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We report on a theoretical derivation of the electronic dielectric response of semiconductor nanocrystals
using a tight binding framework. Extending to the nanoscale the Hanke and Sham approach �Phys. Rev. B 12,
4501 �1975�� developed for bulk semiconductors, we show how local field effects can be included in the study
of confined systems. A great advantage of this scheme is that of being formulated in terms of localized orbitals
and thus it requires very few computational resources and times. Applications to the optical and screening
properties of semiconductor nanocrystals are presented here and discussed. Results concerning the absorption
cross section, the static polarizability, and the screening function of InAs �direct gap� and Si �indirect gap�
nanocrystals compare well to both first principles results and experimental data. We also show that the present
scheme allows us to easily go beyond the continuum dielectric model, based on the Clausius-Mossotti equa-
tion, which is frequently used to include the nanocrystal surface polarization. Our calculations indicate that the
continuum dielectric model, used in conjunction with a size dependent dielectric constant, underestimates the
nanocrystal polarizability, leading to exceedingly strong surface polarization fields.
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I. INTRODUCTION

The role of the external environment on the electronic
properties of semiconductor nanocrystals has been raising a
wide interest. This is due to an enhanced control of the syn-
thesis techniques that allows for an optimization of the nano-
crystal optical performances. In particular, it has been shown
that silicon nanocrystals synthesized in organic solutions
have a strong photoluminescence in the blue spectral region,
opening the route toward biomedical applications of water
soluble silicon nanoparticles.1–4 From the theoretical side,
few studies have been done on the influence of the external
environment on the semiconductor nanocrystal properties.
Indeed, while isolated nanocrystals have been studied in the
past using the independent particle approximation,5–7 the role
of local field effects �LFEs� has been analyzed within quan-
tum mechanical schemes only recently and for small
structures.8–10

A mixture composed of nanocrystals embedded into a di-
electric background is usually described using continuum di-
electric models �CMs�. Such models are based on the as-
sumption that a nanocrystal can be approximated as a
continuum medium with a defined position independent
static dielectric constant �it can be either the bulk value or a
size dependent function�, that abruptly goes to the back-
ground dielectric constant at the nanocrystal surface. A basic
assumption of CMs is that going from the nanocrystal center
to the external background, the dielectric constant has a
sharp discontinuity across the surface. In the case of nonin-
teracting nanoparticles, these models reduce to the Maxwell-
Garnett equations11–13 coupled to the Clausius-Mossotti
equation for including the surface polarization fields.14 Re-
cent studies have shown that CMs are not always adequate to
give a fair description of small nanoparticles. In fact, by
looking at the local permittivity profiles, it emerges that close
to the surface there is a “dielectric dead layer,” and the
matching between the dielectric constant inside the structure

with that of the background takes place within a finite
length15–18 whose value has a primary importance in the
technological applications of semiconductor nanocrystals.
The reduction of the local dielectric constant near the surface
is thus the principal cause of the reduction of screening in
nanocrystals, whereas the contribution due to the opening of
the band gap has a minor role.16,17,19 Moreover, in small and
not well shaped nanocrystals, both quantum effects9 and
atomistic features20 become significant, implying that
calculations of LFEs within atomistic, quantum mechanical
frameworks are definitely required. Unfortunately, the com-
putational cost of this operation rapidly explodes with the
nanocrystal size because of the need of computing a large
number of excited states. This is the main reason why first
principles methods can be used only for very small nanocrys-
tals in a size range that is often significantly below that of the
experiments.21,22 A good compromise between accuracy and
the possibility of studying nanocrystals comprising thou-
sands of atoms is obtained by using a real space approach. In
the case of dynamic response calculations, time dependent
density functional schemes based on a real space, real time
approach are the most promising tools for calculating
ab initio the optical properties of confined systems with a
favorable time scaling.23–26

