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A number of recent experiments report on a correlation between the low-temperature slope of the ther-
mopower, � /T, and the specific heat coefficient �=CV /T for heavy fermions and valence fluctuating com-
pounds with Ce, Eu, Yb, and U ions. Assuming that charge and heat currents at low temperatures are trans-
ported by quasiparticles, we first derive the universal value for the ratio q=� /�T using macroscopic transport
equations. We then calculate the thermal response of the Fermi liquid �FL� regime of the periodic Anderson
model and of the Falicov-Kimball model by dynamical mean field theory and find the q ratio. Eventually, we
calculate the temperature dependence of ��T� above the FL regime using the “poor man’s” approach, which
describes the scattering of conduction electrons on the lattice of f ions by the single impurity Anderson model
with crystal field �CF� splitting. The overall temperature dependence is obtained by interpolating between the
FL and the poor man’s solution, and is explained in simple terms. The shape of ��T� is determined by the
relative magnitude of the Kondo scale TK and the CF splitting. Pressure or doping �chemical pressure� affects
��T� by transforming the narrow Kondo resonances into a broad spectral function typical of valence fluctua-
tors. This changes the effective degeneracy of the f state and results in a drastic modification of ��T�.
Temperature also changes the degeneracy of the f state by populating the excited CF states. Since TK is
strongly pressure dependent, while the CF splitting is not, the shape of ��T� is a sensitive function of pressure
or doping. These results explain the near universality of the q ratio and the overall behavior of ��T� in
EuCu2�Ge1−xSix�2, CePt1−xNix, YbIn1−xAgxCu4, and similar systems.
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I. INTRODUCTION

Several recent papers1–3 reported on a correlation between
the low-temperature slope of the thermopower ��T� /T and
the specific heat coefficient �=CV�T� /T for many heavy fer-
mions and valence fluctuating compounds with Ce, Eu, Yb,
and U ions. The data show that the ratio q=limT→0� /�T is
about the same, although the absolute values of � and � /T
vary by orders of magnitude.1–9 At the moment, it is not clear
if the deviations from universality arise because of the insuf-
ficient accuracy of the data or because the “universal law” is
only approximately valid. The difficulty is that neither ��T�
nor CV�T� are linear in the lowest available temperature in-
tervals and an estimate of their zero-temperature slopes is not
very accurate. The temperature dependences of ��T� and
CV�T� in various systems might have a different physical
origin, and comparing the data on ��T� /�T without a de-
tailed knowledge of the underlying dynamics might lead to
erroneous conclusions. Furthermore, the definition of the
“zero-temperature limit” can differ considerably for systems
with vastly different characteristic temperatures, and at
present, it is not clear what the error bars are for the � /�T
data. �The ��T� and CV�T� data are hardly ever available for
the same sample.� It would be interesting to test the univer-
sality of the q ratio by performing a pressure experiment that
transforms Ce- or Eu-based heavy fermion materials into va-
lence fluctuators and Yb-based valence fluctuators into heavy
fermion materials. Pressure not only changes the zero-
temperature slope by orders of magnitude10,11 but also has a
dramatic effect on the overall temperature dependence of the

thermopower, which can be used to infer the low-energy
scales of a given system. Although high-pressure experi-
ments are less accurate than ambient pressure ones, the evo-
lution of ��T� or CV�T� with pressure could be followed and
the universality of the q ratio studied in a systematic way.
Experiments that provide the low-temperature thermopower
and the specific heat on the same sample at various pressures
are yet to be performed, but some data are available on the
doping dependence �chemical pressure� of ��T� and CV�T�.
For example, in EuCu2�Ge1−xSix�2, CePt1−xNix and
YbIn1−xAgxCu4, doping alters the low-temperature slope of
��T� and CV�T� by more than 1 order of magnitude4–9 while
barely affecting the q ratio.

A simple relation between � /T and � is found for a free
electron gas and for noninteracting electrons on a lattice in
the relaxation time approximation. Under fairly general con-
ditions, one finds the result12,14 ��T��CV�T� /ne=S�T� /ne,
where n is the number density of the charge carriers and S
the entropy density. However, noninteracting electrons fail to
describe the properties of the compounds mentioned above,
and the question arises as to what extent does the “universal
relation” between � and S �or CV� hold for correlated elec-
trons

On a macroscopic level, an analysis of the charge and heat
transport of a thermoelectric in terms of transport equations
yields the same relationship between � and S as the free
electron model. This derivation assumes that under isother-
mal conditions the expectation value of the charge-current
density is proportional to the expectation value of the heat
current density, which should hold for Fermi liquids �FLs�.
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On a microscopic level, the q ratio of the periodic Ander-
son model has been obtained recently by Miyake and
Kohno.13 Using the quasiparticle �QP� approximation, they
calculated the Seebeck coefficient from the canonical for-
mula that expresses ��T� as the ratio of two transport
integrals.14 The universal FL behavior is derived by assum-
ing that in addition to the renormalization effects due to the
Coulomb interaction between f electrons, the charge and heat
transport are affected by the scattering of quasiparticles off
residual impurities. This scattering dominates the transport
relaxation time and gives rise to a finite residual resistivity
�0. In the dilute limit, the impurity concentration drops out of
the ratio of the transport integrals and does not appear in the
expression for the Seebeck coefficient.

The exact many-body transport coefficients of the peri-
odic spin-1 /2 Anderson model have recently been obtained
at finite temperatures by Grenzebach et al.15 The electron
relaxation is due to the Coulomb repulsion between f elec-
trons, and the model describes heavy fermions and valence
fluctuators with small �0. The auxiliary impurity problem
generated by the dynamical mean-field theory �DMFT� is
solved by the numerical renormalization group �NRG�
method, which provides accurate results for the static prop-
erties at arbitrary temperature and for the dynamical proper-
ties above the FL regime. However, the zero-temperature
limit of the transport relaxation time is difficult to obtain by
the DMFT+NRG method �due to numerical issues associ-
ated with self-consistency�, and the validity of the FL laws
for the transport coefficients of strongly correlated electrons
has not been clearly established.

In this contribution, we discuss the q ratio for the periodic
Anderson model and the Falicov-Kimball model, which de-
scribe heavy fermions and valence fluctuators with crystal
field �CF� split 4f states. At T=0, the excited CF states are
not occupied and we obtain the initial slope of ��T�, by the
DMFT solution of an effective L-fold degenerate model. The
result agrees with that of Miyake and Kohno13 even though
we consider a periodic model with vanishing �0 and have a
positive coefficient for the T2 term of the electrical resis-
tance. We also check that microscopic models with CF split-
tings properly account for the anomalous features seen in
��T� above the FL regime. At present, the dynamical prop-
erties of the Anderson model with CF splitting cannot be
obtained by DMFT, and we find the solution using an ap-
proximate “poor man’s mapping.” That is, we assume that
the conduction electrons scatter incoherently off the 4f ions,
relate the transport relaxation time to the single-ion T matrix,
and solve the scattering problem by the noncrossing approxi-
mation �NCA�. The results obtained in such a way16 show all
the typical features observed in heavy fermions and valence
fluctuators,17 and we use them to explain the concentration
�chemical pressure� dependence of the q ratio and the evolu-
tion of ��T� in EuCu2�Ge1−xSix�2,3–5 CePt1−xNix,

6 and
YbIn1−xAgxCu4.8,9,18,19 Our calculations connect the tempera-
ture dependence of ��T� at each doping level with the char-
acter of the ground state inferred from the initial ther-
mopower slope.

The rest of this contribution is organized as follows. In
Sec. II, we introduce the macroscopic transport equations,

discuss the Seebeck and Peltier experiments, and find the
relationship between the thermopower and the entropy. In
Sec. III A, we calculate the Seebeck coefficient of the peri-
odic Anderson model in the FL regime using the DMFT
mapping. In Sec. III B, we calculate the finite-temperature
behavior using the poor man’s mapping. In Sec. III C we
discuss the thermoelectric properties of the Falicov-Kimball
model using the DMFT approach. In Sec. IV, we use these
results to discuss experimental data on the intermetallic com-
pounds mentioned above and present our conclusions in Sec.
V.

II. TRANSPORT EQUATIONS

To find the thermoelectric response of correlated systems,
we consider the macroscopic charge and energy currents that
are given by the statistical averages J=Tr���ĵ� and JE

�

=Tr���ĵE
��. Here, �� is the density matrix, ĵ the charge-

current density, and ĵE
� the energy current density operators

for a system of charged particles in the presence of an exter-
nal scalar potential �. These operators are obtained by com-
muting the Hamiltonian with the charge and energy polariza-
tion operators;14 the current densities obtained in such a way
provide the macroscopic currents that satisfy the appropriate
continuity equations.20 Assuming that the external potential
couples to the charge density, a direct calculation shows21

that ĵ is field independent and ĵE
�= ĵE+�ĵ, where ĵE is the

energy current density defined by the field-free Hamiltonian.
The macroscopic energy current JE=Tr���ĵE� does not sat-
isfy the continuity equation in the presence of the external
potential but is easily determined by a gradient expansion of
��. This yields linearized equations J=L11xc+L12xE and JE
=JE�

−�J=L21xc+L22xE, where xc=−��−T� �� /eT� and
xE=−�T /T are the generalized forces, � is the chemical po-
tential, and e=−�e� is the electron charge. The �linear-
response� expansion coefficients are given by the correlation
functions

Lij
�� = lim

s→0

1

V
	

0

�

dte−st	
0

�

d�
ĵi
��− t − i��ĵ j

��0��0, �1�

where 
ĵi
�ĵ j

��0=Tr��ĵi
�ĵ j

�� denotes the statistical average in the

absence of the external potential and ĵ1
� and ĵ2

� denote the q
=0 Fourier components of ĵ��x� and ĵE

��x�, respectively ��
and � denote the coordinate axes�. In what follows, we as-
sume a homogenous and isotropic conductor in the absence
of a magnetic field and consider only a single Cartesian com-
ponent of ĵ and ĵE �this is appropriate for cubic systems�.

