2

m4v6K2�2

�T5

15v5 , �79�

with � given by Eq. �47�, and we used �−�
� dxx4 / sinh2 x

=�4 /15. Comparing Eq. �79� to the result by Pustilnik
et al.,1 we see that we obtained the same T5 dependence
but a parametrically larger prefactor, �v1−v2�−2, rather than
�v1−v2�−1.

Note that one would reproduce the prefactor obtained in
Ref. 1 if one neglected the T dependence of the density
propagator and substituted in Eq. �77� the expression �48� for
Im �1�q ,�� calculated at T=0, instead of Eq. �51�. We see
that finite T parametrically enhances the “tail” of the density
correlator, and it has consequences for the drag effect. The
importance of calculation of intermediate polarization opera-
tors Im �i�q ,�� in Eq. �77� at finite T was also emphasized in
Ref. 10.

Checking the applicability of Eq. �51�, one can conclude
that the derivation of Eq. �79� assumed a condition v1−v2
�T /kF. In other words, the expression �79� should be
regarded as the low-temperature regime of drag resistivity,
taking place at

T � T1 
 kF�v1 − v2� = EF� .

Above this temperature scale, the “core” spectral weights of
�1��q�� and �2��q�� overlap and one can estimate the drag
coefficient by taking the expression for the “core” of the
density propagator for free fermions, Eq. �24�, to obtain

R12 �
U12

2

mv5T2F
 T1

2T
� , �80�

with

F�z� = �
0

� 2xdx�x coth x − z coth z�
sinh�x + z�sinh�x − z�

,

= 1, z → 0,

� 4z3e−2z/3, z � 1.

The estimate �80� shows an activational behavior of the drag
for free fermions, similarly to Ref. 1.

The obtained estimates for the drag effect at lower and
higher temperatures, however, raise a few questions. First,
Eqs. �80� and �79� apparently describe different contributions
to the drag; they do not match at the suggested crossover
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temperature T�T1, and Eq. �79� is explicitly nonzero only
due to intrawire interactions and this feature is absent in Eq.
�80�.

Second, in case of initially equal wires, the plasmon ve-
locities are split due to interwire interaction, Eq. �67�. It
means that U12 cannot be regarded as infinitesimal in Eq.
�75� and hence Eq. �78� is, generally speaking, invalid. In
this case a naive substitution ��U12/v from Eq. �67� results
in independence of R12 from interwire coupling. To clarify
these issues, we separately consider the case of nearly equal
wires below.

VI. DRAG FOR NEARLY EQUAL WIRES
IN BOSONIZATION

A. Identical wires, Hamiltonian

When the wires are identical, it is convenient to introduce
the symmetrized combinations

�2
± = 
1 ± 
2, �2�± = �1 ± �2. �81�

A technical convenience of a �2 prefactor stems from the
same commutation relations for the symmetrized operators,
however, the zero modes are different, �x
+

�0�=�2kF, �x
−
�0�

=0. We will call 
+ and 
− pseudocharge and pseudospin
fields, by obvious analogy with bosonization for one wire in
the spinful case.12

In terms of densities and momentum operators,

�± = �−1�x
±, 
± = �−1�x�±, �82�

the Hamiltonian �7� is rewritten as follows:

H =� dx�H+ + H− + Hcur� , �83�

H± =
�

2
�vJ
±

2 + vN�1 ± u��±
2� ,

Hcur = �2�+��+
2 + 3
+

2 + 3
−
2 + 3�−

2� + 6
+�−
−

6m�2
. �84�

It is seen that the change in the zero mode of 
+ is compen-
sated by the enhancement of its “mass.” The plasmon veloci-
ties and Luttinger parameters are given by

v±
2 = �1 ± u�vNvJ, K±

−2 = �1 ± u�vN/vJ. �85�

According to our definitions

K±
−2 = 1 + ��vF�−1�U1 ± U12� ,

so that K−=1 for equal intrawire and interwire interactions.
We diagonalize the Hamiltonian �83� by transformation

�± = K±
1/2�̃±, 
± = K±

−1/2
̃±. �86�

In terms of new left and right movers, 2R̃±= �̃±+
̃±, 2L̃±

= �̃±−
̃±, there are no mixed terms R̃±L̃± in H, and propaga-

tors �R̃±L̃±� vanish.