Our choice in this paper is to use a tight-binding method
for determining the dielectric response of confined systems.
It is important to stress here that the tight-binding method
must be intended in the widest sense and that is the use of a
localized basis set. The general framework described in Sec.
II and the explicit expressions derived for both the indepen-
dent particle polarizability and the real space dielectric func-
tion can be used with any localized basis set, including the
maximally localized Wannier functions.27 Although the ex-
plicit expressions we derived in this work are very general,
the applications we have done to illustrate the theory are
limited to the simplest version of the tight-binding method
where the Hamiltonian matrix elements are fitting parameters
determined by the material bulk band structure. We present
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numerical results for the optical and the screening functions
of both silicon and indium arsenide nanocrystals. The good
agreement between our results and the experimental data on
one side and the results of first principles calculations on the
other gives an indication that the chosen route for describing
the dielectric response at the nanoscale is very useful. An
interesting comparison of the nanocrystal polarizability cal-
culated using the full tight-binding approach and the one
obtained using the Clausius-Mossotti equation gives impor-
tant indications about the range of validity of the dielectric
medium theories.

II. GENERAL FRAMEWORK

In the following, the linear response theory is reviewed
using a localized orbital basis set. Our derivation is based on
the framework successfully applied by Hanke and Sham to
bulk semiconductors.28 The main difference consists in the
fact that the theory is here developed for confined systems
that, as such, do not have periodicity. As a consequence, a
different procedure for the calculation of the dielectric con-
stant must be employed. We will show that, neglecting local
fields, the standard expression for the nanocrystal dielectric
constant within the independent particle random phase ap-
proximation �RPA� is retrieved.5,7 Instead, an expression is
obtained when local fields are taken into account. We refer to
the first approximation �neglect of local fields� as RPA, and
to the second approximation �inclusion of local fields� as
RPA+LF. Since the main point we wish to address in this
paper concerns the role of LFEs in both the optical response
and in the screening, we neglect excitonic effects. Besides,
while several interesting studies of the excitonic effects in
nanocrystals have been done in the past,29–31 systematic stud-
ies on the influence of LFEs are still lacking. The interest in
this field is also motivated by studies of semiconductor sur-
faces done in the past, which showed the important role
played by LFEs in that situation.32–34

A. Tight-binding approach

As mentioned before, the tight-binding method is a pow-
erful tool for the study of confined systems. Although mod-
ern computational facilities and parallel programming lead
the calculations to be much more efficient than in the past,
first principles studies of nanocrystals containing several
thousand atoms are nowadays an almost impossible task. The
situation gets even worst if one needs to study the optical
response of a nanostructure with the inclusion of local fields,
since a calculation of a large number of excited states has to
be performed.22 The tight-binding method has all the advan-
tages of a formulation in terms of localized atomic orbitals
whose most important feature is the use of a relatively small
basis set, which implies a massive sparsity of the relevant
matrices. With appropriate algorithms for the storage, diago-
nalization, and inversion of a matrix, it is possible to imple-
ment an extremely efficient computational tool.

B. Linear response theory

The starting point is, of course, the diagonalization of the
single particle Hamiltonian. The nanocrystal wave functions

are written as a linear combination of localized atomic orbit-
als,

�n�r� = �
�R

B�n�R���R�r� . �1�

Here, � labels the atomic orbital symmetry and R’s are the
atomic coordinates in the nanostructure. The implementation
that we use in our calculations is that built on the third-
nearest-neighbor sp3 parametrization �with �=s , px , py , pz�
which has been shown to give a good estimation of energy
gaps and effective masses of both silicon and indium
arsenide, the two materials that we have chosen for illustrat-
ing the theory.7,35–37 We neglect the spin-orbit interaction and
assume that the basis set is composed by real functions. In
any case, a generalization to include the spin-orbit interac-
tion is straightforward.