Thermoelectric effects are usually described in terms of
the heat current rather than the energy current. Hence, we
transform J and JE to J and JQ=JE− �� /e�J to yield12,14

J = − 	 � � − 	� � T , �2�

JQ = �TJ − 
 � T , �3�

where 	=L11, �T= �L12/L11−� /e�, and 
T= �L22−L12
2 /L11�.

A simple analysis shows that 	�T�, ��T�, and 
�T� are the
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isothermal electrical conductivity, the Seebeck coefficient
and the thermal conductivity, respectively.12,22 The Onsager
relation12 gives �T=�, where � is the Peltier coefficient.

The stationary temperature distribution across the sample
is obtained from the total energy current in a field JE

�=JQ
+ ��+� /e�J, which satisfies the energy continuity equation20

Ė�=−div JE
�=0 and leads to the Domenicali equation22

Ė� = div�
 � T� +
J2

	
− TJ · �� = 0. �4�

The solution of Eqs. �2�–�4�, with appropriate boundary
conditions, completely specifies the thermoelectric response
of the system. In principle, the above procedure could be
used to connect the theoretical model of a given material
with the phenomenological transport coefficients and should
explain the experimentally established relationship between
��T� /T and �. However, for general many-body systems,
such a program cannot be completed and, at first sight, it is
not obvious that the transport coefficients, which depend on
the dynamical properties of the system, are simply related to
the thermodynamic quantities, which depend only on the
static properties. On a macroscopic level, the relationship
between � and S is obtained by solving Eqs. �2� and �3� once
with the boundary conditions corresponding to the measure-
ment of the Seebeck coefficient and once with those appro-
priate for the measurement of the Peltier coefficient. The
main advantage of such a simple derivation is that it clearly
indicates the terms that are being neglected.

In the Seebeck setup �an open circuit without net charge
current�, the thermoelectric voltage is induced by the heat
flow due to the temperature gradient. The Seebeck voltage
appears because the charged particles diffuse from the hot to
the cold end, and the imbalance of charge gives rise to a
potential gradient across the sample. In a stationary state, a
quasiparticle picture says that the electrical energy required
to transfer n electrons from the hot end to the cold end
against the voltage �V is balanced by the change in thermal
energy �that is, the heat�. Neglecting the shift of the quantum
states due to the external potential, we approximate ne�V
�Sn�T, where n is the particle density and Sn the entropy
density of the charge carriers. The Seebeck coefficient is ob-
tained from the ratio �V /�T, where �V=−�0

adx���x� is the
voltage change and �T=�0

adx�T�x� the temperature drop
between the end points of a sample of length a. For constant
��x�, Eq. �2� gives �V=��T, and we find the approximate
relationship between the Seebeck coefficient and the entropy,

��T� =
Sn�T�

en
. �5�

In the Peltier setup, a constant electrical current passing
through a junction of two different thermoelectrics gives rise
to an additional heat current emanating at the junction. In a
stationary state, the normal component of currents and tem-
perature are continuous across the junction, but �T and the
transport coefficients are discontinuous. Using Eq. �3�, we
find at the interface �
s�T�s− �
l�T�l=JT��s−�l�, where s
and l denote the “sample” and “leads,” respectively. Thus,
the heat brought to and taken from the junction by the ther-

mal conductivity differs by �slJ= ��s−�l�J, where �sl is
the relative and �l and �s the absolute Peltier coefficients of
the two materials, �s,l=T�s,l�T�. The junction generates an
additional heat current �slJ, which maintains the stationary
state by absorbing �or releasing� heat from the environment.
The Peltier heat appears because the excitation spectra on the
two sides of the interface are different, so that the charge
transfer produces a reversible entropy change. �The entropy
of n particles is determined by the structure of the energy
levels over which the current carriers are distributed.�

Under stationary isothermal conditions, and for currents
flowing in the x direction, we have ��T�=JQ /TJ, where JQ is
the Peltier heat current. Assuming that the stationary state is
maintained by a heat source at one end and a heat sink at the
other end of the sample and that the charge and heat flow is
uniform, with a drift velocity v, we can write J=nev and
JQ=Qnv. Here, Qn=�Tne is the Peltier heat generated at the
lead-sample interface and transported by the current in the
lead to the sink. Defining the reversible thermoelectric en-
tropy density as Sn�T�=Qn /T again gives Eq. �5�. Finally,
multiplying both sides of Eq. �5� by NAe, where NA is
Avogadro’s constant, and dividing by the molar entropy
SN�T�=Sn�T�
, where 
 is the molar volume of the material
under study, we obtain a dimensionless parameter,

q = NA
e��T�
SN�T�

= 
 N

NA
�−1

, �6�

which characterizes the thermoelectric material in terms of
an effective charge carrier concentration per f.u. �or the
Fermi volume VF of the charge carriers�. For Fermi liquids,
S�T�=�T at low temperatures, such that

q = NAe
��T�
�T

, �7�

which is used by Behnia et al.2 Throughout this paper, � is
expressed in �V/K and CV and S in J/�K mol�, and the
Faraday number is NAe=9.6�104 C/mol.

We now comment on the validity of the above approxi-
mations. As mentioned already, the entropy of the charge
carriers in the steady state, which characterizes the Seebeck
setup, is not the same as the equilibrium entropy because the
steady-state potential is different at the hot and the cold end.
As regards the Peltier setup, the average values of the current
density operators are not simply proportional to the particle
density, and the definition used in Eq. �6� neglects all the
operator products that lead to higher-order powers in the par-
ticle density. This amounts to describing the low-energy ex-
citations of the system by quasiparticles and approximating
the many-body interactions by self-consistent fields.

Furthermore, we should take into account that the entropy
Sn in Eq. �5� or SN in Eq. �6� is not the full entropy S of the
system but only the entropy of the charge carriers appearing
in the transport equations. For example, the total entropy S
might have contributions SM coming from additional degrees
of freedom, such as localized paramagnetic states, magnons,
and phonons, which do not participate in the charge transport
and are only weakly coupled to the charge carrying modes.
Assuming S=SN+SM but neglecting the contribution of
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these additional degrees of freedom to the charge transport,
we get the experimentally determined quantity

q̃ = NA
e��T�
S�T�

=
NA

N

1

1 + SM�T�/SN�T�
, �8�

which could be much reduced with respect to q=NA /N given
by Eq. �6�. The experimental values q̃ depend not only on the
concentration of carriers but also on temperature, and to get
the universal ratio one might need a very low temperature,
where SM �SN. This behavior is similar to deviations of the
Wiedemann-Franz law from the ideal metallic behavior
whenever the phonon contribution to the heat current is
substantial—in order for the Wiedemann-Franz law to hold,
the phonon contribution to the thermal conductivity has to be
much smaller than the electronic contribution.

The Seebeck coefficient appearing in Eqs. �5�–�8� should
also be treated with care. If there are several conductivity
channels, the total thermopower is a weighted sum of all the
components 	�=� j	 j� j, where 	=� j	 j, and there might be
some cancellations in the thermopower sum. But S has dif-
ferent vertex corrections, and the specific heat is not affected
by these cancellations. Similarly, if there are several scatter-
ing channels for conduction electrons, vertex corrections
give rise to interferences that affect the thermopower �like in
the Friedel phase shift formula23�. Even if we neglect inter-
ference effects and use the Nordheim-Gorter rule24 ���
=� j� j� j, where �=� j� j and � j and � j are the resistivity and
thermopower due to the jth scattering channel�, the � j terms
in the weighted sum might have different signs and cancel.
Thus, unless one of the channels dominates, q̃ is nonuniver-
sal and temperature dependent, and the interpretation be-
comes difficult. We also remark that the heat conductivity of
magnons and phonons can give rise to phonon-drag and spin-
drag contributions to ��T�, which are not included in Eq. �6�
or �8�. However, at low temperatures, those contributions are
expected to be small.

III. MODEL CALCULATION OF THE
SEEBECK COEFFICIENT

Considering the limitations and uncertainties mentioned
above, it is somewhat surprising that in many correlated sys-
tems the low-temperature ratio of the thermopower and the
specific heat comes quite close to the universal value given
by Eq. �7�. In what follows, we show that the universal law
of Sakurai1 and Behnia et al.2 holds for the periodic Ander-
son model with on-site hybridization and for the Falicov-
Kimball model. We also show that these models of strongly
correlated electrons explain the full temperature dependence
of the Seebeck coefficient observed in the intermetallic com-
pounds with Ce, Eu, and Yb ions. The charge-current opera-
tor in both models is

ĵ = e�
k	

vkck	
† ck	, �9�

where 	 labels the symmetry channels �irreducible represen-
tations to which the �conduction� c electrons belong� and
vk=���k� is the velocity of the unperturbed c electrons. Cal-

culating the heat current density operators for a constant hy-
bridization in k space, we verify explicitly the Jonson-Mahan
theorem25 and find for each symmetry channel the static con-
ductivity

	�T� =	 d�
−
df

d�
����,T� �10�

and the thermopower

��T� = −
1

�e�T

	 d�
−
df

d�
�����,T�

	 d�
−
df

d�
����,T�

. �11�

The excitation energy � is measured with respect to �,
f���=1/ �1+exp����� is the Fermi-Dirac distribution func-
tion, and ��� ,T� is the charge-current–charge-current corre-
lation function14 �our result differs from Mahan’s by an ad-
ditional factor of e2 from the charge-current operators�. In
the low-temperature FL limit, the charge-current–charge-
current correlation function is approximately found from the
reducible vertex function by

���,T� =
e2

V
�
k	

vk
2Gc

	�k,� + i��Gc
	�k,� − i��

��	�k,� + i�,� − i�� . �12�

Here, Gc
	�k ,�± i�� are the momentum and energy-dependent

retarded and advanced Green’s functions of the conduction
electrons and �	�k ,�+ i� ,�− i�� is the analytic continuation
from the imaginary axis into the complex plane of the �re-
ducible� scalar vertex function �	�k , i�n�, which is defined
by the diagrammatic expansion of the current-current corre-
lation function.14 The calculations are model dependent, and,
in what follows, we consider separately the periodic Ander-
son model and the Falicov-Kimball model.