The curvature term becomes

Hcur =
�1

3
�R̃+

3 + L̃+
3� +

�2

2
�R̃+

2L̃+ + R̃+L̃+
2� +

�3

2
�R̃+R̃−

2 + L̃+L̃−
2�

+
�4

2
�R̃+L̃−

2 + L̃+R̃−
2� + �5�R̃+ + L̃+�R̃−L̃−, �87�

with

�1 =
�2

m

3 + K+
2

2�2K+

, �2 =
�2

m�2

�K+
2 − 1�
�K+

,

�3�4� =
�2�K+

m�2

 1

K−
+ K− ±

2

K+
� ,

�5 =
�2�K+

m�2

K− −

1

K−
� , �88�

in the limit of vanishing interwire interaction we have K+
=K− and 2�1=�3 and �2=�4=�5; this case returns us back
to Eq. �31�. In the absence of interaction, K±=1 and �2
=�4=�5=0. Note that the vertex �1, describing the decay
within the same mode, is always nonzero.

The drag current operator in Eq. �75� is

�1�x�2 = �−�x�+ = �K+K−�1/2�̃−�x�̃+, �89�

modulo full derivatives. We seek the contribution to r0 in the
next order in m−1 which can be obtained by considering two
skeleton graphs, depicted in Fig. 5. The diagrams of the RPA
type, Fig. 6, vanish, because in our case the intermediate
propagator, connecting two boson loops, carries the zero ex-
ternal momentum and is zero at any external ��0; see Eq.
�21�. Note that the external vertices in Figs. 5 and 6 corre-
spond to Eq. �89� and do not contain m−1, whereas the inter-
nal vertices correspond to Eq. �88�, each bearing m−1.

FIG. 5. Skeleton diagrams depicting the bosonic processes con-
tributing to drag effect at lowest temperatures.

FIG. 6. RPA processes, which do not contribute to drag
conductivity.
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Given ten possible decay processes �87�, one has to ana-
lyze �102 diagrams, corresponding to Fig. 5. It is further
complicated by the necessity to perform the calculation at
finite T and make an analytical continuation to real fre-
quences �→0. Fortunately, there is a method which allows
the essential simplification of this task.

B. Calculation by “Unitarity condition” method

At finite T, the analytical continuation of the diagrams
and the essential reduction of their number under consider-
ation are simultaneously achieved in the “Unitarity condi-
tion” method.26 Since this method for T�0 is largely un-
known to the wider audience, we sketch the main points of it
below. Readers not interested in the details of calculation
may skip to Eq. �98� below.

We define a cross section of the diagram as a line, bisect-
ing this diagram in two parts, each with the external vertex
�−�x�+ carrying the external frequency � �see Fig. 7�. We
should take the product of spectral weights of the Green’s
functions Im g�xi ,qi� at the cross section to divide each indi-
vidual spectral weight by 2 sinh�xi /2T� �in our case of
bosons�, and to multiply the whole product by 2 sinh�� /2T�.
The sum over all possible cross sections, multiplied by the
square of the generalized vertex part, gives a value of the
imaginary part of the diagram. See Figs. 8 and 9, schemati-
cally showing this method.

Using this method, all contributions can be classified by
the number and type of Green’s functions appearing in the
cross section. Formally, we have the contributions with two
propagators in the cross section �2-CS� and three propagators
in the cross section �3-CS�. However, the cross sections with
two propagators are essentially reduced to the simple loop

diagram, with a static vertex correction �except for diagrams
with a �1 vertex, see below�. Given the structure of the ex-
ternal vertex, �−�x�+, and kinematic properties for linear
spectrum, one can verify that the contribution of 2-CS to �
does not contain �−2. We may hence exclude this type of
cross section from our analysis.

