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Using 28-fs, 800-nm laser pulses we have coherently excited and subsequently probed, with time-dependent
reflectivity, the Si zone-center optic phonon. The phonon-induced reflectivity change �R /R is well described
by the response of an underdamped oscillator: �R /R� exp�−t /�ph� cos�2�t /Tph+��. The measured phase �
indicates that transiently stimulated Raman scattering �TSRS� is responsible for the coherent-phonon genera-
tion: our results are in good agreement with a recent theory of TSRS for opaque materials �T. E. Stevens et al.,
Phys. Rev. B 65, 144304 �2002�� when we extend the theory to include the finite lifetime of the excited charge
density that couples to the oscillation. We also discuss previous experimental results on Te, Bi, Sb, Si, and Ge
in light of this extended theory. Additionally, our measured period Tph and decay time �ph of the Si coherent
oscillation are consistent with carrier-density-dependent Raman-scattering measurements.
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I. INTRODUCTION

The coherent excitation of vibrational modes in a solid by
ultrafast optical pulses is a sensitive probe of the coupling of
electronic excitations to vibrational motion. Experiments that
excite and measure coherent-phonon oscillations have been
performed on a wide range of material types. Elements with
s-p bonding �Te, Bi, and Sb� have been most widely
investigated,1–10 while other material types that have been
studied include transition metals �Zn and Cd�,11 cuprates �es-
pecially YBCO�,9,12 III-VI layered compounds �GaSe and
InSe�,13 III-V semiconductors �especially GaAs�;6,14,15 gra-
phitic C,16 and group-IV semiconductors �Ge and Si�.17–19

These experiments have prompted the development of a
number of theories to describe the generation of the coherent
oscillations in these opaque �absorbing�
materials.2–4,13,18,20,21 Although the theories vary from semi-
classical to quantum-field theoretic, each theory ultimately
describes the relevant phonon mode’s coherent amplitude Q
as a driven harmonic oscillator,

d2Q

dt2 + 2�
dQ

dt
+ 	0

2Q = F�t� . �1�

Here 	0 /2� is the natural frequency of the �undamped� os-
cillator and � is the damping parameter. The differences
among the theories arise in the form of the driving force F�t�.

Perhaps the most frequently cited theory is the semiclas-
sical theory of Zeiger and co-workers, denoted DECP �dis-
placive excitation of coherent phonons�.2 In this theory the
ultrafast-laser pulse creates a time-dependent excited-carrier
distribution. This distribution then couples to the vibrational
mode in question, providing the force F�t� in Eq. �1�. The
DECP theory was originally formulated to describe the exci-
tation of modes with A1 symmetry in s-p materials; for these
modes the force F�t� is proportional to the average value �or
isotropic component� of the excited charge density. However,
the theory can also describe the excitation of lower-
symmetry modes, as long as the appropriate component of
the excited carrier density is used as the driving force.8,21

The term displacive was originally included in the name of

this theory because the phase of the oscillations in the s-p
materials for which it was developed is consistent with a
displacive force. However, as we discuss in more detail be-
low, there is nothing inherent in the DECP description that
demands the force to be displacive. In fact, in the DECP
theory the phase of the induced oscillations is quite sensitive
to the time dependence of the coupled component of the
excited charge density. In principle, then, the measured phase
can be used as an experimental test of the theory.

Following the development of the DECP theory, Merlin
and co-workers realized the need to also include virtual elec-
tronic excitations in the description of the force F�t�.3,4,21

Photons in the laser pulse that differ in frequency by a pho-
non frequency can couple to the lattice via virtual electronic
excitations �as described by a Raman tensor�; this Raman
process provides an impulsive contribution to F�t� that is
proportional to the time dependence of the laser-pulse inten-
sity. The theory that they have developed is an extension of
the theory of transiently stimulated Raman scattering �TSRS�
for transparent materials �where virtual transitions are the
only driving mechanism for coherent oscillations13,21� to
opaque materials.3,4 The key component of the theory is a
Raman tensor that places both virtual and real electronic ex-
citations on equal footing, thus making TSRS theory appli-
cable to both transparent and opaque materials.4 As in the
case of DECP theory, the theory of Merlin et al. can be used
to calculate the phase of the induced oscillations. So far,
however, there have been few quantitative comparisons be-
tween the phase predicted by TSRS theory and that measured
in an experiment.4,22

Unfortunately, for the s-p materials Te, Bi, and Sb both
DECP and TSRS theories predict oscillation phases for the
A1 modes that are consistent with nearly purely displacive
forcing. Consequently, in these materials the phase of the
oscillations has not been useful in determining which theory
properly describes the generation of the coherent oscilla-
tions. Researchers have thus investigated other means to dis-
criminate between these two theories for these materials. Cit-
ing the ratio of the coherent-oscillation amplitudes of the Eg
and A1 modes3 and the laser-frequency dependence of the A1
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mode’s amplitude,4 Merlin and co-workers have argued that
TSRS is the appropriate description. The frequency-
resolved-probe time-dependent measurements of Misochko
et al. also favor the TSRS description over the DECP
theory.7 However, the three-pulse measurements of Lobad
and Taylor have been interpreted as supporting a DECP ex-
planation for the A1 modes in the s-p materials.9

In order to investigate the extent to which the phase can
be used to elucidate the excitation mechanism, we have in-
vestigated the coherent oscillation of the optic phonon in Si.
Our investigation is also motivated by the fact that excitation
of the optic phonon in Si �or its group-IV neighbor Ge� does
not yet have a unique interpretation. In Ge the coherent os-
cillations were first interpreted as due to TSRS, but the cited
theory was for transparent materials.13 The oscillations were
later described by a theory where the coherent oscillations
are mainly driven by the �momentum-space� anisotropic
component of the excited hole distribution.17,18 Measure-
ments of the same mode in Si at an excitation energy of
3.05 eV have been qualitatively discussed in terms of TSRS,
but no quantitative comparison of the phase was made.19

The key result of our work is that aspects of both the
DECP and TSRS theories are important in describing the
excitation of the Si optic phonon. For our excitation condi-
tions the measured phase indicates that the driving force is
close to the impulsive limit. The major contribution to the
impulsive nature of the force comes from virtual electronic
excitations, which are an integral part of the TSRS theory.
However, the finite lifetime of the coupled charge density, a
feature of the DECP model �but not included in the TSRS
theory�, also contributes to the impulsive nature of the force.
In order to unite both of these impulsive elements into the
driving force, we have extended the TSRS description of
Merlin and co-workers to include the finite lifetime of the
coupled charge density. The phase predicted by this extended
theory is in quantitative agreement with our measured phase
of the Si optic phonon.