The real space independent particle polarizability is de-
fined as38

P�r,r�,�� = �
�
� f�

E� − �� − ı�
�A��r�A��r�� . �2�

The index �= �n ,n�� runs over all the possible transitions
between the single particle eigenstates. We define An,n��r�
=�n�r��n��r�, En,n�=En�−En, and fn,n�= fn�− fn. fn is the nth
level occupation number and � is a small energy giving rise
to a finite broadening of the absorption spectra. Using Eq.
�1�, it is a simple matter to see that

P�r,r�,�� = �
�,	

P�,	���A��r�A	�r�� , �3�

where �= �� ,�� ,R� labels a pair of atomic orbitals centered
on the same site.28,39 In Eq. �3�, we have introduced the
tight-binding representation of the independent particle po-
larizability,

P�,	��� = �
�
� f�

E� − �� − ı�
�C��C	�. �4�

In Eqs. �3� and �4�, we have defined A��r�=��R�r����R�r�
and C�,�=B�n�R�B��n��R�, respectively. In order to simplify
the calculations, we make a number of approximations that
are strictly related to the parametrization we have used. The
first approximation is the neglect of the overlap between
atomic orbitals localized on different sites. The very small
impact of this assumption has already been checked in the
calculation of the optical absorption spectrum of both bulk40

and nanocrystalline silicon.7 In both the cases, the agreement
between the theory and the experimental data was very good.
The second approximation consists in neglecting the off-
diagonal intrasite contributions due to atomic orbitals with a
different symmetry �terms with ���� in the �’s�. On this
point, there has been a wide discussion in the literature con-
cerning the necessity of introducing additional parameters to
take into account these contributions.41–46 Our experience in
this matter is that, apart from the theoretical problem of the
breaking of gauge invariance,43 using a parametrization with
many neighbors �i.e., third-nearest-neighbor parametrization�
makes the off-diagonal intrasite contributions negligible.7
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The third, most important approximation is in the use of a
unique function A�r� for each atomic site, calculated by av-
eraging all the functions A��r� at a given site. With this ap-
proximation, we are neglecting the dependence on the atomic
symmetry so that the tight-binding labels reduce to �=R.
The averaging is simply given by

AR�r� =
1

4 �
�=1

4

��R�r���R�r� . �5�

Our calculations show that these sets of approximations do
not introduce significant errors in the RPA dielectric func-
tions. Within RPA+LF instead, it can induce an error in the
calculation of local fields that, according to the quantity one
wishes to study, can be either neglected or not. For instance,
we shall see below that these approximations are responsible
for a small difference in the screening when our results are
compared with density functional theory results. It must be
stressed that Eq. �5� yields a huge simplification, since it
leads to a significant reduction of the size of the matrix to be
inverted. In the case of the sp3 parametrization, the tight-
binding polarizability matrix P�,	 is reduced by a factor of
16.

It is important to underline the role of the Si-H interaction
parameters. All the electronic properties can be very sensi-
tive to them, especially in the case of small nanocrystals. For
instance, in Si35H36 the gap energy increases by more than
10%, with a significant decrease of the static dielectric con-
stant and recombination rates, when the Si-H interactions
change from the values of Ref. 35 �obtained by fitting the
SiH4 experimental gap� and the parameters of Ref. 47 �cho-
sen to give a stronger passivation�. Throughout this paper,
we use the parameters of Refs. 35 and 36, which provide a
good agreement of the gap energy with other theoretical re-
sults and experimental data.