One can also determine the current-current correlation
function exactly within DMFT,26 where the vertex correc-
tions vanish, and

���,T� =
e2

V
�
k	

vk
2�Im Gc

	�k,� + i���2. �13�

This form is useful if Gc
	�k ,�+ i�� is known for all k and �

points; we use it for the Falicov-Kimball model27,28 since the
latter does not have FL behavior in general.

A. Periodic Anderson model: The low-temperature
DMFT solution

The periodic Anderson model is defined by the Hamil-
tonian

HA = Hc + Hf + Hcf , �14�

where Hc describes the c electrons hopping on the lattice, Hf
describes the 4f states localized at each lattice site, and Hcf
describes the c-f hybridization. The c and f electrons have L
internal degrees of freedom �channels�, and we consider the
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model with an infinitely strong Coulomb repulsion between f
electrons �or f holes�, which does not allow two f electrons
to occupy the same lattice site. The total number of c and f
electrons per site is nc and nf, respectively. We strictly en-
force the constraint nf �1 �or nf

h�1�, at each lattice site
choose nc�1, and conserve the total number of electrons n
=nc+nf by adjusting a common chemical potential �. The
unrenormalized density of states �DOS� of c electrons in
each channel is Nc

0���=�k���−�k�, where �k is the
conduction-electron dispersion. We assume Nc

0��� to be a
symmetric, slowly varying function of half-width D, which
is the same in all channels, and measure all the energies,
except �, with respect to its center. In the case of heavy
fermions and valence fluctuators with Ce ions, the magnetic
state is represented by CF levels, occupied by a single f
electron. We consider M −1 excited CF levels separated from
the CF ground state at Ef

0 by energies �i� �Ef
0�, where i

=1, . . . ,M −1. Each CF state belongs to a given irreducible
representation of the point group �i. The spectral functions
of the unrenormalized f states are given by a set of delta
functions at Ef

0 and Ef
i =Ef

0+�i. The degeneracy is Li and
L=�iLi. The mixing matrix element Vi connects the c and f
states belonging to the same irreducible representation and,
for simplicity, we take Vi=V for all channels; i.e., the hybrid-
ization is characterized by the parameter �=�V2Nc

0�0�. The
properties of the model depend in an essential way on the CF
splitting and the effective c-f coupling constant g=� /��Ef
−��, where Ef =�iLiEf

i /L. For L�2 and strong correlation
between the f electrons, the condition nf �1 makes the
model extremely asymmetric. The limit nf �1 can only be
reached for g→0. An application of pressure or chemical
pressure �doping� to Ce systems is modeled by an increase of
the bare coupling g. The increase in g gives rise to a mono-
tonic reduction of nf and makes the Ce ions less magnetic. In
the case of europium, the nonmagnetic 4f6 state is a Hund’s
singlet and the magnetic state is a degenerate �4f7� Hund’s
octet with a full rotational invariance. The Eu ion fluctuates
between the two configurations by exchanging a single elec-
tron with the c band, and we model the pressure effects in the
same way as for Ce. In the case of ytterbium, the nonmag-
netic state is the full-shell 4f14 configuration and the mag-
netic one is the 4f13 configuration, which can be split by the
CF. Here, pressure or chemical pressure reduces g and en-
hances the number of f holes, which makes the Yb ions more
magnetic.

We consider first the low-temperature solution that takes
into account the coherent scattering on the f lattice. At low
temperature, the excited CF states are unoccupied and the
calculations can be performed for an effective spin-
degenerate model, where the effective degeneracy is set by
the CF ground state. The correlations are treated by the
DMFT, which is exact in the limit of infinite dimensions.29–31

To simplify the notation, we drop the spin label in this sec-
tion. Using the equations of motion for the imaginary time
Green’s functions, making the Fourier transform to Matsub-
ara frequencies, and analytically continuing into the complex
energy plane, we obtain the Dyson equations for the c- and
f-electron Green’s functions,

Gc�k,z� =
z − �Ef − �� − � f�k,z�

�z − ��k − ����z − �Ef − �� − � f�k,z�� − V2

�15�

and

Gf�k,z� =
z − ��k − ��

�z − ��k − ����z − �Ef − �� − � f�k,z�� − V2 ,

�16�

where � f�k ,z� is the f-electron self-energy �the self-energy
and Green’s functions are identical for each of the L differ-
ent f states�. The retarded �advanced� Green’s functions are
defined for z in the upper �lower� part of the complex plane
and on the real axis for �±=lim�→0��± i��. The self-energy
of the c electrons is

�c�k,z� =
V2

z − �Ef − �� − � f�k,z�
. �17�

The DMFT self-energies are k independent, � f�k ,z�=� f�z�
and �c�k ,z�=�c�z�, which allows us to find the solution by
mapping the local Green’s function, �kGf�k ,z�, onto the
Green’s function of an auxiliary single impurity Anderson
model,

Gf�z� =
1

z − �Ef − �� − ��z� − � f�z�
, �18�

where the bath function ��z� is obtained from the self-
consistent solution of Eqs. �15�–�18�. This model describes a
single f electron distributed over L-fold degenerate spin
states coupled to a bath. The irreducible self-energy of the
lattice and the impurity are given by the same functional,
� f��kGf�k ,���=� f�Gf����. The self-consistency requires
that the impurity spectral function, A���=−Im Gf��+� /�, co-
incides with the local f-DOS of the lattice, N f���
=�kAf�k ,��, where

Af�k,�� = −
1

�
Im Gf�k,�+� . �19�

Since nf is the same on the impurity and the lattice, the
impurity model is highly asymmetric. In what follows, we
consider the DMFT solution in the FL regime.

For ��0, we assume that the � dependence of ���� is
much slower than that of Im � f��+ ,T� and that ����
���0�= i�0. The positive definiteness of N f��� requires
�0�0 and from the causality of the problem, it follows that
Im � f��+ ,T� is negative on the real � axis. At T=0,
the imaginary part of � f��+ ,T� has a maximum at �=0,
such that32 Im � f�0�=0, Im��� f /����=0+ =0, and
Im��2� f /��2��=0+ �0. In the limit �+→0, a linear expansion
of �̃ f���=Ef +Re � f��+� gives �− ��̃ f���−�����− �̃ f�Zf

−1,
where �̃ f = ��̃ f�0�−��Zf is the renormalized position of the f
level and Zf

−1= �1−�� f /����̃=0 the renormalization factor.
The charge-current correlation function for the FL at low

temperature follows from the identity Gc�k ,�+�Gc�k ,�−�
=−Ac�k ,�� / Im �c��+ ,T�, where
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Ac�k,�� = −
1

�
Im Gc�k,�+� �20�

is the spectral function of c electrons. We calculate ��� ,T�
using Eq. �12� instead of Eq. �13� since it is the dominant
contribution when T→0. This gives

���,T� =
���,T�

V
�
k

e2vk
2Ac�k,�� , �21�

where ��� ,T� denotes the transport relaxation time

���,T� =
1

− Im �c��+,T�
. �22�

Since the factor �−df /d�� restricts the transport integrals to
the Fermi window, ����kBT, the main contribution to the
transport coefficients is due to the k points in the vicinity of
the renormalized Fermi surface �FS�, which is defined by the
equation ��k−����̃ f�0�−��=V2. In this narrow region of
�k ,�� space, we approximate vk

2 by its FS average, 
vkF

2 � and
find the usual result,

���,T� = e2
vkF

2�Nc������,T� , �23�

where the renormalized c-DOS is defined by

Nc��� = �
k

Ac��k,�� . �24�

The approximate FL charge-current correlation function,
given by Eq. �23�, coincides with the exact DMFT result27,28

only in the limit T ,�→0 �the exact result has another term,
which can be neglected as T→0 but is important at finite T
or for non-FL systems�.

The renormalized low-energy densities of states are cal-
culated by the Fermi liquid theory of Yamada and Yosida33

and Yamada,34 which approximates the spectral functions by
their singular parts. Using the fact that Ac��k ,�� and
Af��k ,�� depend on k only through �k �see Eqs. �15� and
�16� and recall that � f is independent of k in DMFT�, we can
write in each symmetry channel

N f��� =	 d�Nc
0���Af��,�� �25�

and

Nc��� =	 d�Nc
0���Ac��,�� , �26�

where Nc
0��� is the unrenormalized density of states of the c

electrons. The full DOS is obtained by multiplying the above
expressions by L. Close to the renormalized FS, the main
contribution to N f��� and Nc��� comes from the singular
parts of the spectral functions �once again, for the FL at low
T�. Estimating the average Fermi momentum of the hybrid-
ized states by the Luttinger theorem and keeping just the
singular parts of the integrands give the zero-temperature
results35,36

Nc��� = Nc
0
� + � −

V2

� − �̃ f��� + �
� , �27�

from which we find

N f�0� = ±
nc

L
Zf

�̃ f

. �28�

The upper sign applies to Ce and Eu compounds, in which
the renormalized f level is above � ��̃ f �0� and the lower
to Yb compounds in which �̃ f �0. Introducing the specific
heat coefficient of the periodic Anderson model, �
���2kB

2 /3�LN f�0�Zf
−1, we find from Eq. �28� the relation-

ship �̃ f = ��2kB
2 /3��nc /��.

It is a challenge to determine the low-temperature trans-
port relaxation time given in Eq. �22� because the right-hand
side diverges when � and T both equal zero. However, using
Im � f��+ ,T��−�c���2+�2T2 /2�, which holds for a FL in the
limit of strong correlations,33,34 we see that the proper way to
take the limit of T→0 is to first consider the limit �→0 at
finite T and then examine what happens as T→0. Doing so
will allow for a proper calculation of the Seebeck coefficient,
which is finite, even though it is determined as the ratio of
two integrals, each becoming infinite as T→0. With these
ideas in mind, we substitute �c��+ ,T� given by Eq. �17� in
Eq. �22� and obtain ��� ,T�, taking the limit in such a way
that �→0 before �→0. At low temperature, we do not ex-
pect −�̃ f�� ,T�+� to vanish because it vanishes for the
single-band model at half filling, and we have a multiband
model far from half filling. In the following, we assume that
−�̃ f�� ,T�+� is much larger �in absolute magnitude� than �
or T in the low-frequency and low-temperature regime. For a
given value of V, Ef, and n, we calculate � f���, �̃ f�� ,T�,
N f���, Nc���, nf, and nc by the DMFT procedure, find �
from the condition nf +nc=n, and obtain ��� ,T�.