The paper proceeds as follows. In Sec. II we describe the
details of our experiment. In Sec. III we quantitatively ana-
lyze our data in order to extract the phase of the coherent
oscillations. We also determine the coherent-oscillation pe-
riod Tph and decay time �ph. In Sec. IV we derive expressions
for the phase from the DECP theory, the opaque-material
TSRS theory, and our extended TSRS theory. We then show
that the DECP and TSRS theories predict essentially identi-
cal phases for the A1 modes in the s-p materials, but for the
T2g mode in Si at our experimental conditions quite different
phases are predicted, with the experimental results consistent
with our extended TSRS description. We also discuss previ-
ous coherent-phonon measurements of the same phonon in
Si and Ge as well as the lower symmetry Eg mode in Sb. We
conclude the section with a brief discussion of the period and
decay of the coherent phonon oscillations in Si and show that
the results are consistent with incoherent Raman-scattering
measurements. Finally, in Sec. V we summarize our results.

II. EXPERIMENTAL DETAILS

The experimental setup has been described in detail
elsewhere.23 Briefly, Gaussian-shaped 28-fs laser pulses from

a 1.55-eV �800-nm� Ti:sapphire oscillator24 are split into p-
and s-polarized pump and probe beams, respectively. The
normally incident pump excites electrons ��5.5±0.3�

1018 cm−3� from the valence band �near the maximum at
�� to the conduction band �near the six equivalent minima
near the Brillouin-zone edge at X�. The sample is oriented so
that the pump and probe beams are polarized along �110� and

�11̄0�, respectively, a geometry that allows for excitation and
detection of the coherent oscillations.17–19 In these measure-
ments the pump-probe delay time �t ranges from −0.2 to
7.0 ps.

III. RESULTS AND ANALYSIS

A typical time-dependent reflectivity signal, which is
dominated by excited-carrier induced effects, is shown in
Fig. 1. After an initial positive transient, the reflectivity de-
creases quite rapidly �until �t�80 fs� and then more slowly
�up to �t�700 fs�. It then slowly increases and recovers to
the initial baseline in �1 ns.25 The coherent oscillation of the
Si zone-center phonon, shown more clearly in the inset of
Fig. 1, is manifest as small, periodic variations that are ap-
parent after the rapid decrease in reflectivity.

The carrier-induced variations in reflectivity, which have
been delineated in detail elsewhere,23 are relevant to our
analysis of the coherent-phonon excitation. Briefly, the
carrier-induced variations comprise features due to the aniso-
tropic �in k space� component of the carrier distribution as
well as variations due to the isotropic component of the
distribution.26 The anisotropic part of the distribution con-
tributes two features, a polarization-grating �PG� peak that

FIG. 1. �Color online� Time-dependent reflectivity change of Si
from −0.2 to 0.8 ps. The points are the data and the solid line is a
least-squares fit. The polarization grating �PG� and anisotropic dis-
tribution �AD� components of the fit are separately shown. The inset
highlights the coherent-phonon contribution to the reflectivity
change.
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arises from the pump pulse scattering from the polarization
grating formed by the orthogonally polarized pump and
probe beams and an anisotropic-distribution �AD� peak that
arises from the probe pulse interacting with the anisotropic
carrier distribution produced by the pump.27 The PG peak is
purely a correlation of the pump and probe beams at the
sample and so allows precise �±0.3 fs� determination of �t
=0 in the experiment. This is essential for accurate determi-
nation of the phase of the coherent-phonon oscillations. The
AD peak is important because its shape is determined in part
by the decay time �C of the anisotropic component of the
carrier distribution, which is the component that couples to
the optic phonon in Si.18 The PG and AD peaks are respon-
sible for the initial peak in the reflectivity observed in Fig. 1.
The isotropic component of the carrier distribution is respon-
sible for the remainder �large overall drop and slow recov-
ery� of the reflectivity changes.23,25

In order to determine the phase � of the oscillations28 we
fit the reflectivity variations shown in Fig. 1 with a model
that includes all of the carrier-induced variations23 in addi-
tion to a function that describes the reflectivity change pro-
duced by the coherent-phonon oscillations. For the oscilla-
tions we assume that the phonon-induced reflectivity changes
are proportional to the coherent-phonon displacement and
use the response of a transiently excited oscillator to write

�Rph

R
��t� = AF��t�

�Rph
max

R
exp�−

�t

�ph
�cos�2��t

Tph
+ �� .

�2�

The fitting parameters are the amplitude �Rph
max/R, phonon

coherence time �ph=1/�, period of oscillation Tph=2� /	1

�where 	1=		0
2−�2�, phase �, and the zero-time delay

�which is implicit in �t�. The function AF��t� describes the
initial transient response of the oscillator. Generally, AF��t�
equals zero before the driving force starts, equals 1 after the
driving force is over, and has a shape that depends upon the
time dependence of the force �and parameters of the oscilla-
tor�. We have fit the data with a variety of approximations for
AF��t�. However, because the amplitude �Rph

max/R of the
phonon oscillations is much smaller than the amplitudes of
any of the carrier-induced contributions to the reflectivity,
the exact form of AF��t� does not significantly impact the
result for the phase �.