Each partial 3-CS contribution to the drag resistivity can
be represented as26 �cf. Eq. �77��

�r0 = �U12
2 K+K−� do	 jkl	2Sjkl, �90�

do = 2�2��� qi���� − � xi��
i=1

3 �dqidxi

�2��2 � ,

Sjkl =
gj��x1,q1�gk��x2,q2�gl��x3,q3�

T sinh
x1

2T
sinh

x2

2T
sinh

x3

2T

, �91�

and the spectral weight gj��x ,q�= � �q /2���qv j ±�� is the
imaginary part of the retarded Green’s function for chiral

density j= R̃± , L̃±, Eq. �21�. A symmetrization prefactor 1 /2
should be added to Sjkl when values of two indices are coin-
ciding. The total drag resistivity is given by summation over
all possible j ,k , l=R± ,L± so that

r0 = �U12
2 K+K−�

jkl
� dq1dq2dx1dx2

�2��2 	 jkl	2

�
gj��x1,q1�gk��x2,q2�gl��� − x1 − x2,− q1 − q2�

2T sinh
x1

2T
sinh

x2

2T
sinh

x1 + x2 − �

2T

.

�92�

We can distinguish between the cross sections with �i�
three different chiral densities, �ii� two different chiral den-
sities, and �iii� one sort of chiral density.

�1� One sort of chiral density in the cross section can
appear only on 3-CS of the type gR−� gR−� gR−� and gL−� gL−� gL−� .
The kinematic restrictions �91� obviously lead to the absence
of such a contribution in Eq. �92� at ��0.

Having this contribution excluded, we observe that the
�−2 contribution to � is delivered by setting �=0 in the
integrand of Eq. �92�; upon doing this the calculation is sim-
plified.

�2� It can be shown that 3-CS with three different propa-
gators may contain only two combinations gR+� gL+� gL−� and
gR+� gL+� gR−� . Summing up all the contributions, and using the

FIG. 7. Four cross sections corresponding to two above skeleton
graphs.

FIG. 8. The leading contribution to the low-T drag coefficient is
given by diagrams with three propagators in a cross section.

FIG. 9. First order in curvature contribution to the vertex part in
the above diagram.
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kinematic restrictions in do and Sijk, Eq. �91�, we obtain that
the corresponding static vertex is

 R+L+L− =
q

2�

4�2v+
2 + �3�v+ − v−�2 − �4�v+ + v−�2

2v+�v+
2 − v−

2�
,

�93�

where q refers to the L− boson; one has  R+L+R−=− R+L+L−.
The contribution to the drag coefficient is proportional to

� dqq3	 R+L+L−	2�v+
2 − v−

2�v+
−3

T sinh
�v+ − v−�q

4T
sinh

�v+ + v−�q
4T

sinh
v−q

2T

; �94�

this expression corresponds to Eq. �78�. However, substitut-
ing Eq. �88� into Eq. �93�, one obtains  R+L+L−=0 and the
absence of this partial contribution to r0 �cf. next section�.

�3� The remaining combinations, i.e., 3-CS with two dif-
ferent propagators, are gR−� gR−� gL−� , gR+� gR+� gR−� , gR+� gR+� gL−� , and
the combinations which are obtained from the above ones by
the change R↔L. Due to obvious symmetry, the latter
change together with qi→−qi leaves the expressions for �r0
intact, so it suffices to consider only the above three CSs and
multiply the result by two.