The low-temperature Seebeck coefficient follows from the
Sommerfeld expansion of Eqs. �11� and �23�. It is a weighted
sum of the contribution of all the symmetry channels, which,
all of them being equivalent, is equal to the single channel
value. To lowest order,

��T�
T

= −
�2

3

kB
2

�e�� 1

Nc���
�Nc���

��
+

1

����
�����

��
�

�,T=0

.

�29�

The quantity limT→0 �0�T�=limT→0�lim�→0 ��� ,T�� di-
verges, but the expressions given by the ratio of two trans-
port integrals, such as the one in Eq. �11� or the logarithmic
derivative in Eq. �29�, remain finite at T=0. Using
Im � f�����2 at T=0, we obtain from Eqs. �17�, �22�, and
�28� the zero-temperature result,

� d

d�
�ln ������

�=0
� �

2LN f�0�Zf
−1

nc
. �30�

From Eq. �27�, we find for a slowly varying N0��� that
�d /d���ln Nc�����=0� �d /d���ln ������=0 and, neglecting
the first term in Eq. �29�, obtain the FL law,
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��T� = ±
2�T

�e�nc
=

2�T

�e�nc

�̃ f

��̃ f�
. �31�

The initial slope of the low-temperature Seebeck coefficient
is positive when the Kondo resonance is above �, which
corresponds to the intermetallic compounds with Ce and Eu
ions. It is negative when the Kondo resonance is below �,
which corresponds to the intermetallics with Yb ions.

The above considerations apply to systems that fluctuate
between a nonmagnetic and an L-fold degenerate magnetic
state, such as heavy fermions with a large Kondo scale and
valence fluctuators. They should also apply to heavy fermi-
ons with CF splittings because at low enough temperatures
the excited CF states are unoccupied and the magnetic con-
figuration is characterized by the lowest CF state. Using Eq.
�31� and the charge neutrality condition n=nf +nc, we find
that the reduction of nf by pressure or chemical pressure
slightly reduces the q ratio.

Note that we calculate the transport properties of strongly
correlated systems following a completely different route
than Miyake and Kohno,13 even though the QP dispersion
obtained from the secular equation ��−�k+����− �̃ f���
−��=V2 is exactly the same. In Ref. 13, the QP bands are
obtained for an effective model of hybridized fermions with
renormalized parameters that take into account the on-site
correlation. However, doubly occupied f states are not ex-
plicitly excluded from the Hilbert space of the effective
Hamiltonian, and the number of f electrons is restricted to
nf �1 only on average. In such a fermionic model, the
charge and heat current density operators in the QP represen-
tation are given by quadratic forms that commute with the
effective Hamiltonian. The Jonson-Mahan theorem applies,
and the low-temperature thermopower is obtained from the
canonical expression in Eq. �29�. The quasiparticle relaxation
is due to scattering off external impurities, which give rise to
a finite residual resistivity, and the logarithmic derivatives of
the QP density of states and the transport relaxation time are
of the same order of magnitude.

In our approach, we assume an infinitely large Coulomb
interaction and use QP states, which are defined by a canoni-
cal transformation that stepwise eliminates the hybridization
between the f and c electrons.37 The operator form of the
effective QP Hamiltonian obtained in such a way is quadratic
but the operator algebra is not fermionic. The charge and
heat current density operators are highly nontrivial in the QP
representation, and it is not clear that they satisfy the Jonson-
Mahan theorem nor that the canonical expression in Eq. �11�
for the Seebeck coefficient holds. To avoid these difficulties,
we use the QP representation to estimate the Fermi momen-
tum of the interacting system but calculate the heat and
charge currents for the initial model, where the Jonson-
Mahan theorem is easily proven.

B. Anderson model: “Poor man’s approach”

At elevated temperatures, the FL law in Eq. �31� breaks
down, and to obtain ��T� we need the full solution of the
periodic Anderson model with the CF splittings and/or large
degeneracy. Such a solution is not available at present and to

estimate ��T� we use a poor man’s approach. We assume that
the conduction electrons scatter incoherently on the 4f ions
and calculate the transport relaxation time in the T-matrix
approximation. We write �c�k ,�+��niTkk��+�, where
Tkk��+� is the single-ion scattering matrix on the real axis,
and, for the stoichiometric compounds, set the concentration
of 4f ions to ni=1. Since transport integrals are restricted to
the Fermi window, we average Tkk��+� over the FS and cal-
culate ���� using Eq. �22�.

In the case of a single scattering channel �no CF splitting�
the vertex corrections to the T matrix vanish by symmetry
and the conduction electron’s self-energy in Eq. �22� is given
by �c��+�=V2Gf��+�, where Gf��+� is the retarded Green’s
function of the effective L-fold degenerate single impurity
Anderson model. When the degeneracy is lifted by the CF
splitting, the vertex corrections do not vanish, but we neglect
them anyway and use

�c��+� = �
�

VkF�G���+�V�kF
, �32�

where V�kF
= 
��V�k� is the FS average of the matrix element

for the scattering between the c electrons �in the k state� and
the f state �belonging to the irreducible representation ��,
and G���+� is the corresponding Green’s function of the
single impurity Anderson model with CF splitting.

As regards the validity of the poor man’s approach, we
point out that the DMFT+NRG solution15 of the spin-1 /2
Anderson lattice shows that the electrical resistance ��T� in-
creases rapidly and is very large at temperature TK, where
��T� has a maximum. For T�TK /2, the thermopower of the
lattice model15 is very similar to the exact results23 obtained
for the spin-1 /2 Anderson impurity. This indicates that the
poor man’s approach can be used to describe the stoichio-
metric compounds at temperatures above TK /2, provided the
single impurity scattering is solved by methods that can deal
with a large Coulomb correlation and the CF splitting.

The experimental results on the heavy fermion and
valence fluctuators provide additional support for the
poor man’s approach. The data show that the residual
resistance of ternary and quaternary compounds such as
EuCu2�Ge1−xSix�2, CePt1−xNix, and YbIn1−xAgxCu4 grows
rapidly with x, and for 0.3�x�0.8 the mean free path is
reduced by disorder to about a single lattice spacing. In these
random alloys, the electron propagation is incoherent even at
T=0 and the single impurity model should apply down to the
lowest temperatures. At low doping and in stoichiometric
compounds, the impurity description breaks down at low
temperatures where �0 is small. However, in these systems
��T� and ��T� grow rapidly with increasing temperature
�room temperature �RT�� and attain large maxima at TK

� and
TK, respectively. In the case of degenerate f states or small
CF splitting, the data show5,38,39 TK

� �TK�RT, and for T
�TK

� /2 there is not much difference between the stoichio-
metric compounds and doped systems; i.e., the impurity
model applies. For large CF splitting, ��T� has two maxima:
a low-temperature one at TK

� and a high-temperature one at
T�. The thermopower also exhibits two maxima:40 a low-
temperature one at TK�TK

� and a high-temperature one at TS.
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For T�TK /2, where the mean free path is short, the ther-
mopower of the periodic systems exhibits the same qualita-
tive features as in random alloys and can be explained in
terms of impurity scattering. The experimental data show
that the functional form of ��T� is strongly affected by pres-
sure or chemical pressure. The fact that all the qualitative
features of the pressure-induced variations of ��T� can be
successfully explained by impurity scattering justifies, a pos-
teriori, the poor man’s approach.

The thermoelectric properties of the single impurity
Anderson model with the CF split f states are obtained by
the NCA, which is explained in detail in Refs. 41 and 16. In
the limit of large asymmetry and infinite f-f correlation, the
Kondo temperature TK, obtained from the low-energy peak
of the spectral function, agrees with the exact result,32

TK=3� /�kB. Here, �= ��2kB
2 /3�LN f���Zf

−1 is the impurity
contribution to the specific heat coefficient, N f���
= �1/���sin2��nf /L� is the f-DOS at the Fermi level, and Zf

is the renormalization factor. For a structureless c-DOS, the
NCA shows that TK depends sensitively on the degeneracy of
the f state. A small TK is found for small L and large �CF,
while a large TK is found for large L and small �CF. For a
given L and �CF, the Kondo scale is a monotonic function of
nf. It has a minimum at nf =1 and increases rapidly as nf is
reduced. In what follows, we discuss the behavior of ��T�,
assuming that pressure or doping increases the coupling con-
stant g and reduces nf but does not change �CF.