The results of the fitting are shown as the solid line
through the data points in Fig. 1. The AD and PG parts of the
carrier-induced response are individually shown, vertically
displaced for clarity. As mentioned above, the maximum of
the PG peak defines the zero-time delay �as indicated by the
vertical dotted line�. The residuals of the fit are statistical in
nature,23 indicating that the model provides an excellent de-
scription of the data. From the analysis we determine the
phase to be �=88° ±14°. Relevant to the discussion below
concerning the coherent-phonon-generation mechanism,
from the AD peak we also obtain the anisotropic-distribution
decay time �C=32±5 fs.23

The period Tph and decay time �ph are also fitting param-
eters in the above analysis. However, their values are ob-
tained with more consistency among the data sets via a sim-

pler analysis in which the carrier-induced variations in the
reflectivity are removed before the least-squares fitting. The
carrier-induced variations are removed by �i� only using data
after the large drop in reflectivity �after �t�80 fs� and �ii�
high-pass filtering the data.29 The filtered data are then fit by
simply using Eq. �2� with AF��t� set equal to 1:

�Rph

R
��t� =

�Rph
max

R
exp�−

�t

�ph
�cos�2��t

Tph
+ �� . �3�

A typical fit and the residuals are illustrated in Fig. 2.30 A
visual comparison of the filtered data and the fit are shown in
Fig. 2�a�. That Eq. �3� accurately models the filtered data
over the full 7-ps delay time is evident in the statistical
nature of the residuals, which are plotted in Fig. 2�b�.
From this analysis we obtain Tph=64.07±0.07 fs and �ph
=2.80±0.15 ps.

We have also analyzed the data in frequency space to
obtain values of Tph and �ph. Figure 3 shows the Fourier
transform of one data set and its corresponding fit, where the
fitting function is the Fourier transform of Eq. �3� �windowed
with a 7-ps window�.31 From this frequency-based analysis
we obtain results consistent with the time-based analysis:
Tph=64.16±0.05 fs and �ph=2.82±0.40 ps.

IV. DISCUSSION

A. Theoretically predicted phases

Here we discuss the phase of the coherent oscillations
predicted by the DECP model, the TSRS model, and an ex-
tension of the TSRS model that includes the finite lifetime of
the coupled carrier distribution. For each of these models the

FIG. 2. �Color online� Coherent-phonon contribution to the re-
flectivity change of Si over a 1.0-ps time scale. �a� The points are
the data and the solid line is a least-squares fit. �b� Residuals of the
fit to the coherent phonon oscillations over a 7-ps time scale.
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phase is calculated using the general formula

� = arctan
 Im�iF̂�− 	1 − i���
Re�iF̂�− 	1 − i���� , �4�

which is derived in Appendix A. Here F̂�	� is the Fourier
transform of the driving force F�t�.

1. DECP model

In the DECP model the force F�t� is assumed to be pro-
portional to the density nC of the coupled component of the
excited charge density. That is, the model assumes F�t�
=bnC�t�, where b is the proportionality constant. In the s-p
metals the isotropic component of the charge density couples
to the A1 modes.2 Pertinent to the case at hand, the aniso-
tropic component of the excited carrier distribution couples
to the optic phonon in Si, which has T2g symmetry.17,18,21 In
modeling the dynamics of nC�t� it is assumed that the carriers
are linearly excited by the laser pulse intensity I�t� and the
decay of nC�t� is treated in the relaxation-time approximation
with a constant relaxation time �C. With these approxima-
tions nC�t� is governed by

dnC

dt
+ �nC = aI�t� , �5�

where �=1/�C and a is a constant that is determined by the
optical response of the material. With the initial condition
nC�t→−
 �=0 Eq. �5� can be solved and the force expressed
as

F�t� = ab exp�− �t��
−


t

dt�I�t��exp��t�� . �6�

The Fourier transform of Eq. �6� can be written as

F̂�	� =
ab

� − i	
Î�	� . �7�

Thus

iF̂�− 	1 − i�� = ab
�	1 + i�� − ���
	1

2 + �� − ��2 Î�− 	1 − i�� . �8�

Equation �8� can be significantly simplified by noting that
��	1 for most coherent oscillations of interest. Further, for

a symmetric laser pulse Î�−	1�= Î�	1�. Thus in Eq. �8� we

may replace Î�−	1− i�� by Î�	1� with very little error in the
calculated phase. The error that results from this approxima-
tion is of order 	1��p

2, which is generally negligible. �This is
because ��	1 and coherent oscillations are only generated
for 	1�p�1. For example, using parameters appropriate to
our experiment, this approximation results in an error in � of
only 0.3°.� Thus we may write

iF̂�− 	1 − i�� = ab
�	1 + i�� − ���
	1

2 + �� − ��2 Î�	1� . �9�

Using the fact that Î�	1� is real for a symmetric pulse, the
substitution of Eq. �9� into Eq. �4� yields the theoretical
DECP phase

�DECP = arctan�� − �

	1
� . �10�

The displacive and impulsive limits of the DECP model
are readily deduced from Eq. �10�. The displacive limit ��
�0�, which is observed for the A1 modes in s-p materials,
occurs when ��	1—that is, when the coupled charge-
density decay time is much longer than the period of the
coherent oscillation. Conversely, the impulsive limit ��
�� /2� occurs when the charge-density decay constant � is
large compared to the oscillation frequency 	1.

2. TSRS model

As mentioned in the Introduction, the opaque-material
TSRS theory puts virtual excitations on equal footing with
the real transitions that are described by the DECP theory.
Useful for our purposes here, from their TSRS theory Merlin
and co-workers have derived an approximate expression for

F̂�	� that can be expressed in our notation as

F̂�	� = C��1� +
2�2

− i	
�Î�	� , �11�

where C is a constant, �̂=�1+ i�2 is the dielectric function of
the material, and �1�=d�1 /d�.4 Both �1� and �2 are evaluated
at the center frequency �0 of the laser pulse. The first term
���1�� is the contribution from virtual excitations, while the
second term ���2� is the �absorption� contribution from the
coupled charge density. Equation �11� was derived under the
assumptions that �i� the dielectric function is dominated by
direct electronic transitions, �ii� two-band processes domi-
nate the Raman tensor, and �iii� the excited charge density
has an infinite lifetime ��=0�.3,4 Because �=0 in this model,
the excited charge density contributes a displacive force

only. (Notice that �2C�2 / �−i	1��Î�	� is equivalent to F̂�	�
in the DECP model �Eq. �7�� with �=0.) From Eq. �11� and

again using the same approximation for Î�−	1− i��, we ob-
tain from the TSRS model

FIG. 3. �Color online� Fourier transform �FT� of the coherent-
phonon contribution to the reflectivity changes. The points are the
data and the solid line is a least-squares fit. For clarity, the Re part
of the FT has been vertically displaced 1.5 units.
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iF̂�− 	1 − i�� = C
	12�2 + i��	1

2 + �2��1� − �2�2�
	1

2 + �2 Î�	1� .

