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We investigate pairing and quantum phase transitions in the one-dimensional two-component Fermi atomic
gas in an external field. The phase diagram, critical fields, magnetization, and local pairing correlation are
obtained analytically via the exact thermodynamic Bethe ansatz solution. At zero temperature, bound pairs of
fermions with opposite spin states form a singlet ground state when the external field H�Hc1. A completely
ferromagnetic phase without pairing occurs when the external field H�Hc2. In the region Hc1�H�Hc2, we
observe a mixed phase of matter in which paired and unpaired atoms coexist. The phase diagram is reminiscent
of that of type II superconductors. For temperatures below the degenerate temperature and in the absence of an
external field, the bound pairs of fermions form hard-core bosons obeying generalized exclusion statistics.
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I. INTRODUCTION

Recent achievements in manipulating quantum gases of
ultracold atoms have opened up exciting possibilities for the
experimental study of many-body quantum effects in low-
dimensional systems.1–3 Experimental observation of super-
fluidity and phase separation in imbalanced Fermi atomic
gases4,5 has stimulated great interest in exploring exotic
quantum phases of matter with two mismatched Fermi sur-
faces. The pairing of fermionic atoms with mismatched
Fermi surfaces may lead to a breached pairing phase6 and a
nonzero momentum pairing phase of Fulde-Ferrell-Larkin-
Ovchinnikov �FFLO� states.7 In general, the nature of pairing
and superfluidity in strongly interacting systems is both
subtle and intriguing.8

Pairing is well known to be a momentum space phenom-
enon, in which two fermions with opposite spin states form a
bound pair which behaves like a boson. The bound pairs
form a superfluid, while the unpaired fermions remain as a
separated gas phase in momentum space. Such superfluid
states with gapless excitations in ultracold atomic gases pro-
vide an exciting insight into the superfluid regime in quan-
tum many-body physics. Fermi gases of ultracold atoms with
population imbalance have been predicted to exhibit a quan-
tum phase transition between the normal and superfluid
states.9–12 Mismatched Fermi surfaces can appear in different
quantum systems, such as type II superconductors in an ex-
ternal magnetic field,13 a mixture of two species of fermionic
atoms with different densities or masses,9,10 and a charge
neutral quark matter.14,15

These exotic phases have attracted newfound interest in
the one-dimensional �1D� integrable two-component Fermi
gas16–18 which was used to study BCS–Bose-Einstein con-
densation crossover19,20 and quantum phase separation in a
trapping potential.21,22 The 1D Fermi gases can be experi-
mentally realized by applying strongly transverse confine-
ment to the Fermi atomic clouds.23 In the 1D interacting
Fermi gas, the Fermi surface is reduced to the Fermi points.

The lowest excitation destroys a bound pair close to the
Fermi surface. Charge and spin propagate with different ve-
locities due to the pairwise interaction. The external mag-
netic field triggers energy level crossing such that the Fermi
surfaces of paired fermions and unpaired fermions vary
smoothly with respect to the external field. As we shall see in
this paper, the presence of the external field at zero tempera-
ture has an important bearing on the nature of quantum phase
transitions in 1D interacting fermions.

In general, the exact Bethe ansatz �BA� solution of any
model provides reliable physics beyond mean field theory.24

The thermodynamic Bethe ansatz18,25–29 �TBA� provides a
way to obtain the ground state signature and finite tempera-
ture behavior of integrable 1D quantum many-body systems.
At zero temperature, the TBA equations naturally reduce to
dressed energy equations in which the external field is ex-
plicitly involved. Thus, the band fillings are subsequently
varied with respect to the external field. This gives an elegant
way to analyze quantum phase transitions in the presence of
an external field by means of the dressed energy formalism.
Our aim here is to obtain exact results from this formalism
for characteristics of pairing phases and quantum phase tran-
sitions in the 1D two-component strongly attractive Fermi
gas of cold atoms. We present a systematic way to obtain the
critical fields and magnetic properties at zero temperature for
strongly interacting fermions. We find that the bound pairs of
fermions with opposite spin states form a singlet ground state
when the external field H�Hc1. A completely ferromagnetic
phase without pairing occurs when the external field H
�Hc2. In the region Hc1�H�Hc2, we observe a mixed
phase of matter in which paired and unpaired atoms coexist.
However, in the absence of the external magnetic field, we
show that the bound pairs of fermions behave like hard-core
diatoms obeying nonmutual generalized exclusion statistics
�GES� at temperatures much less than the binding energy.

This paper is set out as follows. In Sec. II, we present the
BA solution of the 1D two-component interacting Fermi gas.
The ground state properties are also analyzed. In Sec. III, we
introduce the TBA in order to set up the dressed energy
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formalism. The quantum phase transitions and magnetic
properties are studied by means of the dressed energy for-
malism in Sec. IV. We discuss the distribution profiles and
the thermodynamics of the 1D strongly attractive Fermi gas
of atoms at low temperatures in Sec. V, along with the con-
nection to GES. Section VI is devoted to concluding re-
marks.