We consider first an L-fold degenerate f state and show
typical NCA results16,41,42 in Fig. 1, where thermopower is
plotted as a function of temperature for several values of Ef.
The calculations are performed for a half-filled, semielliptic
c band, no CF splitting �L=8�, and a constant hybridization
�. A decrease of Ef gives rise to an increase of g, which
mimics the effect of pressure in Eu intermetallics. The ther-
mopower is characterized by the Kondo maximum �S at tem-
perature TS�TK. The high-temperature behavior strongly de-
pends on the value of nf. �Since nf can be temperature

dependent, we characterize the system by nf�TK�.� For nf
�1, the thermopower has a large high-temperature slope,
changes sign at T0�TK and assumes large negative values
above T0. The TS and T0 increase, and the high-temperature
slope of ��T� decreases with decreasing nf. For nf �0.7, we
still find a shallow maximum of ��T� below RT but the high-
temperature slope is very small and the sign change does not
occur. A similar behavior is obtained if the coupling constant
g is reduced by increasing �. For smaller L, we find the
same qualitative features, but �S and TS are reduced; for L
=2 and nf �1, the asymmetry of the model is much reduced
and the Kondo maximum is almost completely suppressed.40

The CF splitting leads to additional features, which we
explain by the example of an f ion with two CF states sepa-
rated by �CF. The respective degeneracies of the ground and
the excited state are M and M�, where M+M�=L. The
system now has two characteristic low-energy scales: the

Kondo temperature TK and a larger scale TK
L�TK, which

comes into play43 when the excited CF states become signifi-
cantly populated at temperature T���CF/2. For T�T�, the
thermopower can be approximated by the function �L�T�,
which describes an effective L-fold degenerate f state with
the Kondo temperature TK

L and exhibits all the features dis-
cussed in the previous paragraph. For T�T�, the excited CF
states are unoccupied and the properties are determined by
the lowest CF state, which is M-fold degenerate �typically,
M�L�. Thus, the thermoelectric response of a CF split f
level is described at low temperatures by an effective
M-fold degenerate Anderson model with the Kondo scale
TK. All other parameters being the same, the main difference
between this effective model and a simple M-fold degener-
ate model with the Kondo scale TK

M=lim�→� TK is that TK
�TK

M. The enhancement of TK is due to the virtual transi-
tions from the ground to the excited CF states. The function
�M�T�, which approximates ��T� at low temperatures, ex-
hibits all the usual Kondo features. For nf �1, it has a Kondo
maximum at TK and changes sign at T0�TK; in the case of
a doublet ground state, the Kondo maximum is very small
and ��T� is negative down to the lowest accessible
temperatures.40 For 0.7�nf �0.95, the Kondo maximum is
enhanced with respect to nf �1, the high-temperature slope
of ��T� is reduced, and the sign change shifts to T0�TK. For
nf �0.7, the maximum of ��T� is further enhanced but the
sign change is absent. Of course, for T�T�, the excited CF
states come into play and �M�T� ceases to be physically
relevant.

These effects are illustrated for a ground state doublet and
an excited quartet in Fig. 2, where ��T� is plotted as a func-
tion of temperature for various values of ��p�. The CF spit-
ting �CF is the same for all the curves. An increase of pres-
sure increases ��p� and g�p� and reduces nf, which has a
drastic effect on the functional form of ��T�. We assume at
ambient pressure nf �1 and choose ��0� and g�0� such that
��T��0 at RT. The corresponding NCA spectral function
has well defined CF excitations,16,41 which show that the
low-energy scales satisfy TK�TK

L�T�. From the previous
discussion, we expect ��T� with a very weak Kondo maxi-
mum at TK, a sign change at T0�TK, and large negative
values for T�T0. Nothing particular happens at T�TK

L,
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FIG. 1. �Color online� The thermopower of the single impurity
Anderson model of an eight fold degenerate f state calculated by
the NCA for fixed hybridization �=0.015 eV is plotted as a func-
tion of temperature for several values of Ef, as indicated in the
figure. The values of nf�TK� are 0.76, 0.81, 0.86 0.91, and 0.93 for
−Ef =0.12, 0.15, 0.18, 0.22, and 0.25, respectively.
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where the excited CF states are still unoccupied. At T�, the
excited CF states become thermally populated and the func-
tional form of ��T� changes from �M�T� to �L�T�. Thus, a
system with a low Kondo scale and large CF splitting has
��T� with a negative maximum around T� and a deep nega-
tive minimum at low temperatures. The thermopower of that
shape is illustrated by �=0.08 and �=0.10 curves in Fig. 2,
classified16,17 as type �a�.

If ��p� and g�p� increase, such that 0.8�nf �0.95, the
NCA shows that the low-energy CF excitations are still re-
solved and TK�p��TK

L�p��T�. In this parameter range, the
Kondo maximum of ��T� is enhanced and shifted to higher
temperatures, such that �M�p ,T���M�T� for T�TK�p�.
The values of TK, T0�p�, and TK

L�p� are much closer to T�

than at ambient pressure, and T0
L�p� is now above T�. Thus,

at the crossover we have �M�p ,T��0 and �M�p ,T��0.
Since �L�p ,T�� is enhanced with respect to the p=0 values,
pressure enhances the Kondo maximum and brings it closer
to the CF maximum. The temperature interval in which
��T��0 shrinks with pressure, while TS does not change.
These features are demonstrated by the �=0.12 curve in Fig.
2, which is classified as type �b�.

In the pressure range such that 0.75�nf �0.8 the sign
change of �M�T� is pushed to even higher temperatures, and
at large enough pressure ��� we eventually have T0�p��T�.
The doublet-sextet crossover starts from �M�T���0, and
��T� exhibits two well resolved peaks, but is always positive.
These features are demonstrated by the �=0.14 and �
=0.16 curves in Fig. 2, which are classified as type �c�. A
further increase of pressure gives 0.7�nf �0.75, which
brings TK�p� so close to T� that the Kondo and CF peaks
cannot be resolved any more. The ��T� exhibits a single peak

with a shoulder on the low-temperature side, as shown by the
�=0.18 curve in Fig. 2, which is classified as type �d�. Note
that as long as the low-energy CF excitations are well de-
fined, the thermopower has a peak at temperature TS�T�

and the magnitude of this peak increases with pressure.
If ��p� and g�p� become very large and nf drops below

0.7, the spectral function will no longer show the CF excita-
tions. The thermopower acquires a single maximum at TS,
which is unrelated to �CF. The difference with respect to
Kondo systems is that pressure shifts this thermopower peak
to higher temperatures without changing its magnitude. Such
behavior is typical of valence fluctuators and is demonstrated
by the �=0.20 and �=0.25 curves in Fig. 2, which are clas-
sified as type �e�. The curves in Fig. 1, which describe the
system without the CF splitting such as Eu intermetallics, are
also of this type. The Yb systems are characterized by an f
hole, and the qualitative features of ��T� are obtained by
reflecting �“mirror imaging”� the curves in Fig. 1 or 2 on the
temperature axis.

The NCA calculations break down for T�TK, but an ex-
act expression for the initial slope of the thermopower is
easily obtained by the Sommerfeld expansion. This gives23

lim
T→0

��T�
T

=
2�

�e�nc
cot
�nf

L � , �33�

where L is the effective degeneracy of the f state at T=0. For
Eu ions, L=8. For the Ce and Yb ions with a small Kondo
scale and large CF splitting, L is defined by the lowest CF
state. If the CF splitting is removed by pressure or doping,
we should use L=6 for Ce and L=8 Yb compounds. Since
the on-site correlation is infinitely large and the model is far
away from the electron-hole symmetry, the initial slope of
��T� is finite, even for the ground state doublet; it is positive
for Ce and Eu ions, which have additional electrons in the
magnetic configuration, and is negative for Yb ions, which
are magnetic due to an additional hole. To estimate the mag-
nitude of the initial slope, we have to take into account that �
decreases exponentially as L increases or nf decreases. At
constant L, we find that ��T� /T decreases with the reduction
of nf, which is consistent with the NCA results shown in Fig.
1. For L=2 and nf �1, the slope of the thermopower be-
comes very small. Equation �33� shows that an increase of
pressure or chemical pressure enhances the q ratio in disor-
dered Ce alloys and reduces it in Yb alloys.

C. Falicov-Kimball model

In heavy fermions, the large paramagnetic entropy of the f
ions is removed by the crossover to the FL phase with
screened local moments. The Kondo screening does not af-
fect nf, which is nearly temperature independent. However,
in some Eu and Yb systems, such as EuCu2Ni2 and YbInCu4,
the magnetic moment disappears due to a temperature-
induced change in nf; i.e., the entropy is reduced by a
valence-change transition. These systems are described by
the Falicov-Kimball model,44 which takes a lattice of local-
ized f sites, which can be either occupied or empty, and
conduction states, which are delocalized via a nearest-
neighbor hopping. The two types of electrons interact via a
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FIG. 2. �Color online� The thermopower of an f ion with the
ground state doublet and excited quartet calculated by the NCA for
the CF splitting �=0.07 eV is plotted as a function of temperature
for several values of the hybridization strength �, as indicated in the
figure. The two bottom curves ��=0.08,0.1� describe the type �a�
Kondo system, the third curve ��=0.12� from the bottom is type
�b�, the two middle curves ��=0.14,0.16� are type �c�, and the third
one from the top ��=0.18� describes the type �d� Kondo systems.
The two upper curves �=0.2,0.25� �are type �e� and describe va-
lence fluctuators.

RELATIONSHIP BETWEEN THE THERMOPOWER AND… PHYSICAL REVIEW B 76, 085122 �2007�

085122-9



short-range Coulomb interaction and share a common chemi-
cal potential, which controls the total number of electrons
n=nc+nf. The occupation of the f states, which can be split
into several CF levels, is restricted to nf �1. For a given total
number of electrons, thermal fluctuations change the average
f occupation by transferring electrons or holes from the con-
duction band to the f states and vice versa.27 The transport
coefficients are obtained in the limit of infinite dimensions
by substituting the exact conduction-electron Green’s func-
tion into Eq. �13� and integrating Eq. �11� numerically.28,45

This procedure allows us to discuss not only the dirty FL
regime but also the metal-insulator transition.

To describe the YbInCu4-like intermetallics, we assume
that the Falicov-Kimball interaction is large enough to open
a gap in the conduction band and the ground state is metallic,
because � is within the lower �or upper� Hubbard band.
Since the model neglects quantum fluctuations, the ground
state has no f holes and the conduction electrons are essen-
tially free, such that q�1. At finite temperature, the L-fold
degenerate f states become fractionally occupied, and the
additional paramagnetic entropy of these excited states com-
petes for the free energy with the excitation energy, the ki-
netic energy of the conduction electrons, and the interaction
energy.44 This gives rise to a valence transition at a tempera-
ture TV, such that a substantial number of electrons �in Eu
compounds� or holes �in Yb compounds� are transferred
from the conduction band to the 4f ions. The onset of the 4f
paramagnetism is accompanied by the reconstruction of the
interacting density of conduction states and the shift of �
into the gap.