The first cross section, gR−� gR−� gL−� , corresponds to the non-
vanishing vertex

 R−R−L− =
q1

2�

2�5v+

v+
2 − v−

2 , �95�

where the kinematic restrictions were used again.
Finally, we come to the most problematic term of the

cross sections gR+� gR+� gR−� and gR+� gR+� gL−� . The corresponding
vertices  ’s in Eq. �90�, Fig. 9, explicitly read as

 R+R+R− = �1q3gR+�x1 + x2,q1 + q2�

+ �2q3gL+�x1 + x2,q1 + q2�

− �3q1gR−�x2 + x3,q2 + q3�

− �5q1gL−�x2 + x3,q2 + q3� , �96�

 R+R+L− = �1q3gR+�x1 + x2,q1 + q2�

+ �2q3gL+�x1 + x2,q1 + q2�

− �5q1gR−�x2 + x3,q2 + q3�

− �4q1gL−�x2 + x3,q2 + q3� . �97�

It is seen here that the term ��1 is divergent on the assump-
tion of ideal bosons, which happens because of simultaneous
conservation of energy and momentum for the linearized
spectrum. This divergence in gR+�x1+x2 ,q1+q2� would not

happen if we would assume a damping of boson excitations;
moreover, the kinematic restrictions in the cross section �91�
lead to prefactor q3=0 at �=0, so that the contribution from
the �1 term is zero for any model damping of bosons. In our
problem, however, this “damping” can only be obtained as
the result of resummation of higher order corrections in m−1.
The divergent diagrams are depicted in Fig. 10.

The first diagram here, ��1
2, is the lowest order contribu-

tion to the self-energy part, Eq. �28�. Evidently it corre-
sponds to the triple pole �x−v+q�−3 which resulted in the
above divergence. At the same time, as discussed above, this
is the first singular diagram in a series, which should ulti-
mately produce the broadened propagator, Eq. �24�. Impor-
tantly, this type of singular diagrams appears without the
properly fermionic interaction, as seen in Eq. �88�. There-
fore, in the application of the formula �92�, one should omit
the most singular contribution, ��1

2, in 	 R+R+R−	2 and use
the broadened propagator, Eq. �24�, instead.

The subleading singular term, ��1, is depicted by the
right diagram in Fig. 10. We argue here that this diagram
should vanish in our consideration, and provide the follow-
ing heuristic argument. The linear dispersion law for bosons
led to the singularity in the �1 term �96�, but this singularity
is removed on the assumption of finite width of the bosonic
pole. In this case the Green’s function gR+�x1+x2 ,q1+q2� in
Eqs. �96� and �97� becomes a purely imaginary quantity.
Considering the purely real 	 R+R+R−	2= R+R+R−

*  R+R+R− one
sees that the linear-in-�1 terms disappear. This argument is
most obvious for the simple Lorentzian form of gR+�x ,q� and
should be generalized for more complicated cases, particu-
larly, for gR+�x ,q� given by Eq. �24�. The analytical structure
of more complicated diagrams at finite T becomes rather
involved, see Ref. 26, and a general proof of the cancellation
of these vertex corrections should be considered elsewhere.
Here we make a conjecture that the singular terms repre-
sented by the second diagram in Fig. 10 vanish exactly for
the “dressed” propagators, given by Eq. �24�.

This conjecture basically amounts to the following con-
vention:

�i� one should discard the curvature term �1 from the
Hamiltonian;

�ii� one should use the dressed propagators �24� for the
modes R+ ,L+, with the “effective mass” 1/m*=�1 / �2�2�,
and plasmon velocity v+ instead of vF; and

�iii� the other curvature terms �2 , . . . ,�5, not leading to
singularities, can be treated in the regular PT.

Proceeding this way, we conclude that at higher tempera-
tures, T�T1, we can use Eq. �78� with the change
Im �1 Im �2→ Im �+ Im �−. The finite width of the dressed
propagators gR+ ,gL+ then leads to the regime r0�T2, similar
to Eq. �80�.

R+ R+

R+

α1

R+

R+

R+

R+

R − −L( ) R − −L( )
R − −L( )

α1 α1

FIG. 10. Singular diagrams.
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The interaction-induced corrections5 to the shape of
propagator �24� are the next-order effect in curvature, and do
not influence our calculation of r0 below. Indeed, at lowest
temperatures, T�T1, the peaks in spectral weights Im �i in
Eq. �78� do not overlap, and it suffices to consider the “tail”
of one propagator in Eq. �78� and the core of another one,
approximated by the � function. At higher temperatures, T
�T1, propagators in Eq. �78� significantly overlap; this is a
nonperturbative regime for bosonization, which cannot pro-
vide a prefactor in the estimate r0�T2. However, one may
argue that all interaction-induced details5 in the shape of the
core of propagators are smeared by higher temperatures and
one can safely use the free-fermion estimate �24� here.