�12�

Thus the phase within the TSRS description is given by

�TSRS = arctan
 �	1
2 + �2��1�

	12�2
−

�

	1
� . �13�

Generally, we can ignore �2 compared to 	1
2, and so this

simplifies to

�TSRS = arctan�	1�1�

2�2
−

�

	1
� . �14�

We could also neglect the � /	1 term in Eq. �14�. How-
ever, by keeping it we clearly see that if virtual transitions
are insignificant, then, as expected, �TSRS reduces to the �
=0 �DECP result. This, again, is the displacive limit ��0. In
the TSRS model the driving force can also be impulsive, but
instead of being due to the finite lifetime of the coupled
charge density, the impulsive component arises from the vir-
tual transitions. Indeed, Eq. �14� shows that in the TSRS
model the impulsive limit occurs for 2�2�	1�1�.

3. TSRS model with �Å0

As evident in the discussion above, each of these two
models of coherent excitation has its own limitation: the
DECP model does not include virtual transitions, while the
TSRS model neglects the finite lifetime of the coupled
charge density. For the widely studied A1 modes in the s-p
materials, neither limitation is very important: the coupled
charge density typically decays quite slowly, and virtual tran-
sitions are relatively unimportant. Thus both models are es-
sentially equivalent and quite correctly predict displacive ex-
citation of the A1 modes. However, for the case at hand of
the Si optic phonon, the coupled charge density decays on a
time scale that is shorter than the period of oscillation. Fur-
ther, as we show below, virtual transitions are also important
in the coherent excitation process. We thus require a theory
that includes both virtual and real transitions as well as a
finite decay constant �.

In Appendix B we extend the two-band TSRS result �Eq.
�11�� to nonzero values of �, from which we now obtain the
phase. The key result of this appendix is

F̂�	� = C
	

	 + i�
��1� +

2�2

− i	
�Î�	� . �15�

With the same approximation for Î�	1� as above we obtain
from Eq. �15�

iF̂�− 	1 − i��

= C
	1�2�2 − ��1�� + i��	1

2 + �2 − ����1� + �� − ��2�2�
	1

2 + �� − ��2 Î�	1� .

�16�

Noting again that �2�	1
2 and that typically ���	1

2, we
can express the phase as

�RSFL = arctan
	1
2�1� + �� − ��2�2

	1�2�2 − ��1��
� . �17�

�Here RSFL stands for Raman scattering finite lifetime to
indicate that � is not necessarily zero.� In the appropriate
limit, either �1�=0 or �=0, Eq. �17� simplifies to either the
DECP or TSRS result, respectively.

4. Summary of the theoretical phases

By defining three dimensionless quantities �̄=� /	1, �̄
=� /	1, and �̄=	1�1� /2�2, the results for the three phases
�Eqs. �10�, �14�, and �17�� can be succinctly expressed as

�DECP = arctan��̄ − �̄� , �18�

�TSRS = arctan��̄ − �̄� , �19�

and

�RSFL = arctan� �̄ + �̄ − �̄

1 − �̄�̄
� . �20�

We further note that if �̄ is negligible compared to �̄ and �̄,
then the relationship

�RSFL = �TSRS + �DECP �21�

holds. That is, the contributions to the phase from virtual
transitions and the finite lifetime of the coupled carriers are
independent of one another and simply additive.

Figure 4 shows a contour plot of �RSFL as a function of �̄

and �̄ �under the condition that �̄ is negligible�. The DECP
result for the phase occurs along the horizontal ��̄=0� axis
while the TSRS result is found along the vertical ��̄=0� axis.
Note that generally �̄�0 but �̄ can have either sign. Along
either of these two axes the displacive limit ��=0� occurs at
the origin and the impulsive limit ��=90° � is approached for
large values of either �̄ or �̄ �whichever is appropriate�.
However, the impulsive limit can also occur for combina-
tions of modest values of both quantities. Also note that the
displacive limit occurs along the line defined by �̄=−�̄, cor-
responding to �TSRS=−�DECP.

B. Comparison of experimental and theoretical phases

We now compare our experimental phase from Si and
previous experimental phases from a variety of materials—
Te, Bi, Sb, Si, and Ge—with the phases predicted by these
three theoretical models. We first consider the A1 modes in
the s-p materials and demonstrate why the phases are all
very close to the displacive limit �=0. We then discuss
lower symmetry modes in Sb, Si, and Ge.

Table I summarizes the pertinent experimental and theo-
retical quantities. Concomitant experimental values of 	1,
��0, �, �, and �expt all come from the same study.2,3,5,10,17,19

We have determined �1� and �2 from measured optical
constants.32–36 Values of the normalized parameters �̄, �̄, and

�̄ are also indicated. These values are used to calculate the
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tabulated values of the theoretical phases �DECP, �TSRS, and
�RSFL.

For the A1 modes in Te, Bi, and Sb the values of �̄, �̄, and
�̄ are all much less than 1, resulting in calculated phases very
close to the displacive limit �=0. In these materials the dis-
placive limit is the result of both strong absorption, which
results in a small value of �̄, and a relatively long lifetime of
the coupled charge density, which results in a small value of
�̄. In four of the six cases there is excellent agreement with
the experimentally determined phase �expt; the two minor
exceptions are Bi at 1.55 eV and Sb at 1.52 eV. The fact that
the Raman-scattering cross section of Bi is well described by
the two-band model for photon energies between 1.55 and
2.7 eV �Ref. 34� suggests that there may be a slight system-
atic error in the reported value of �expt. In the case of Sb,
however, the simple connection of the two-band model to the
dielectric function is not valid for photon energies below
1.9 eV.34 Thus the theory for Sb at 1.55 eV should only be
taken as qualitative. However, even with the inclusion of
these two exceptions, the phases of the A1 modes in the s-p
materials are all reasonably consistent with the displacive
limit �=0, which we interpret as due to a combination of
strong absorption and slow decay of the coupled charge den-
sity.