We find28,45 that the electrical resistance of the paramag-
netic phase is large and has a maximum at a temperature
T*�TV, which is of the order of the gap or the pseudogap in
the density of states. The thermopower obtained by the
DMFT is weakly temperature dependent, and its sign de-
pends on the band filling. The maximum of ��T� is also at
T*. The overall entropy of the high-temperature phase is very
large due to the contribution of local moments and q̃�1. In
systems with a valence-change transition, q̃ increases sharply
to q�1 as temperature is reduced below TV, indicating the
onset of the free Fermi gas phase and the change of the
Fermi volume. At intermediate temperatures, the behavior
can be quite complex28,45 because both the degeneracy of the
f states and the number of charge carriers change at TV.

By choosing the parameters of the model so as to increase
the occupancy of the f states, one can stabilize the gapped
phase, for large Coulomb repulsion, all the way down to zero
temperature.45 Calculating the thermopower for the spinless
Falicov-Kimball model on a Bethe lattice gives46 a ther-
mopower that diverges as ��T��� /T, where � is the value
of the gap. For an intrinsic semiconductor with a density of
states increasing as a power law, and assuming that the fre-
quency dependent conductivity is proportional to the density
of states, we find45 ��T�� ln T. In both cases, the corre-
sponding conductivity decays exponentially, so that the en-
tropy current density generated by the applied field, S�T�
=��T�	�T��−���, vanishes in the limit T→0, as required by
the third law of thermodynamics.12 This example shows that
the value of the q ratio of a correlated insulator or semicon-

ductor can become very large at low temperatures.

IV. DISCUSSION OF THE EXPERIMENTAL DATA

In this section, we use the results obtained for the periodic
Anderson and the Falicov-Kimball models to discuss the
temperature and doping dependence of ��T� and � /�T for
several typical intermetallic compounds with Eu, Ce, and Yb
ions. In these compounds, chemical substitution modifies the
character of the ground state, changes the characteristic tem-
perature and the low-temperature values of ��T� /T and � by
an order of magnitude, and strongly modifies the temperature
dependence of ��T�, but does not significantly change the
ratio � /�T. Our theory explains the universal low-
temperature features and shows that the observed shapes of
��T� are consistent with the ground state properties at each
doping level.

A. Chemical pressure effects in EuCu2„Ge1−xSix…2

In EuCu2�Ge1−xSix�2 intermetallics, Ge doping increases
the lattice parameter and acts as a negative pressure, which
reduces the coupling constant and makes the system more
magnetic.4,5 For x�1, the x-ray photoemission spectroscopy
�XPS� data indicate a significant mixture of Eu2+ and Eu3+

ions typical of a valence fluctuator. The spectral weight of
the nonmagnetic Eu3+ configuration decreases with respect to
the weight of the magnetic Eu2+ configuration as x is re-
duced. At the critical concentration xc=0.65, there is a
change from a FL to an antiferromagnetic �AFM� ground
state. The XPS shows that the weight of the Eu3+ configura-
tion continues to decrease in the magnetic phase and be-
comes undetectable only for x�0.3.

In EuCu2Si2, the initial slope of ��T� is small, � /T
=0.64 �V/K2, the specific heat has a small linear coeffi-
cient, �=0.065 J /K2 mol, and the q ratio5 is �q�x=1=0.94.
For 0.90�x�0.65, the � value increases with Ge doping
and x=0.7 gives � /T=2.86 �V/K2, �=0.226 J /K2 mol, and
�q�x=.7=1.21. The doping dependence of the q ratio for x

�xc can be explained by the periodic Anderson model,
which takes into account the eightfold degeneracy of the
Eu2+ ions but neglects the excited magnetic states of the Eu3+

configuration. The slight enhancement of q�x� obtained for
xc�x�1 is most likely due to the transfer of electrons from
the conduction band into the f level induced by a negative
chemical pressure. The observed trend agrees with Eq. �31�,
which predicts that a reduction of the charge carrier density
increases the q ratio. It seems that q�x� increases more rap-
idly as we approach the AFM transition from the paramag-
netic side, but the concentration dependence would have to
be fine-tuned before a more quantitative conclusion could be
reached.

Doping not only changes the ground state from the para-
magnetic to the AFM one but affects the overall shape of
��T�. These modifications are very well described by the
NCA calculations for an eightfold degenerate single impurity
Anderson model.42 Note that since ��T� is very large for T
�TK /2, the poor man’s approach applies. The experimental
data exhibit all the qualitative features shown in Fig. 1,
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where the curves with the highest TS and lowest nf corre-
spond to the Si-rich compound and those with the lowest TS
and nf �1 correspond to Ge-rich samples. �Figure 1 captures
the qualitative features of the experimental data, but the
quantitative analysis has to take into account the nonresonant
scattering channels and the Nordheim-Gorter rule.�

For x�1, the maximum of ��T� occurs at the highest
temperatures �TS�150 K� and no sign change of ��T� is
observed. This is consistent with the mixed-valent character
of the Eu ions, as indicated by the XPS data. For 0.9�x
�1, the thermopower is always positive and reaches a broad
maximum, �S�40 �V/K, at about TS�125 K. The value of
�S does not change much as x decreases, but TS is reduced
and the low-temperature slope of ��T� is enhanced with Ge
doping. �See the full and dashed-dotted lines in Fig. 1.� A
further increase of Ge concentration shifts the maximum of
��T� to lower temperatures, increases the low- and high-
temperature slopes of ��T�, and gives rise to the sign change
at T0�x�; the Ge doping reduces T0�x� faster than TS�x�.
These changes are in complete agreement with the pressure
effects discussed in Sec. III B. �See the dashed and dotted
lines in Fig. 1.� The comparison between the theory and ex-
periment allows us to identify TS�x�=TK�x� and associate the
decrease of T0�x� with the enhanced magnetic character of
the Eu ions due to the reduced f-c coupling.

For x�xc, long-range magnetic order occurs at the Neel
temperature TN�x�, as indicated by an anomaly in CP�T� and
a discontinuity in the slope of ��T�.4,5 The magnetic transi-
tion is difficult to see in the ��T� data for 0.6�x�xc. In this
concentration range, the Ge doping increases TN, reduces TK,
and sharpens the maximum of ��T�. This maximum is fully
developed, TK is close to TN, and the only effect of the AFM
transition on ��T� is a slight change of slope at TN. For 0.5
�x�0.6, a negative pressure reduces TK�x� below TN�x�,
such that ��TN���S and ��T� acquires a cusp. The reason is
that the slope of ��T� is negative for T�TN�TK and posi-
tive for T�TN, which gives rise to a cusp at TN. However,
TN�x� is still rather close to TK�x� and the values of ��T�
around TN�x� are large. Nonetheless, the cusp makes the
overall shape of ��T� quite different from what one finds in
samples with a FL ground state, where ��T� has a rounded
maximum �see Figs. 4 and 7 in Ref. 5�. The shape of ��T�
for temperatures above TN�x� looks very much the same as in
the nonmagnetic samples well above TS; i.e., ��T� decreases
monotonically and changes sign at T0�x� �see Fig. 6 of Ref.
5�. The single impurity Anderson model allows us to infer
TK�x� from the shape of ��T� and follow the concentration
dependence of TK�x� even for samples in which TK�x�
�TN�x�. For x�0.5, the Ge doping reduces TK�x� much
faster than TN�x�, and the AFM transition occurs
at temperatures comparable to T0�x�. The thermopower
anomaly at TN is now very weak because the Kondo screen-
ing is small �TN�TK�, and the data are taken at temperatures
much higher than TK. �The thermopower in the paramagnetic
phase is always far away from the Kondo maximum.�

The overall temperature and concentration dependence of
��T� and CV�T� in the AFM samples indicate that TN�x� in-
creases rapidly from zero as x is reduced below xc. The low-

temperature maxima of ��x� and �T are at xc=0.65, while
the maximum of TN�x� is reached for x�0.5. Below this
concentration TN�x� decreases slowly as x is reduced.4 Such a
behavior is difficult to explain in terms of the simple Doni-
ach diagram, which considers the scattering of conduction
electrons on a lattice of localized spins and predicts that ��x�
and TN�x� should peak at xc. If we assume that the ther-
mopower tracks the entropy of the charge carriers, the large
values of ��T� found for 0.55�x�0.65 point to a large hy-
bridization below TN, which agrees with the XPS data. In
this concentration range, the Kondo scale is comparable to
TN and the magnetic order sets in before the paramagnetic
entropy is quenched by the Kondo effect. For these samples,
the paramagnetic entropy is removed at TN by an anomalous
spin density wave �SDW�, which gaps a part of the hybrid-
ized FS. Indirect evidence for the SDW transition is provided
by the large specific heat and small effective moment in the
ordered phase. Direct evidence by neutron scattering data on
EuCu2�Ge1−xSix�2 is lacking, but the SDW transition has
been seen recently in high-pressure neutron data47 on the
“reduced-moment” antiferromagnet CePd2Si2. �Unfortu-
nately, the high-pressure thermopower and the specific heat
data on this compound are not available.� The smaller values
of ��T� found for x�0.5 indicate a reduced f-c coupling due
to negative chemical pressure. At the Ge-rich end, the hy-
bridization and the Kondo coupling are negligibly small and
the f electrons are completely localized. For x�0.3, the
magnetic ground state involves the unscreened local mo-
ments of the Eu2+ ions. Below TN, the conduction states are
effectively free, except for scattering off spin waves. The
low-temperature entropy is dominated by the linear
conduction-electron contribution, and ��T� is too small to
show an anomaly at TN. Thus, we take the thermopower data
as an evidence for different magnetic ground states in x
�xc and x=0 samples.

B. Chemical pressure effects in CePt1−xNix intermetallics

For our next example, we consider the doping effects on
��T� and � /�T in CePt1−xNix. For x�0.95, this system is a
valence fluctuator with a FL ground state, and for x�0.95, a
heavy fermion with a ferromagnetic �FM� ground state.6,7,48

The temperature and concentration dependence of ��T� in
the paramagnetic phase shows all the typical features of a Ce
ion with a CF split f state, as discussed in detail in Sec. III B.
The CF splitting is estimated to be about 200 K and T�

�100 K.48 We account for the observed behavior, assuming
that the expansion of the volume due to Pt doping48 reduces
the hybridization and the effective coupling constant but
does not change �CF. The qualitative features of the ther-
mopower agree with the schematic results shown in Fig. 2,
but for a quantitative agreement we should use the appropri-
ate CF scheme and tune the model parameters. Also, the
systematic analysis of the q ratio for samples with the FL
ground state is difficult because it would require the data in a
very narrow concentration range, 0.95�1.