C. Dielectric function

The real space dielectric function in the random phase
approximation is given by38


�r,r�,�� = ��r − r�� −� dr1u�r,r1�P�r1,r�,�� , �6�

where u is the bare Coulomb interaction u�r ,r��=e2 / 	r�−r	
and the integral is done over the whole space. Using Eq. �3�
for the polarizability, the dielectric function reads


�r,r�,�� = ��r − r�� − �
�,	

J��r�P�,	���A	�r�� , �7�

where we have defined the Coulomb integral

J��r� =� dr1u�r,r1�A��r1� . �8�

In order to calculate both the optical response and the
screening function, the inverse of the real space dielectric
function is required. This kind of calculations can be a for-
midable task if one adopts a first principles point of view.21

Instead, using the present formulation, the inversion is done

with a modest effort. Using simple matrix properties,28,48 the
inverse dielectric function 
−1 can be explicitly written as


−1�r,r�,�� = ��r − r�� + �
�,	

J��r�S�,	���A	�r�� . �9�

In this expression, S is the screened polarizability �also de-
fined as screening matrix28� that in the tight-binding repre-
sentation is

S�,	��� = �
�

P�,����
�,	���−1, �10�

where the dielectric function is given by49


�,	��� = ��,	 − �
�

U�,�P�,	��� , �11�

and the Coulomb interaction matrix is

U�,	 =� drJ��r�A	�r� = e2� drdr�
A��r�A	�r��

	r − r�	
.

�12�

The main point here is that the inversion of the dielectric
function has been reduced to the inversion of the dielectric
matrix defined in Eq. �11� with enormous advantages with
respect to the direct inversion of Eq. �6�. It is remarkable that
the derivation of Eq. �9� from Eq. �6� is exact, allowing us to
reduce the inversion of a huge matrix to that of a much
smaller one.21 The physical motivations beyond such a sig-
nificant reduction of degrees of freedom are rooted on the
fact that semiconductor systems can always be studied using
few basis functions per atom, as the tight-binding based ex-
perience and the Wannier function approaches have widely
shown over the years.

Consistent with the approximations outlined in Sec. II B,
we parametrize the matrix elements in Eq. �12� as6,49

UR,R� = 
e2/	R� − R	 if R � R�

Uat if R = R�,
� �13�

where Uat is an on-site Coulomb interaction term that only
depends on the atom located at R. In the applications of the
method discussed below, we use the orbital-averaged func-
tion AR�r� defined in Eq. �5� for the calculation of the on-site
Coulomb terms Uat. There is also another procedure for the
calculation of the on-site parameters, often used in literature.
It consists in the calculation of Uat as an average over all the
Coulomb interaction energies between pairs of atomic
orbitals.6,16,36,49 Below, we shall compare the results obtained
with the on-site terms calculated using either the first or the
second method.

III. DIELECTRIC CONSTANT

The dielectric constant is a macroscopic quantity, well
defined for extended and periodic systems. However, its
meaning in the case of a nanocrystal has been questioned,16

and new schemes have been proposed for the calculation of a
local and position dependent dielectric constant.16,17 One of
the most interesting results in these studies is that well inside
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a nanocrystal, the local dielectric constant is just the same as
that of the corresponding bulk system. However, upon ap-
proaching the surface, it rapidly changes until matching the
value of the material supporting the nanocrystal. The imme-
diate consequence of this behavior is that the reduction of the
dielectric constant in a nanocrystal with respect to the bulk,
observed not only theoretically5–7 but even experimentally,12

has to be ascribed to a surface effect16 which has a dominant
weight with respect to the band gap blueshift contribution.17

It is therefore evident that the surface polarization plays a
key role in the dielectric response of confined systems.
Within a real space view of the problem, the surface polar-
ization gives a strong discontinuity of the real space polariz-
ability across the nanocrystal surface. A key point in this
analysis is the validation of the continuum models. These
models are based on the idea of studying a nanocrystal as a
uniform dielectric sphere. This is a central point when ana-
lyzing experimental data simply because it is often not clear
what is the real range of validity of these models, particularly
when applied to small structures. With our procedure, we are
able to calculate local fields within a fully atomistic quantum
mechanical scheme, checking, in this way, the CMs upon
changing the nanocrystal size.