At lower temperatures, T�T1, we obtain the finite contri-
bution r0�T5, due to vertices �2 , . . . ,�5, absent in the non-
interacting situation. A rather long and straightforward cal-
culation gives a prefactor in this T5 temperature dependence:

r0 = U12
2 �T5, � = �1 + �2 + �3,

�1 =
1

4�2

��3�v+ + v−� − �5�v+ − v−��2

30v+
5v−�v+ − v−��v+

2 − v−
2�2 ,

�2 =
1

4�2

��5�v+ + v−� − �4�v+ − v−��2

30v+
5v−�v+ + v−��v+

2 − v−
2�2 ,

�3 =
1

4�2

�5
2v+

2

15v−
7�v+

2 − v−
2�2 , �98�

with � j given by Eq. �88�. It is seen that at v+−v−→0 the
leading term in � is given by the �3

2 term and is ��v+

−v−�−3, which is different from the above regime ��v+

−v−�−2 nonequal wires, Eq. �79�. To resolve the seeming dis-
crepancy, we perform the analysis of the nearly equal wires
below.

C. Nearly identical wires

We consider now the case when the plasmon velocities
v1,2 in individual wires are nearly coinciding and their dif-
ference is of the order of U12. The main idea of this section
is that the coefficients in the canonical transformation diago-
nalizing the quadratic Luttinger Hamiltonian are sensitive to
the ratio U12/ �v1−v2�. These coefficients, in turn, define the
values �i for the vertices �87�. We can calculate these values
and use the previous expressions �94� and �98� to obtain the
drag in this more general case.

Using the dimensionless difference of plasmon velocities
�67�, it is convenient to introduce the parameter ! as follows:

u = � sin !, v1 − v2 � v� cos ! , �99�

where the first equality is the proper definition of !.
The general Bogoliubov transformation, diagonalizing the

quadratic part of the Hamiltonian �7�, explicitly reads as

�
�1

�2


1


2

� = S1S2S3�
�+

�−


+


−

� , �100�

with

S1 = diag�vJ1
−1/2 vJ2

−1/2 vJ1
1/2 vJ2

1/2�,

S3 = diag�v+
1/2 v−

1/2 v+
−1/2 v−

−1/2�,

S2 =�
cos�!/2� − sin�!/2� 0 0

sin�!/2� cos�!/2� 0 0

0 0 cos�!/2� − sin�!/2�
0 0 sin�!/2� cos�!/2�

� ,

where v+ and v− are given by Eq. �66� and correspond to the
new modes 
+ and 
−, respectively. Using this transforma-
tion, we can determine the values of the coefficients �i in Eq.
�87�.

Note that the set of vertices �87� was obtained for the case
!=� /2. For other values of !, we have also another set of
the vertices which is obtained from Eq. �87� by a change
R+↔R− and L+↔L−, explicitly

Hcur� =
�1�

3
�R̃−

3 + L̃−
3� +

�2�

2
�R̃−

2L̃− + R̃−L̃−
2� +

�3�

2
�R̃−R̃+

2 + L̃−L̃+
2�

+
�4�

2
�R̃−L̃+

2 + L̃−R̃+
2� + �5��R̃− + L̃−�R̃+L̃+. �101�

For our purposes here, it is sufficient to let vJ1=vJ2 and
s1�s2 in the calculation of � j ,� j�. Thus we neglect the dif-
ference in plasmon velocities in Eq. �100�. At the same time,
we allow for the intrawire interaction, K=vJ1 /s1�1.

We obtain the expressions for vertices in Eq. �87� as

�1 �
�2

m

3 + K2

2�K

cos3!