For 0.9�x�1, the thermopower is linear at low tempera-
tures, shows a maximum �S at TS�120 K and a slow decay
of ��T� above TS. The Pt doping reduces TS to 100 K with-
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out a significant change in �S, which can be compared with
the type �e� curves in Fig. 2. Such behavior is typical of
valence fluctuators in which nf is too small for the CF exci-
tations to appear. We estimate the initial slope of ��T� for
x=0.95 to be about6 � /T�3 �V/K2 and the specific heat
coefficient to be �=0.120 J /K2 mol,7 which gives �q�0.95
�2.4.

For 0.75�x�0.95, the experimental data show a new
feature: ��T� assumes first shape �d� and then �c�. In this
concentration range, Pt doping reduces �S but does not
change TS, which indicates the presence of CF excitations
and two �or more� low-energy scales. The high-temperature
scale TK

L characterizes a fully degenerate CF state, and the
low-temperature one, TK, characterizes the CF ground state.
To explain the data, we assume TK�TK

L�T0�T�, which
requires large coupling and nf �1 �see the discussion in Sec.
III B�. At RT, all the CF states are equally populated, the f
state is effectively sixfold degenerate �L=6�, and ��T� can
be approximated by �L�T�, which has a negative RT slope.
As temperature decreases, the excited CF states depopulate,
and at T� there is a crossover from the high-temperature
regime to the low-temperature one, where the f state is an
effective doublet �M=2� and ��T���M�T�. Since nf �1,
T0 is comparable to T� and the crossover is indicated only by
a small change in the slope of ��T�. Negative chemical pres-
sure shifts TK

L to lower temperatures and reduces the values
of �L�T� for T�TK

L. These features explain the reduction of
the high-temperature maximum of ��T� by Pt doping. �Since
�CF does not change by doping and TS�T��TK

L, the maxi-
mum �S�x� is always at T�.� The peculiar feature of
CePt1−xNix in this concentration range is the FM transition,
which occurs at Tc�TK and is indicated by the discontinuous
change in the slope6,48 of ��T� and ��T�. �This feature is
quite similar to what one finds at the AFM transition in
EuCu2�Ge1−xSix�2.� At x=0.85, the thermopower and the spe-
cific heat data give � /T�4 �V/K2 �Ref. 6� and �
=0.180 J /K2 mol,7 such that �q�0.85�2.1. Using Eq. �31�,
one is tempted to associate the reduction of q�x� by Pt doping
with the transfer of f electrons into the conduction band.
However, the onset of the FM transition makes the estimate
of the initial thermopower and the specific heat slope suscep-
tible to large errors, and a quantitative analysis is difficult.
The low-temperature entropy is now due to the magnetic
degrees of freedom and is unrelated to the entropy of the
charge carriers.

A further increase in the Pt concentration continuously
reduces the f-c coupling and brings nf closer to 1, which
makes Ce more magnetic. The TK and T0 shift rapidly to
lower temperatures, such that T0�T� for x�0.5. Once the
high- and low-temperature regimes are sufficiently far apart,
a double-peak structure appears in ��T�. The high-
temperature peak remains at TS�x��T�, but its magnitude
�S�x� is systematically reduced by Pt doping. Considered as
a function of temperature, ��T� goes through a minimum for
T�TS, and then increases toward the Kondo maximum �K,
as predicted by the NCA calculations. The minimum of ��T�
for x=0.5 does not reach negative values �compare with the
type �c� curve in Fig. 2�. For x�0.5, there is a range of
temperatures for which ��T��0; i.e., the type �b� behavior is

obtained. The data show that T0�x� decreases rapidly with Pt
doping, but the corresponding shift of �K cannot be seen
because the development of the Kondo peak of ��T� is inter-
cepted by the FM transition. Instead of a Kondo peak, we
find ��T� with a cusp at Tc, which is similar to the one seen
in EuCu2�Ge1−xSix�2 for x�0.5. The onset of the magnetic
transition below TK and the nonmonotonic concentration de-
pendence of Tc�x� are difficult to understand in terms of the
Doniach diagram, obtained by a simple comparison of the
Kondo and the Ruderman-Kittel-Kasuya-Yosida �RKKY�
scales. The large values of ��T� at the transition and the
similarity to the EuCu2�Ge1−xSix�2 data can be taken as evi-
dence of a large Fermi volume that comprises the f states.
The ferromagnetic transition in CePt1−xNix samples with
0.5�x�0.95 is due to an anomalous SDW transition, which
partly gaps the hybridized FS. On the other hand, in the
Pt-rich samples, x�0.5, the small values of ��T� indicate the
localized f states and the conduction band with a small Fermi
volume. As in EuCu2�Ge1−xSix�2, the thermopower data indi-
cate different magnetic ground states of the Ni-rich and Pt-
rich samples.

A similar behavior for ��T� is also seen in many other Ce
intermetallics such as Ce�Pb1−xSnx�3 and Ce�Cu1−xNix�2Al3,3

in which the � /�T ratio is about twice as large as in
EuCu2�Ge1−xSix�2. It would be interesting to study the q ratio
as one approaches the critical concentration from the para-
magnetic side and determine whether q�x� exhibits different
features above the AFM and the FM transitions.

C. Chemical pressure effects in Ag-rich YbIn1−xAgxCu4

Another example of chemical pressure effects is provided
by YbIn1−xAgxCu4 intermetallics,8,9,18 which show an
anomalous behavior due to the fluctuations of Yb ions be-
tween the magnetic Yb3+ configuration with a single f hole
and the full f-shell Yb2+ configuration. Indium doping ex-
pands the lattice and increases the weight of the Yb2+ with
respect to the Yb3+ configuration19 by transferring electrons
from the conduction band to the 4f state. This reduces the
number of f holes and increases the Kondo coupling, which
makes the compound less magnetic. However, the depletion
of the conduction band due to chemical pressure is compen-
sated by the substitution of the monovalent Ag by the triva-
lent In. �The total number of conduction electrons increases
with In doping.�

We consider first the behavior of these compounds in the
coherent FL regime. YbAgCu4 is a typical heavy fermion
with a small characteristic temperature,9,18 as indicated by an
enhanced Pauli-like magnetic susceptibility, a large specific
heat coefficient, and a large concentration of Yb3+ ions.
Resonant inelastic x-ray scattering �RIXS� data show50 the
presence of f holes in the ground state at the Ag-rich end.
The thermopower and specific heat data give � /T
=2.2 �V/K2 and �=0.215 J /K2 mol at T�10 K, such that
q�x=1=0.98. At the In-rich end �x�0.4�, the system is a typi-
cal valence fluctuator with a large characteristic temperature,
as indicated by the slowly varying metallic resistivity,
weakly enhanced Pauli-like susceptibility, and small specific
heat coefficient.49 The x-ray absorption data18 indicate that
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nf
h�0.9 in the ground state, i.e., a reduced weight of the

4f13 configuration. For x=0.4, the thermopower and specific
heat data at 10 K give � /T=0.36 �V/K2 and �
=0.036 J /K2 mol, such that q�x=.4=0.96. For 0�x�0.4, the
values of � and � in the FL regime do not show any further
changes with doping. Describing the Ag-rich compounds by
the periodic Anderson model, we find that the doping depen-
dence of q is consistent with Eq. �31� if we take into account
that the Ag-In substitution increases the number of conduc-
tion electrons despite the charge transfer induced by the
negative chemical pressure. Thus, In doping transforms the
system from a heavy fermion into a valence fluctuator and
changes the low-temperature value of � and � /T by an order
of magnitude but has only a small effect on the low-
temperature ratio � /�T. The enhanced thermopower slope
and large specific heat coefficient indicate a large Fermi vol-
ume due to the hybridized f states.

The temperature dependence of ��T� is consistent with
the ground state properties for each value of x. To start with,
notice that the electrical resistance of all these compounds
increases rapidly with temperature or doping and that above
the FL regime the mean free path is short enough to justify
the poor man’s approach. �For 0.3�x�0.8, the residual re-
sistivity is large and the single impurity approach can be
extended down to T=0; i.e., the translationally invariant FL
of the periodic system can be replaced by the local FL.� The
properties of the stoichiometric compound YbAgCu4 above
the FL regime are well described by the NCA solution of a
CF split Anderson model with a ground state doublet, and
excited quartet and doublet states at 4 and 7 meV,
respectively.50 Taking the coupling g=V2N0��� / �Ef −��,
such that TK=70 K, we find the ground state value nf

h�0.9
and the temperature variation nf

h�T�, which agree with the
RIXS data.50 For the same parameters, the NCA calculations
give ��T� with a deep negative minimum of about �S

�−30 �V/K and TS�60 K. The CF splitting is too small
�or g is too large� to produce any discernible CF structure,
and the overall shape of ��T� is characterized by a single
deep minimum. �Note the mirror image analogy with the
intermetallic compounds with Ce ions: ��T� is described by
the mirror image of the type �d� curve in Fig. 2.� The NCA
results agree with the experimental data on YbAgCu4, which
show9 ��T� with a broad minimum at about TS�50 K and
�S�−40 �V/K. Above TS, the thermopower has a large
positive slope, which is consistent with nf

h�0.9 and reaches
small negative values at RT. For T�TK the f electrons are
localized and contribute a large paramagnetic term to the
overall entropy �the entropy of the unhybridized conduction
electrons is small�, so that q̃�1.