The macroscopic dielectric constant 
M��� is defined as
the response of a system to a long wavelength macroscopic
electric field. In formulas, it is defined as38


M��� = lim
q→0

1


−1�q,q,��
, �14�

where the Fourier transform of the inverse dielectric function
is defined as


−1�q,q�,�� =
1


�



drdr�
−1�r,r�,��e−ıq�r�+ıqr. �15�

We calculate the Fourier transform of real space quantities,
localized on a finite structure, approaching a constant value
outside the structure. In particular, the dielectric function de-
fined in Eq. �14� is equal to the dielectric constant of the
background embedding medium in the region of space out-
side the nanocrystal. Here, we consider spherical nanocrys-
tals in vacuum, so 
�r ,r� ,��=1 when 	r	, 	r�	�R �R is the
radius, and the coordinate system is placed at the center of
the nanocrystal�.

In order to make spatial integrations, we introduce an in-
tegration volume . By using values of  much greater than
the nanocrystal volume �taking the limit →��, we retrieve
-independent results. A main point is that the dielectric
constant calculated by Eq. �14� is not just the nanocrystal
dielectric constant, since it includes the vacuum space en-
compassing the nanocrystal. Defining the filling factor f
=S / as the ratio between the nanocrystal volume S and
the integration volume , we can write the dielectric con-
stant defined in Eq. �14� as the average between the nano-
crystal dielectric constant 
S and that of the vacuum space
�
out=1�,


M = �1 − f� + f
S. �16�

From Eq. �16�, the nanocrystal dielectric constant 
S can be
calculated.

By substitution of Eq. �6� into Eq. �15�, the following
expression is obtained:


−1�q,q,�� = 1 +
u�q�


�
�,	

A��q�S�,	���A	�q� , �17�

where the Coulomb interaction takes the usual form u�q�
=4�e2 /q2 and A�q� is the Fourier transform of A�r�. In the
q→0 limit, it can be expanded using the dipole approxima-
tion

A��q� � 1 − ıq · D�, �18�

where the dipole matrix elements in the tight-binding basis
set are given by D�

�=dr�x�A��r��, � being the Cartesian
component x, y, or z. The dielectric constant defined by Eq.
�14� is thus


M
� ��� = �1 +

4�e2


�
�,	

D�
�S�,	���D	

��−1

. �19�

In order to simplify the notation, in the following we do not
write the explicit dependence on the Cartesian component �.
Since in the examples given below we only consider spheri-
cal nanocrystals of cubic semiconductors, the dielectric ten-
sor reduces to a constant, and the dependence on � disap-
pears. However, the result can be easily generalized to
anisotropic systems. In the limit →�, the previous expres-
sion becomes 
M���=1−4�e2��,	D�S�,	���D	 /, and ac-
cording to Eq. �16�, the nanocrystal dielectric constant can be
finally derived as


S��� = 1 −
4�e2

S
�
�,	

D�S�,	���D	. �20�

As expected, the integration volume simplifies in all expres-
sions and only the nanocrystal volume appears in the final
expression. We point out that this is the dielectric constant of
a confined structure, defined in linear response theory within
RPA with LFEs included �RPA+LF scheme�. If we neglect
local field effects �RPA�, we simply take the q→0 limit of
the reciprocal space dielectric function,


M
RPA��� = lim

q→0

�q,q,�� , �21�

retrieving a standard expression for the RPA dielectric con-
stant,


S��� = 1 −
4�e2

S
�
�,	

D�P�,	���D	. �22�

The difference between the dielectric function with and
without LFEs is in the polarizability term that is either
screened as in Eq. �20� or unscreened as in Eq. �22�. We refer
the reader to Ref. 19 for a detailed discussion on the physical
interpretation of the difference between the dielectric con-
stant calculated within both the schemes and on the role
played by local fields.
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Results

In this section, the optical properties of Si and InAs nano-
crystals are illustrated. We recently applied the method to the
calculation of the Si nanocrystal absorption spectra, and
good agreement with experiments was recovered.19 We re-
port in Fig. 1 the absorption spectra of InAs nanocrystals
calculated with the present RPA+LF tight-binding scheme,
and compare them with experimental data taken from recent
measurements on colloidal nanocrystals.50 We use a second-
nearest-neighbor tight-binding parametrization,36 calculated
by fitting the band structure and the effective masses of bulk
InAs. As Fig. 1 shows, the agreement between theory and
experiments is good.