One way to get away from the displacive limit is to in-
vestigate modes with lower symmetry, such as those in the
last four entries of Table I. These lower-symmetry modes
couple to lower-symmetry components of the charge density,
which typically decay on a time scale shorter than the oscil-
lation period. For example, in Si for our experimental con-
ditions the anisotropic charge-density component that
couples to the T2g mode decays with a time constant �C
=32±5 fs, resulting in �̄=0.32, which is significantly larger
than �̄ for any of the A1 modes discussed above. Similarly, a
much shorter �C is observed for the Eg mode in Sb: the

FIG. 4. �Color online� Contours of �RSFL as a function of �̄ and
�̄. Also plotted are values of �RSFL for Si at photon energies of
1.55 eV �solid circle� and 3.05 eV �solid square�.

TABLE I. Experimental and theoretical phases �and associated parameters� for Te, Bi, Sb, Si, and Ge.

Mode
	1

�THz�
��0

�eV�
�1�

�10−14 s� �2

�
�THz�

�
�THz�

�̄
�10−2�

�̄
�10−2�

�̄
�10−2�

�DECP

�deg�
�TSRS

�deg�
�RFSL

�deg�
�expt

�deg�

Te A1 22.6a 1.98 −4.5b 33 1.59 0.79 −1.5 7.0 3.5 2 −3 1 7±9

21.1c 1.50 0.53b 12 1.33 0.50 0.61 6.0 2.2 2 −1 2 0

Bi A1g 18.2a 1.98 0.63d 10 0.10 0.41 0.58 0.53 2.3 −1 −1 −1 −13±13

18.4e 1.55 0.53d 19 0.31 0.26 0.26 1.7 1.4 0 −1 0 15±1

Sb A1g 28.3a 1.98 −0.63f 25 0.60 0.34 −0.35 2.1 1.2 1 −1 0 3±4

28.3g 1.52 −0.52f 37 0.50 0.27 −0.20 1.8 0.96 0 −1 0 −23±11

Sb Eg 21.4g 1.52 −0.52f 37 �10 0.56 −0.15 �50 2.6 �24 −2 �24 43±8

Si T2g 98.1h 1.55 0.20i 0.047 32 0.36 210 32 0.36 18 64 82 88±14

95.8j 3.05 2.4i 3.4 51 0.77 34 53 0.80 28 19 47 23

Ge T2g 57.1k 2.00 1.3i 11 0.37 3.3 0.65 2

aReference 2.
bReference 32.
cReference 10.
dReferences 33 and 34.
eReference 5.
fReference 35.

gReference 3.
hThis study.
iReference 36.
jReference 19.
kReference 17.
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reflectivity data in Fig. 1�a� of Ref. 3 show that the electronic
decay time �C associated with the Eg mode is at least as short
as �100 fs �which is approximately the time resolution of
that experiment�. This is much faster than �C�2 ps associ-
ated with the A1 mode �which is also evident in the same
figure�.

This significantly shorter �C for the Sb Eg vibration pro-
vides, within the context of our extended TSRS theory, a
natural explanation of the �nondisplacive� experimental
phase �expt=43±8 degrees. As indicated in Table I, an upper
bound of 100 fs on �C �corresponding to �̄�0.5� implies a
finite-lifetime contribution to the phase of at least 24°. Con-
versely, if we start with the experimental phase of 43°, we
can infer a value �̄�1, which corresponds to �C�50 fs.
Without such a significant difference in the decay times of
the charge densities that couple to the A1 and Eg modes, we
would expect both modes to have essentially the same phase,
a result that is clearly inconsistent with experiment.3

For the T2g optic phonon in Si a small value of �C also
contributes to a nonzero theoretical phase. In addition, be-
cause the absorption is relatively weak, virtual transitions
also provide a contribution to the phase. For our experimen-
tal conditions we calculate �RSFL=82°, in excellent agree-
ment with our experimental result �expt=88° ±14°. For this

mode �̄ is much less than both �̄ and �̄, so that Eq. �21�
holds. We can thus unambiguously assign most of the impul-
sive character to virtual excitations with a smaller contribu-
tion from the finite lifetime of the coupled charge density.
This is illustrated in Fig. 4, which plots �RSFL for Si vs �̄ and
�̄ �as the solid circle�.

We should point out that this precise quantitative agree-
ment between �RSFL and �expt for Si is actually slightly sur-
prising. That the theoretical phases �TSRS and �RSFL can be
simply related to the dielectric function is partly based on the
near equivalence of the sums that appear in the quantum
descriptions of the Raman tensor3,4 and the dielectric
function,37 both of which involve only direct electronic
transitions.38–40 In the photon-energy range of our laser
�1.55 eV�, �1 is indeed dominated by direct transitions
�which occur at higher frequencies�.36 However, �2 is
thought to be due primarily to indirect transitions �as de-
scribed in Sec. II above�; the contribution of direct transi-
tions to �2 is believed to be negligible. Thus, the value of
�TSRS calculated using Eq. �14� is likely an underestimate.
However, even the extreme impulsive-limit value of �TSRS
=90° would imply �RSFL=108°, which is still in reasonable
agreement with our experimental result. Thus, even with this
uncertainty in the size of �TSRS, it is clear that virtual exci-
tations are the major contributor to the nonzero phase of the
Si optic-phonon oscillation.