2
+ sin3!

2
� ,

�2 �
�2

m

K2 − 1
�K


cos3!

2
+ sin3!

2
� ,

�3 �
�2

m

K2 + 3

2�K

cos

!

2
+ sin

!

2
�sin ! ,

�4 �
�2

m

K2 − 1

2�K

cos

!

2
+ sin

!

2
�sin ! ,

�5 � �4, �102�

and the set � j� is obtained from Eq. �102� by changing � j
→� j� and !→−!. The previous expressions �88� are restored
by putting !=� /2 in Eq. �102�.

One can verify that despite a more complicated structure
Eq. �100�, the drag current vertex is still given by the last
expression in Eq. �89�. Further, the existence of the second
set of vertices, � j�, leads to the same set of diagrams as
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before, with appropriate change R+↔R−, etc. Importantly,
there are no diagrams of the type Fig. 5, containing both
� j� and � j. It means that one can use the previous expressions
�98�, corroborated by the previously vanishing contribution
�94� and add the contribution from the � j� set, obtained by
!→−!.

Combining all terms, we find

r0 �
�3KU12

2 T5

120m2v9 � �1 − K2�2cos2 !

�2 +
�3 + K2�2sin2 !

4�3 �
�

U12
2 T5

EF
2vF

5 
 cos2 !

�2 O�1� +
sin2 !

�3 O�1�� . �103�

This is the central result of this section. Let us discuss it in
more detail.

First of all, we see that the term ��−2 in Eq. �103� is
proportional to intrawire interaction strength, �1−K�2,
whereas the term ��−3 is present even for initially noninter-
acting wires. This is not surprizing, because in the latter case
the factor sin2 !�U12

2 / �v1−v2�2 means that U12 serves as the
Luttinger-type interaction �K−1�; this term should be ob-
tained for nonequal wires in the order U12

4 of conventional
fermionic formalism.

For identical wires, we have an interesting crossover from
the U12

2 T2 regime at high temperatures to T5 / 	U12	 behavior
at lower temperatures. Recalling our definitions of the drag
resistivity R12=�r0 / �kF1kF2� and of the small scale T1

=EF��U12kF, we obtain

R12 �
T5

vFEF
3T1

, T � T1,

� U12kF �
T1

2T2

vFEF
3 , T � T1, �104�

which shows a smooth crossover at T�T1. The parametri-
cally large prefactor, 1 /U12, is similar to above Eq. �71�. This
prefactor �i� shows nonperturbative character of the obtained
result and �ii� does not mean actual enhancement of the drag
effect, due to its overall small amplitude �T5.

For the wires with different plasmon velocities we have
T1��v1−v2�kF, and the above Eq. �103� shows the following
behavior:

R12 �
T5

vFEF
2T1

2

U12
2 �1 − K�2

vF
2 , T � T1,

�
U12

2 T2

vF
3EF

, T � T1, �105�

and two regimes do not match at T=T1. As we saw above,
the T2 regime changes to an exponential decrease at T�T1,
which means that there is a logarithmically narrow crossover
region of temperatures, where R12 interpolates between T5

and T2 in Eq. �105�.

VII. SUMMARY AND CONCLUSIONS

In this paper we discuss the effects of curvature for the
Luttinger liquid. The curvature is irrelevant perturbation, in

the sense that it does not change the low-energy sector of the
system and usually can be simply discarded. The bosoniza-
tion technique regards the curvature as interaction and, at the
first glance, a regular perturbation theory is possible. How-
ever, certain care must be exercised with such PT, in spite of
evident correspondence between fermionic and bosonization
results. We show that the PT in curvature in bosonization
produces both singular and regular contributions to different
quantities. The singular contributions arise already for the
free fermions and correspond to the non-Lorentzian character
of the fermionic density propagator. We show that these sin-
gular contributions stem from one vertex of boson interac-
tion, and we propose to exclude this vertex from PT analysis,
while simultaneously using the free-fermion expression as a
“dressed” form of bosonic propagators. For the Coulomb
drag problem, the dressed form of propagators becomes im-
portant at high temperatures.