In Fig. 2, the static polarizability per volume �left panel�
and the static polarizability �right panel� of spherical Si
nanocrystals are shown. Classically, the polarizability of an
atomic cluster can be calculated starting from the bond po-
larizabilities and including the dipole-dipole interactions in
order to take into account local field effects.20 Within a
RPA+LF scheme, however, local fields are already included
in the calculation of the dielectric constant, and thus the
nanocrystal polarizability is directly related to it through the
expression

� =
S

4�
�
S − 1� �RPA + LF� . �23�

The RPA+LF results are indicated in Fig. 2 with blue cross
symbols. An alternative way of calculating the polarizability
is by modeling the nanocrystal as a continuum dielectric sys-
tem. Within this model, the calculation of the surface polar-
ization effects leads to the Clausius-Mossotti expression.20

This approach is often used by modeling the nanocrystal
either with the bulk Si or a size dependent dielectric con-
stant. In order to check whether the continuum model works
well for nanocrystals, we use the RPA static dielectric con-
stant and calculate the polarizability through the Clausius-
Mossotti expression51

� =
3S

4�
� 
S − 1


S + 2
� �RPA� . �24�

The results obtained with this approximation are shown by
red square symbols. In the limit of large nanocrystals, the
RPA dielectric constant converges to the bulk value,7 and we
retrieve a large size limit for the polarizability per volume,
indicated with a black dashed line in the left panel of Fig. 2.
This value has been obtained using the experimental bulk Si
dielectric constant in Eq. �24�.52 With the use of an interpo-
lation formula for the size dependent dielectric constant,5


�R� = 1 +

b − 1

1 + ��/R�l , �25�

a fit of the present tight-binding results is obtained. The re-
sults are shown as full lines in Fig. 2. It can be noted that the
RPA results combined with Eq. �24� underestimate the polar-
izability per volume, in agreement with our previous dielec-
tric constant calculations.19 On the right panel of Fig. 2, the
tight-binding results for the polarizability are compared to
the first principles time dependent local density approxima-
tion �TDLDA� calculations.51 The agreement for small nano-
crystals is very good. However, upon increasing the nano-
crystal size, there is a discrepancy between TDLDA and
tight-binding results. This is probably due to the overestima-
tion of the bulk Si dielectric constant within LDA which
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FIG. 1. �Color online� Absorption spectra of colloidal InAs
nanocrystals. Present tight-binding calculations �red lines� are com-
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leads to an overestimation of the static polarizability, with an
error that increases with the nanocrystal size.51

It is worth trying to better understand the left panel of Fig.
2. From the figure, it emerges that the nanocrystal polariz-
ability per volume is always smaller with respect to the large
size limit. As the recent literature has shown, this decrease of
the polarizability for nanosized objects is mostly due to an
overall decrease of the local polarizability across the surface,
the quantum confinement effect giving a relatively small
contribution.16,17,53 It is extremely interesting even from an
experimental point of view trying to understand the origin of
the differences shown in Fig. 2 between the full calculation
and the continuum dielectric model. There are at least three
sources of errors. First, the Clausius-Mossotti equation as-
sumes that the local field inside the structure is position in-
dependent, whereas even classical atomistic calculations
have shown that the surface bonds see a local field very
different with respect to the local field seen by the bonds
placed inside the nanocrystal.20 A second difference is that
the surface bonds have a different polarizability with respect
to the bulk Si.16,17,53 Third, the full calculation takes into
account the quantum confinement effect.