Coherent excitation of the Si T2g optic phonon has been
previously measured with 3.05 eV photons by Hase et al.; an
experimental phase of 23° was reported.19 In order to com-
pare our theory with this result it has been necessary to de-
termine � from the data of Hase et al. We have done this by
fitting the decay of �R /R in Fig. 1�b� of Ref. 19, which was
taken using the electro-optic sampling geometry with the
phonon oscillation suppressed and is thus solely a combina-
tion of PG and AD signals. As shown in Fig 5�a�, �R /R

shows an exponential decay for delay times �50 fs. From
the fit to this part of the data �shown as the straight line in
Fig. 5�a�� we have determined a value of �C=19 fs, corre-
sponding to �=51 THz. With this parameter we calculate
�RSFL=47°, with individual contributions of 28° and 19°
from the finite decay time and virtual transitions, respec-
tively. Although no estimate of experimental uncertainly in
the phase was provided,19 the lack of quantitative agreement
in this case is somewhat unexpected. This is because condi-
tions are ideal for comparison with the theoretical models:
for Si excited with 3.05 eV photons �which is just below the
E1 and E1+�1 gaps� the dielectric function �̂ is dominated by
direct absorption and the Raman scattering tensor is effec-
tively a two-band tensor �from at least 1.8 eV up to
3.8 eV�.41,42 Nonetheless, because �DECP is roughly the same
at 1.55 and 3.05 eV excitation, we can attribute the signifi-
cantly smaller phase at 3.05 eV to a reduction in the contri-
bution from virtual transitions, as evidenced by the signifi-
cant differences in �̄ �and thus �TSRS� for these two cases.
This last point is emphasized in Fig. 4, where we also plot
�RSFL at 3.05 eV �as the solid square�. We also compare the
difference in phase between our measurement and that of
Hase et al. in Fig. 6, where we plot �RSFL versus photon

FIG. 5. �Color online� Reflectivity changes measured with the
electro-optic sampling geometry from �a� Si at 3.05 eV from Ref.
19 and �b� Ge at 2.00 eV from Ref. 18. The points are the data and
the solid lines are exponential-decay fits to the tails of the data.
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energy, assuming a constant contribution of 23° �the average
of the 1.55 and 3.05 eV values� from �DECP. The theoretical
curve shows a nearly monatomic decrease in phase as the
photon energy is increased. As evident from Fig. 6, measure-
ments of the Si coherent phonon at other frequencies in this
range would provide an ideal test of the current model.

The last entry in Table I is for Ge excited by 2.0-eV
photons. For this excitation energy Scholz et al. have identi-
fied the anisotropic component of the excited hole distribu-
tion as the main driver of the coherent excitation.18 Our cal-
culated value of �TSRS=2° confirms their assessment: virtual
transitions are not important in excitation of the Ge optic
phonon. However, a more detailed comparison of their ex-
periment with our theory requires a bit more analysis. This is
because Scholz et al. reference their experimental phase
�which is �90°� to the peak of the electronic contribution to
the reflectivity change. However, due to the AD component
of this response, this peak is not coincident with the true
�pump-probe� zero-time delay.

We can estimate the shift of the peak in electronic re-
sponse using our models of the PG and AD response
functions.23 However, there are two parameters needed for
the calculation that have significant uncertainties: �i� the ratio
of the amplitudes of the PG and AD responses and �ii� the
value of �C. We have fit the data of Fig. 1 of Ref. 18 in an
attempt to determine the relative contributions of the PG and
AD responses. While the AD response appears to dominate
the PG response, the data do not lend themselves to a unique
analysis—relatively good fits are obtained with both positive
and negative PG peaks; therefore, in the following analysis
we have assumed that the PG contribution is simply zero. As
for �C, Scholz et al. have argued, based on experimental
results from GaAs,43 that �C�8 fs for their experiment on
Ge. On the other hand, their data suggest that �C may be
much longer. In Fig. 5�b� we plot the time-integrated data
from Fig. 1 of Ref. 18. As evident in the figure, between �50
and 100 fs the data show an exponential decay; our fit to this
portion of the data yields a decay constant of �50 fs. We
thus take this value as an upper bound on �C.

We have therefore calculated the time delay of the
electronic-response peak as a function of �C from 0 to 50 fs.
Using this delay we have converted the reported phase of 90°
to a “corrected” experimental phase consistent with the other
phases in Table I. The results are shown as the solid line in
Fig. 7. In the limit �C→0, the peak of the electronic response
approaches a delay of zero fs, and thus the correction to the
reported value approaches zero degrees. However, as �C in-
creases, the peak in the electronic response becomes increas-
ingly delayed. For �C=50 fs, the delay is 28 fs, equivalent to
correction of −91.5°, which results in a corrected phase of
−1.5°. For comparison with this corrected experimental
phase we also plot �RSFL �which depends upon �C through �̄�
as the dashed line in Fig. 7. For small values of �C, the
experimental and theoretical values show excellent agree-
ment, but even for �C=50 fs, the difference is only �20°. We
can thus conclude that the experimental observation of
Scholz et al. is not inconsistent with our RSFL model, irre-
spective of the exact value of �C.

C. Coherent-phonon period and decay time

Incoherent Raman scattering has been extensively used to
study the Si optic phonon.44–54 The intrinsic material exhibits
a Lorentzian peak with a center frequency �̄ close to
520 cm−1 and a room-temperature natural width �full width

at half maximum �FWHM�� �̄ slightly less than 3 cm−1.55

The intrinsic width is due to the finite lifetime of the optic
phonon, which anharmonically decays into two or more
acoustic phonons.46,55,56 Raman studies on heavily doped
p-type samples show that with increasing doping the Lorent-
zian peak evolves into a Fano line shape, indicative of cou-
pling to an excitation continuum, which in this case consists
of hole excitations between valence bands.49,50,52,57 The extra
decay channel provided by this coupling results in an
increasing natural width with increasing hole
concentration.47,50,52,53 Additionally, the center frequency
shifts downwards as the hole concentration
increases.47,50,52,53

The increase in natural width has been observed for hole
densities as low as 5
1018 cm−1, which is comparable to

FIG. 6. �Color online� The coherent-phonon phase of Si vs pho-
ton energy. The solid line is �RSFL assuming a constant contribution
from �DECP of 23°. The solid circle and solid square are experi-
mental results from this study and Ref. 19, respectively.