All other bosonic vertices appear due to fermionic inter-
action and yield regular contributions in bosonization PT.
They are responsible for the low-T regime in the Coulomb
drag problem.

Comparing bosonization to the fermionic approach in the
example of a Coulomb drag problem, we observe a comple-
mentary character of these methods. The high-temperature T2

regime is obtained most easily with fermions, but this is
essentially a nonperturbative regime for bosonization. Con-
versely, the low-temperature T5 drag regime for different
wires is obtained relatively easily with bosons, whereas the
calculation by the fermionic approach is cumbersome. We
demonstrated that the bosonization is particularly useful in
case of Coulomb drag between nearly equal wires, when it
simultaneously resums several RPA channels for fermionic
diagrams.

We did not include spin into our consideration. It also
requires a separate analysis, because the cubic terms in the
fermionic densities violate the spin-charge separation real-
ized at the level of quadratic action. It is evident that spinful
electrons in one wire are equivalent to spinless fermions in
two wires. In our formalism, the Hamiltonian is given by Eq.
�83� with identification 
+ �
−� for charge �spin� density.
The above case of nearly identical wires corresponds to Zee-
man splitting of the Fermi velocities in the magnetic field by
value �B /kF.

Finally, we note that in one spatial dimension, the alter-
native source for the “ideal” drag was proposed by Nazarov
and Averin.11 They considered the “backscattering” between
the wires, i.e., 2kF Fourier component of the interwire inter-
action U12�2kF�=Ubs, not considered here. The effect of

renormalization leads to the increase Ūbs=Ubs�EF /T�2−2K

with lowering T, and the drag resistivity R12� Ūbs
2 diverges

in the limit T→0. However, as was noted in Refs. 1 and 27,
for large interwire distances D, the backscattering amplitude
is small U12

bs �e−2kFD and the effect of renormalization can
compensate this smallness only at exponentially small tem-
peratures. The backscattering drag mechanism is also sensi-
tive to the difference of fermionic densities in two wires.11,27

Particularly, a straightforward calculation by Fuchs et al.27

showed the exponential suppression of R12 due to back-
scattering at T�vF�kF1−kF2�=T1

*. In view of an obvious
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similarity between T1
* and our T1, it is tempting to regard the

regime R12�T5 as the only one, surviving at low tempera-
tures. The inclusion of the backscattering drag mechanism
into our discussion is clearly beyond the scope of this study.
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APPENDIX: OPTICAL CONDUCTIVITY

We calculate optical transconductivity according to the
Kubo formula, Eq. �56�, and have Re �̂ jl=�−1 Im Qjl���
where Qjl��� is a retarded current response function. Com-

bining different contributions to Q̂���, depicted in Fig. 4 and
making an analytical continuation to real frequencies at finite
T, we obtain

Qjl =� dqdx1dx2Fjl
N�x1� − N�x2�

� − x1 + x2 + i0
W�x1�W�x2� ,

F12 = F21 =
1

2
q6u2v1

2v2
2�x1 + x2�2, �A1�

F11 = q2�x1
2 − v2

2q2��x2
2 − v2

2q2��x1x2 + v1
2q2�

+
1

2
q6u2v1

2v2
2�x1

2 + x2
2 − 2v2

2q2� , �A2�

W�x� =
1

2x��1
2 − �2

2�
���x + �1� + ��x − �1�

− ��x + �2� − ��x − �2�� , �A3�

and F22 is obtained from F11 by interchanging v1 and v2;
here N�x� is a Planck function.

We calculate Im Q12 at ��0. For nonzero frequencies the
coinciding arguments x1=x2= ±�1,2 do not contribute and the
rest of the integration is simple. After collecting all the terms
coming from Eq. �A3� we obtain the real part of the conduc-
tivity Re �̂��� in the form �64�, with �d given by Eq. �68�.
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