All of these effects can give opposite contributions to the
polarizability, and it is not obvious whether the CMs either
overestimate or underestimate the correct results. In light of
these considerations, our results appear significant since they
state that the full results lie somehow in the middle between
the CMs used with either a size dependent or the bulk limit
static dielectric constant. The relative error made in using the
CMs is of the order of 2%–5% in the size range considered
here.

A last significant finding is that the polarizability per vol-
ume calculated within RPA+LF is almost independent of the
choice of the on-site parameter Uat, showing a robustness of
the method versus Uat in the polarizability calculations.

IV. POINT CHARGE SCREENING

The localized orbital formalism described so far is par-
ticularly suitable for the study of point charge screening. The
large interest in this problem is clearly related to the study of
the excitonic interaction energy, in which a calculation of the
full dielectric function is required.21 Such a calculation is
very demanding from a computational point of view,22 and
both models and semiempirical tools are often used in order
to simplify the problem.54 From the definition of dielectric
function, the screened electron-electron potential energy is
given by

w�r,r�,�� =� dr1
−1�r,r1,��vb�r1,r�� , �26�

where the bare Coulomb interaction is vb�r ,r��=e2 / 	r�−r	.
According to Ref. 21, a common way to reduce the compu-
tational cost of the excitonic energy is by introducing a
screening function, defined as


̃ −1�r,r�,�� =
w�r,r�,��
vb�r,r��

. �27�

Within the present scheme, using the equations previously
introduced for the dielectric matrix, the following expansion
is obtained:


̃ −1�r,r�,�� = 1 +
1

e2 	r� − r	�
�,	

J��r�S�,	���J	�r�� .

�28�

The screening function represents the dielectric response to a
point charge placed at position r. A common approximation
consists of using a spherical average of the screening func-
tion calculated at r=0 even for the response to an off-center
point charge. The error made in the calculation of self-
energies and excitonic energies can be often neglected.6,21 So
an effective screening function can be defined as 
̄�r ,��
=1/ 
̃−1�0,r ,��, whose spherical average is


̄�r,�� =
1

1 +
1

e2r�
�,	

J��0�S�,	���J	�r�
. �29�

By using the approximations described in Sec. II B, the Cou-
lomb integral is reduced to the spherical average of the func-
tion J��r�=J�r−R�. We calculate J using the Herman-
Skillman numerical tables for the atomic wave functions.55

With respect to previous tight-binding calculations, the
present approach allows for a description of the screening in
the whole real space. The effective screening function for
Si35H36 is shown in Fig. 3. We report the results obtained
using different values of the on-site Coulomb interaction pa-
rameter Uat for Si atoms. In one case, we used the value
Uat=8.8 eV �green dot-dashed line�, this value being calcu-
lated according to the prescription given above, using Eq.
�5�. In the second case, the results are obtained with Uat
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FIG. 3. �Color online� Spherical average of the screening dielec-
tric function. Blue solid line, present calculation using an on-site
parameter for Si Uat=10.6 eV; green dot-dashed line, present cal-
culation using for Si Uat=8.8 eV; red dashed line, ab initio calcu-
lation of Ref. 21; black circles, self-consistent tight-binding calcu-
lation of Ref. 16.
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=10.6 eV �blue solid line�, a value calculated as average be-
tween all the Coulomb energies between pairs of atomic
orbitals.6,16,49 The present results are in reasonable agreement
with both ab initio calculations21 �red dashed line� and the
self-consistent empirical tight-binding method16 �symbols�. It
is important to remark that the peak position calculated here
has the same value as in the ab initio calculations. However,
the present approach slightly underestimates the screening
function in the space region close to the surface, and this is
likely to be due to the approximations made and discussed
above. It is worthwhile to point out that the behavior of the
screening function near the surface is independent of Uat,
since it only depends on the dielectric constant of the mate-
rial.