For 0.5�x�1, the experimental data show9 that In dop-
ing shifts ��T� to higher temperatures, such that TS�x�
�TS�0�. The RT values are reduced by doping ���T� is more
negative�, but the bare data show �S�x���S�0�. The NCA
calculations refer to the magnetic ion contribution, and a
quantitative comparison would require the Nordheim-Gorter
analysis, which cannot be performed since the absolute val-
ues of �0�x� are not available. The qualitative features of
��T� in the In-doped samples can be explained by the Ander-
son model with the same CF level scheme as for YbAgCu4,

but with an enhanced coupling. The negative chemical pres-
sure due to In substitution shifts the bare f level closer to the
chemical potential but does not change the hybridization.
�For details of the NCA description of Yb compounds, see
Ref. 16.� Thus, replacing Ag by In enhances g�x� and large
enough doping gives g�x��1, such that YbIn1−xAgxCu4 be-
comes a valence fluctuator. The NCA solution shows that an
increase of g�x� enhances TK�x� and TS�x� with respect to the
x=0 values and reduces the slope of ��T� above TS�x�. This
makes the RT values of ��T� more negative, in agreement
with experiment.9 Using the mirror image analogy with Ce
compounds, we see in Fig. 2 that In doping transforms the
type �d� thermopower of a heavy fermion with large TK into
the type �e� thermopower of a valence fluctuator.

D. Chemical pressure effects in the In-rich YbIn1−xAgxCu4

For x�0.5, the substitution of monovalent Ag by trivalent
In brings � and Ef in the vicinity of the band edge Ec, which
gives rise to completely new features. The nf

h�T� becomes
strongly temperature dependent, and the temperature-
induced transfer of f holes from the conduction band can
reduce �−Ec and Ef −Ec to zero. Once � is within the gap of
the density of states, the effective hybridization is switched
off and the magnetic moment of the f ions cannot be
quenched by Kondo screening;51,52 i.e., the paramagnetic en-
tropy of the high-temperature phase cannot be removed by
the Kondo effect. Thus, the transition from the high-
temperature disordered paramagnetic state to the low-
temperature coherent FL state cannot follow the usual
“Kondo route” taken by the heavy fermions. The valence
fluctuators such as YbIn1−xAgxCu4 for x�0.5, belong to a
new class of materials in which the transition between the
low- and high-entropy phases is driven by the Falicov-
Kimball interaction. This gives rise, at the temperature TV, to
a change in the relative occupancy of the f and the conduc-
tion states and to an abrupt modification of the properties of
the system. The valence-change transition is clearly seen in
the x-ray absorption data; above TV, the spectra indicate a
stable 4f13 configuration of Yb ions, and below TV, one has a
mixture of 4f13 and f14 states.18 The magnetic character of
the Yb ions changes at TV, as indicated by an abrupt change
of the susceptibility from Pauli-like to Curie-like.18 In the
high-temperature phase, the Curie constant is close to the
free ion value of Yb3+. The conduction states are also modi-
fied at TV, as indicated by a drastic change of the frequency
dependence of the optical conductivity53 and by a large
increase in the resistivity.54 The electrical resistance and
the Hall coefficient of the high-temperature phase of
YbIn1−xAgxCu4 are typical of narrow-band semiconductors
or semimetals with a very low carrier density, and neither the
transport nor the thermodynamic properties show any sign of
the Kondo effect. The proximity of � to Ec is indicated in
YbInCu4 by the Hall data and band-structure calculations.54

The anomalous thermoelectric response of f electrons
close to the metal-insulator transition, which characterizes
the YbInCu4-like systems, is well described by the spin-
degenerate Falicov-Kimball model.44 Performing DMFT cal-
culations for a parameter set that yields the valence-change
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transition at TV=50 K and opens a pseudogap of the order of
T*�500 K, we obtain the main features of the magnetic sus-
ceptibility, the XPS data, and the optical conductivity of
YbIn1−xAgxCu4 at temperatures above TV. The calculated
thermopower28 is of the order of a few �V /K, and its sign is
either positive or negative, depending on the band filling and
the shape of the conduction band. The proximity of � to the
pseudogap would lead �in a noninteracting system� to a shal-
low minimum of ��T� at a temperature of the order of T*, but
in an interacting system, the valence-change transition desta-
bilizes the semiconducting phase and gives rise to a discon-
tinuity of ��T� at TV. The low-temperature FL state has a
large characteristic temperature, and ��T� is a linearly de-
creasing function of temperature; its slope is given by Eq.
�31�. Thus, a cusp or even a discontinuity appears in ��T� at
TV. Below TV, the entropy of the system is given by the
entropy of the conduction states and q=1. Above TV, the
entropy is dominated by the contribution of the localized,
paramagnetic states, S�R ln 8, and q̃�1. The large jump of
the � /S ratio at TV is an indication of the temperature-
induced change in Fermi volume.

V. SUMMARY AND CONCLUSIONS

In this contribution, we have discussed recent experiments
on the universal ratio of the low-temperature thermopower
and specific heat of heavy fermions and valence fluctuators
with Ce, Eu, and Yb ions.1–9,48 The experimental data have
shown1,2 that systems with very different values of � /T and
� often have similar values of the low-temperature ratio q
=NAe��T� /�T. Here, we considered in some detail the
EuCu2�Ge1−xSix�2, CePt1−xNix, and YbIn1−xAgxCu4 interme-
tallics, in which the character of the ground state is concen-
tration dependent and � /T and � change by an order of
magnitude, while q�x� shows only small, but systematic,
deviations from universality. Doping or pressure not only
affects the slope but also alters the overall shape of ��T�;
these changes follow a well established pattern11,16,17 that
depends on the relative magnitude of the Kondo scale and
CF splitting.

We have first approached the thermoelectric response of
the above mentioned systems on a macroscopic level and
derived the � /�T ratio from transport equations. Using gen-
eral thermodynamic arguments and assuming that charge and
heat are transported at low temperatures by quasiparticle cur-
rents, we found q=NA /N, where N /NA is the effective con-
centration of the charge carriers. This derivation has also
shown that for a general many-body system, the q=NA /N
law is only approximately valid. We have discussed various
possible sources of the nonuniversal behavior and have
pointed out the difficulties that one encounters when compar-
ing the experimental and theoretical results for systems that
are close to a phase boundary.

On a microscopic level, we have analyzed the behavior of
the periodic Anderson and the Falicov-Kimball models using
the DMFT approach. We have discussed two possible routes
that the system can follow to remove the entropy of the para-
magnetic states at low temperatures �the Kondo and the
Falicov-Kimball route� and have shown that in both cases the

ratio of the thermopower and the entropy, � /S, tracks the
Fermi volume of the charge carriers. In the FL regime, we
find that the � /�T ratio is given by the expression in Eq.
�31�, which explains the near universality of the q ratio in
EuCu2�Ge1−xSix�2, YbIn1−xAgxCu4, and similar systems. A
weak concentration dependence of � /�T is most likely due
to the transfer of charge from the f level to the conduction
band or vice versa, as described in Eq. �31�. The CePt1−xNix
data also show a slight doping dependence, but the onset of
the ferromagnetic transition at relatively high temperatures
precludes a quantitative analysis. Calculations for correlated
electrons close to the metal-insulator transition, described by
the Falicov-Kimball model, show that the q ratio can assume
very large values at low temperatures.

In the case of random alloys described by the single im-
purity Anderson model, the zero-temperature limit of � /�T
is given by the expression in Eq. �33�, which differs by
cot��nf /L� from the corresponding expression in Eq. �31�
for the Anderson lattice. Here, the q ratio has an explicit
dependence on the effective degeneracy of the f electron
ground state. This result applies to substitutional alloys ob-
tained by doping the rare earth sites, such as Ce1−xLaxB6,38,39

Ce1−xYxCu2Si2,55 Ce1−xLaxCu2Si2,56 Yb1−xYxInCu4,57 and
similar systems. It might also apply to ternary and quaternary
systems with one rare earth ion per unit cell but a short mean
free path due to disorder. Equations �31� and �33�, combined
with the charge neutrality condition n=nf +nc, predict differ-
ent pressure dependences of the q ratio for periodic systems
and random alloys. The experimental verification regarding
the “universality” of the � /�T ratio is complicated by the
fact that the magnetic and nonmagnetic contributions to ��T�
and CV�T� are often difficult to separate. The situation could
be improved by performing the transport and thermodynamic
measurements at various hydrostatic pressures on the same
samples. It would also be interesting to follow the behavior
of the q ratio as the system approaches a magnetic or a
metal-insulator transition, which gives rise to the changes in
the Fermi volume.

The temperature dependence of ��T� has been calculated
using a poor man’s approach, which describes the scattering
of c electrons on the lattice of f ions by the single impurity
Anderson model with CF splitting. This provides an accurate
description for intermetallic compounds with one 4f ion per
unit cell when the mean free path is sufficiently reduced by
a thermal or a substitutional disorder. The solution shown
in Figs. 1 and 2 captures all the qualitative features
of ��T� observed in EuCu2�Ge1−xSix�2, CePt1−xNix, and
YbIn1−xAgxCu4 intermetallics1,3,4,6,8,9 for T�TK /2. The scat-
tering of c electrons on f states with CF splitting explains the
double-peak structure found in many heavy fermions. The
single-peaked ��T� of valence fluctuators is an indication of
the absence of CF excitations. The overall temperature de-
pendence of ��T� in periodic systems is obtained by interpo-
lating between the poor man’s �NCA� solution and the co-
herent FL �DMFT� solution given by Eq. �31�. In random
alloys, the low-temperature behavior is described by a local
FL and ��T� is obtained by interpolating between Eq. �33�
and the NCA result. We have found that the shape of ��T�
depends on the relative magnitude of TK, TK

L, and T� and
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have explained the seemingly complicated behavior of ��T�
in a simple way.

Pressure and doping can remove the Kondo resonance
from the spectral function and transform it into a broad struc-
ture typical of valence fluctuators. This changes the effective
degeneracy of the f state and increases �or decreases� the
characteristic temperature of a given compound by several
orders of magnitude. Temperature can also change the degen-
eracy of the f state by populating the excited CF states. Since
TK and TK

L are strongly pressure dependent, while T� is not,
the thermopower is drastically modified by pressure and dop-
ing. The thermopower measurements probe the low-energy
excitations of the system and reveal important low-energy

scales. We hope that our work motivates experimentalists to
measure the thermopower and specific heat of single crystal
heavy fermion under hydrostatic pressure.
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