FIG. 7. �Color online� Phase of Ge vs coupled charge-density
decay time �C. The solid line is the corrected experimental phase of
Ref. 18. The dashed line is �RSFL.
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our excited carrier density of 5.5
1018 cm−1.53 In Fig. 8 we
plot Raman-scattering-determined values of the natural
width as a function of hole density,47,50,52,53 which show a
power-law increase in the width from 3.5 cm−1 at 5

1018 cm−1 to 23 cm−1 at 4 
1020 cm−1. The decay time
�ph measured in our experiment converts to an equivalent

Lorentzian �or Fano� natural width via �̄=1/ ��c�ph�, where
c is the speed of light. Our time-domain-analyzed result of
�ph=2.80±0.15 ps thus corresponds to a natural width of
3.8±0.3 cm−1.This ultrafast inferred width and a similarly
inferred width at higher excitation density from a previous
ultrafast measurement19 are also plotted in Fig. 8. As shown
there these two ultrafast measurements are consistent with
widths from the incoherent Raman scattering measurements.
This is not surprising: in Si, the laser excited carriers ther-
malize with the lattice on a time scale of �250 fs;23 thus, in
both the incoherent Raman and coherent ultrafast measure-
ments the optic phonon interacts with a thermalized room-
temperature hole distribution.

The coupling to the hole continuum also produces a shift
in the center frequency. However, the shift in center fre-
quency is not significant for hole densities �5
1019 cm−3,53

which is substantially greater than our carrier concentration
of 5.5
1018 cm−1. Reported values of �̄ from Raman studies
for p�5
1019 cm−3 �which include an estimation of the
uncertainly� are 523±1,44 520.2±0.5 cm−1,45

519.6±0.8 cm−1,46 519±1 cm−1,48 and 520.0±0.5 cm−1.54

These values can be compared with our measured period Tph
via �̄=1/ �cTph�. Converting our two experimental values of
Tph �the time-domain-analyzed value of 64.07±0.07 fs and
frequency-domain-analyzed value of 64.16±0.05 fs� yields
center frequencies of 520.6±0.6 cm−1 and 519.9±0.4 cm−1,
respectively. Satisfyingly, aside from the original Raman-

scattering measurement of the Si optic phonon by Russell,44

these two results are consistent with the Raman-scattering
values listed above.

V. SUMMARY

We have presented experimental data on the coherent ex-
citation of the Si optic phonon with fs optical pulses at a
photon energy of 1.55 eV. The results of these experiments
have motivated an extension of the two-band TSRS model of
Merlin et al. to include the finite lifetime of charge density
that couples to the coherent oscillation. This extension for-
mally combines the DECP and TSRS models of the force
that drives the coherent phonon. We have discussed our ex-
perimental results from Si in terms of this combined model
and shown that virtual excitations are primarily responsible
for the nonzero phase. Using this model we have suggested a
natural explanation of the nonzero phase of the Eg mode in
Sb and have discussed prior results from Si and Ge. Our
combined model should be generally applicable to describing
the phase of coherent oscillations in cases where two-band
terms dominate the Raman scattering. Further, it should be
easily testable in other materials because all of the param-
eters involved in the model are directly obtainable from the
ultrafast measurements that excite and probe the coherent
vibrations and from frequency-dependent measurements of
the dielectric function.
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APPENDIX A

Here we calculate the long-time solution to Eq. �1� with

the initial conditions Q�t→−
 �=0 and Q̇�t→−
 �=0, as-
suming that the force F�t� lasts for only a finite time. From
this solution we then obtain a general expression for the
phase � of the coherent oscillations in terms of the driving
force F�t�.

The solution to Eq. �1� can be found in the manner used
by Landau and Lifshitz to find the general solution of the
undamped ��=0� oscillator.58 By introducing the variable

� =
dQ

dt
+ �� + i	1�Q , �A1�

where 	1=		0
2−�2, Eq. �1� can be rewritten as

d�

dt
− �i	1 − ��� = F�t� , �A2�

thus transforming the harmonic oscillator equation to a first-
order equation. With the given initial conditions Eq. �A2� has
the solution

��t� = exp��i	1 − ��t��
−


t

dt�F�t��exp�− �i	1 − ��t�� .

�A3�

The coherent amplitude Q is trivially determined from � by
noting that Eq. �A1� implies Q=Im��� /	1. In order to find

FIG. 8. �Color online� Linewidth of the Si optic-phonon Raman
peak vs hole density. The open symbols are from Raman scattering
measurements: circles, Ref. 47; squares, Ref. 50; triangles, Ref. 53;
diamonds, Ref. 52. The two solid symbols are the equivalent widths
deduced from the optic-phonon decay time �ph in this work �5.5

1018 cm−3� and Ref. 19 �4
1019 cm−3�. The solid line is a
power-law fit to the Raman scattering results. The dashed line indi-
cates the low-density limit �2.7 cm−1� of the line width �Ref. 55�.
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the phase of the oscillations we consider Eq. �A3� in the
long-time limit, which is defined as anytime after the force
F�t� has vanished. In this limit the upper limit on the integral
in Eq. �A3� can be replaced by 
.59 Thus we may write
�where LT indicates this long-time limit�

QLT�t� =
1

	1
Im
exp��i	1 − ��t��

−





dt�F�t��


exp�− �i	1 − ��t��� . �A4�

If we define the Fourier transform of a time-dependent func-
tion f�t� as

f̂�	� =
1

	2�
�

−





dtf�t�exp�i	t� , �A5�

then Eq. �A4� can be expressed as

QLT�t� =	�

2

− i

	1
exp�− �t��exp�i	1t�F̂�− 	1 − i��

− exp�− i	1t�F̂*�− 	1 − i��� . �A6�

This last equation can be rewritten as

QLT�t� = − 	2�	�1
2 + �2

2 exp�− �t�cos�	1t + arctan��2/�1�� ,

�A7�

where �1=Re�iF̂�−	1− i��� and �2=Im�iF̂�−	1− i���. Thus,
the phase of the oscillations can be succinctly expressed as

� = arctan
 Im�iF̂�− 	1 − i���

Re�iF̂�− 	1 − i���
� . �A8�

APPENDIX B

Here we derive Eq. �15�, our extension of the TSRS

model of F̂�	� to finite values of �. In what follows we
utilize the notation of Merlin and co-workers3,4 as much as
possible. Using Eq. �A5� and ignoring the electric-field spa-
tial dependence and polarization dependence �which only af-
fects the absolute value of F�t��, we can write Eq. �6� of Ref.
3 as

F�t� = −
1

4�
�

−





d�1�
−





d�2Ê0
*��1�


exp�i�1t�R��1,�2�Ê0��2�exp�− i�2t� , �B1�

where Ê0��� is the Fourier transform of the laser-pulse elec-
tric field E0�t� and R��1 ,�2� �discussed in detail below� is
the Raman tensor that couples the radiation field to the co-
herently excited phonon. With a change of integration vari-
ables in Eq. �B1� to �=�1, d�=d�1 and 	=�2−�1, d	
=d�2, Eq. �B1� becomes

F�t� = −
1

4�
�

−





d	�
−





d�Ê0
*���R��,� + 	�


Ê0�� + 	�exp�− i	t� , �B2�

and a comparison of this equation with the inverse of Eq.