In Fig. 4, the effective screening function for Si191H148 is
reported. With respect to the smaller Si35H36, there is an
increase of the screening, that is higher on increasing the
size, in agreement with recent ab initio calculations.56 The
static screening �blue solid line� is here compared with the
optical screening, calculated at a frequency corresponding to
the gap energy, that for Si191H148 is E0=2.53 eV �red dashed
line�. The difference with respect to the static case is in the
increase of the maximum, although the peak position re-
mains unchanged. This is consistent with the fact that the
real part of the dielectric constant at the gap energy has a
larger value than in the static limit.

In Fig. 5, the effective screening function for a 2.0 nm
size InAs nanocrystal is shown. As stated above, this is only
the electronic contribution to the screening, since we con-
sider the atomic nuclei frozen at their bulk positions. The
on-site Coulomb interaction parameters calculated according
to the prescriptions given in Sec. II B are Uat=9.68 and
6.25 eV for As and In atoms, respectively. At variance with
Si, in the case of InAs nanocrystals there are two possible
configurations for each size, depending on whether an in-
dium �blue solid line� or an arsenic atom �red dashed line� is
located at the center of the nanocrystal. As shown in Fig. 5,
both the intensity and the peak position assume different val-
ues for the two configurations. However, far from the impu-

rity the screening function is exactly the same. This appar-
ently strange result can easily be explained using a Thomas-
Fermi model.18,54 According to it, the point charge screening
is composed of two contributions. A classical contribution,
close to the surface, is due to the surface polarization charge
induced by an external test charge located at the nanocrystal
center. It is well described by classical electrostatics and only
depends on the nanocrystal dielectric constant and radius.
Indeed, it is significant that both the configurations show the
same behavior close to the surface, due to the fact that they
have the same macroscopic dielectric constant. Approaching
to the impurity site, the deviation from the classical model
becomes important because of short range interactions. At
variance with the classical contribution, the behavior in the
neighborhood of the impurity �in particular, the peak position
and intensity� strongly depends on the local environment
around the impurity site and this is the cause of the differ-
ence between the two curves in Fig. 5. Therefore, InAs nano-
crystals show important bulklike local field effects due to the
difference of the atomic cores. An interesting point confirm-
ing this view is that the surface polarization contribution
does not depend on the on-site Coulomb term Uat. This pa-
rameter influences the amplitude of the screening function
around its maximum, but it does not change the classical part
close to the surface. In the inset, the detail of the merging of
the two curves is shown. The point at which this occurs can
be indicatively defined as the screening radius of the
nanocrystal.54

V. CONCLUSIONS

In this paper, a tight-binding framework for the study of
the dielectric response in confined systems has been de-
scribed. The interest of the method consists in the easy in-
clusion of local field effects into the theory. We have shown
that since local fields contribute significantly to the optical
and screening properties of semiconductor nanocrystals, the
use of an atomistic quantum mechanical framework has be-
come absolutely necessary for the study of nanosized struc-
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FIG. 4. �Color online� Spherical average of the effective screen-
ing function of Si191H148. Blue solid line, static screening ��=0�;
red dashed line, optical screening �calculated at the gap energy�.
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FIG. 5. �Color online� Screening function of a 2.0 nm diameter
InAs nanocrystal. We studied the configuration with an As �In� atom
placed in the nanocrystal center, indicated with the red dashed �blue
solid� line. A zoom of the graph is shown in the inset.
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tures. The present framework is flexible, allowing the study
of both optical and screening properties. It is computation-
ally light and it gives results comparable to more sophisti-
cated ab initio methods with good agreement with experi-
mental data. The method has been applied to the study of the
optical and screening properties of both indirect gap �silicon�
and direct gap �InAs� nanocrystals, with results that can be
useful for deeper analysis. Moreover, by using the present
framework, we demonstrate that the continuum dielectric
model, almost always used to take into account local fields,

is not adequate to study the electronic properties of very
small nanocrystals.
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