�A5� allows ready identification of F̂�	� as

F̂�	� = −	 1

8�
�

−





d�Ê0
*���R��,� + 	�Ê0�� + 	� .

�B3�

For values of 	 smaller than the spectral width of the laser

pulse the product Ê0
*��� E��+	� is sharply peaked at �

=�0−	 /2 and �=−�0−	 /2, where �0 is the laser-pulse
center frequency. If R�� ,�+	� varies slowly near these fre-
quencies, then we may approximately write

F̂�	� = −	 1

8�
�R��0 − 1

2	,�0 + 1
2	�

+ R�− �0 − 1
2	,− �0 + 1

2	��


�
−





d�Ê0
*���Ê0�� + 	� . �B4�

Because I�t�=c1 �E0�t��2, where c1 is a constant, we can ex-

press the integral in Eq. �B4� as �	2� /c1�Î�	�. The Fourier
transform of the driving force F�t� can thus be written as

F̂�	� = −
1

4c1
�R��0 − 1

2	,�0 + 1
2	�

+ R�− �0 − 1
2	,− �0 + 1

2	��Î�	� . �B5�

We now consider the Raman tensor R��1 ,�2�, which can
be written as

R��1,�2� = � e

m�
�2 1

V�1�2
�r��1,�2� + r�− �2,− �1�� ,

�B6�

where the function r��1 ,�2� is composed of three sums.3

Following Merlin and co-workers,3,4 we only consider the
doubly resonant sum, expecting its contribution to dominate
the other sums. With this approximation r��1 ,�2� is given
by

r��1,�2� = �
m,n

�0m�k1��mn�n0�k2�
��m + i�/2 − �1���n − i�/2 − �2�

. �B7�

Here �ij�k� is the matrix element for transitions between
electronic states i and j �with energies ��i and �� j� induced
by the radiation field with wave vector k, while the electron-
phonon matrix element �ij couples the states i and j with the
concomitant creation �or destruction� of a phonon.38,39 The
physical process represented by the summand in Eq. �B7�
can be described as follows. A photon with wave vector k2
and frequency �2 induces an electronic transition from the
ground state to the state n. This state then scatters to state m
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with the creation of a phonon. The electronic system then
makes a transition back to the ground state from the state m,
emitting a photon with wave vector k1 and frequency �1.
Energy conservation requires the phonon frequency to be
�2−�1. The parameter � is the excited-state decay rate,
which is assumed to be the same for all states.

The sum in Eq. �B7� consists of two types of terms,
known as two-band and three-band terms. In two-band scat-
tering the two intermediate electronic states in each term are
identical, so that �m=�n.39 In the three-band terms either the
excited electron or hole is in a different band in the two
intermediate states �in the independent-electron
approximation�.38,39 We again follow Merlin and co-workers
and only consider the two-band processes in Eq. �B7�.4 �For
Si the neglect of the three-band terms is not expected to be
significant, at least for laser frequencies near or below the E1
and E1+�1 gaps, because the dominant three-band terms,
which involve the two valence bands associated with these
two gaps, have the same spectral shape as the two bands
terms.41� Rewriting Eq. �B7� �with the photon wave-vector
dependence suppressed� as

r��1,�2� = �
m,n

�0m�mn�n0

�m − �n + i� + �2 − �1
� 1

�n − i�/2 − �2

−
1

�m + i�/2 − �1
� , �B8�

we see that in the two-band approximation

r��1,�2� =
1

�2 − �1 + i�
�
m

�m� 1

�m − i�/2 − �2

−
1

�m + i�/2 − �1
� , �B9�

where, for brevity, we have written �0m�mm�m0 as �m. Sub-
stituting Eq. �B9� into Eq. �B6� and omitting terms with non-

resonant denominators, the terms in brackets in Eq. �B5�
become

R��0 − 1
2	,�0 + 1

2	� + R�− �0 − 1
2	,− �0 + 1

2	�

= � e

m�
�2 2

V

1

	 + i��
m

�m

�0
2 − 	2/4


 1

�m − i�/2 − ��0 + 	/2�

−
1

�m + i�/2 − ��0 − 	/2�� . �B10�

A comparison of Eq. �B10� with the quantum-mechanical
expression for the frequency-dependent dielectric function �̂
�due to direct interband transitions�37 shows that if all matrix
elements are constant and �0

2−	2 /4 is replaced by �m
2

�which is valid for each term as long as � and 	 are much
less than �m�, then

R��0 − 1
2	,�0 + 1

2	� + R�− �0 − 1
2	,− �0 + 1

2	�

�
c2

	 + i�
��̂��0 + 1

2	� − �̂*��0 − 1
2	�� , �B11�

where c2 is a constant. Because 	��0, we can rewrite Eq.
�B11� as

R��0 − 1
2	,�0 + 1

2	� + R�− �0 − 1
2	,− �0 + 1

2	�

� c2
	

	 + i�

�1���0� +

2�2��0�
− i	

� . �B12�

Substituting Eq. �B12� into Eq. �B5� we finally have

F̂�	� = −
c2

4c1

	

	 + i�

�1���0� +

2�2��0�
− i	

�Î�	� . �B13�

We remark that in order for the �̂1�→0 limit of the extended
TSRS model to reduce to the DECP model, we must interpret
the parameter � in Eq. �B7� as the decay rate of the coupled
charge density, which is introduced in Eq. �5�. Note also that
in the �→0 limit Eq. �B13� becomes Eq. �10� of Ref. 4.
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