II. MODEL

The model we consider has interacting atoms in two hy-
perfine levels �1� and �2�, which are coherently coupled with
laser or radio frequency fields. Under strong transverse con-
finement, the system is effectively described along the axial
direction by the 1D Hamiltonian H=H0+Hint+Hc. The first
term,

H0 = �
j=1

2 � � j
†�x��−

�2

2m

d2

dx2 + V�x��� j�x�dx , �1�

contains the kinetic energy and the trapping potential V�x�.
The second term,

Hint = g1D� �1
†�x��2

†�x��2�x��1�x�dx , �2�

describes s-wave interaction and

Hc =
1

2
�� 	�2

†�x��1�x� + �1
†�x��2�x�
dx �3�

is the coupling term. Here, �1
†�x� and �2

†�x� are the atomic
field creation operators, g1D is the 1D interaction strength,
and � is the Rabi frequency of coupling fields.

Defining �1= ��↓+�↑� /�2 and �2= ��↓−�↑� /�2, the
Hamiltonian becomes

H = �
j=↓,↑

� � j
†�x��−

�2

2m

d2

dx2 + V�x��� j�x�dx

+ g1D� �↓
†�x��↑

†�x��↑�x��↓�x�dx

−
1

2
�� 	�↑

†�x��↑�x� − �↓
†�x��↓�x�
dx . �4�

The new field operators �↓ and �↑ describe the atoms in the
states �↓ �= ��1�+ �2�� /�2 and �↑ �= ��1�− �2�� /�2. This Hamil-
tonian also describes the 1D �-interacting spin-1

2 Fermi gas
with an external magnetic field H=�. Here, we consider the
homogeneous case V�x�=0 with periodic boundary condi-

tions for a line of length L.16,17 Unless specifically indicated,
we use units of �=2m=1. We define c=mg1D /�2 and a di-
mensionless interaction strength �=c /n for the physical
analysis, with linear density n=N /L, where N is the number
of fermions. The intercomponent interaction can be tuned
from strongly attractive �g1D→−	� to strongly repulsive
�g1D→ +	� via Feshbach resonances.

The model was solved by nested BA �Refs. 16 and 17� for
the energy eigenspectrum

E =
�2

2m
�
j=1

N

kj
2 �5�

in terms of the N BA wave numbers �ki, which are the
quasimomenta of the fermions. They satisfy the BA
equations16,17

exp�ikjL� = �
�=1

M
kj − 
� + ic/2

kj − 
� − ic/2
,

�
�=1

N

� − k� + ic/2


� − k� − ic/2
= − �

�=1

M

� − 
� + ic


� − 
� − ic
. �6�

Here j=1, . . . ,N and �=1, . . . ,M, with M the number of
spin-down fermions. The additional parameters �
� are the
rapidities for the internal spin degrees of freedom.

The distribution of the quasimomenta in the complex
plane was studied recently.30 For weakly attractive interac-
tion, the system describes weakly bound Cooper pairs where
the quasimomenta are distributed in a BCS-like manner30

	Fig. 1�a�
. In this limit, the ground state energy per unit
length is given by

E �
�2n3

2m
��

2
�1 − P2� +

2

12
+

2

4
P2� , �7�

with the polarization P= �N−2M� /N. The bound state has a
small binding energy �b=�2n �� � /m and is therefore unstable
against thermal fluctuations. For strongly attractive interac-
tion, the bound pairs form hard-core bosons 	Fig. 1�b�
. The
energy per unit length derived directly from Eq. �6� is30

E �
�2n3

2m
�−

�1 − P��2

4
+

P32

3
�1 +

4�1 − P�
��� �

+
2�1 − P�3

48
�1 +

�1 − P�
���

+
4P

��� �� , �8�

with binding energy �b=�2n2�2 / �4m�. Generally, the total
momentum for bound pairs and that for unpaired fermions
are both zero. Thus, the BA roots for the model with popu-

FIG. 1. �Color online� Schematic Bethe ansatz
configuration of quasimomenta k in the complex
plane. �a� For weakly attractive interaction, the
quasimomenta of unpaired fermions sit in the
outer wings of the distribution. �b� For strongly
attractive interaction, they can penetrate into the
central region.
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lation imbalance do not show sufficient evidence for the ex-
istence of a FFLO state which might exist in the asymmetric
BCS pairing models.9,12 In FFLO states, the unpaired fermi-
ons have an asymmetric distribution at the Fermi surface
resulting in a net total momentum for bound pairs.7

III. THERMODYNAMIC BETHE ANSATZ

The TBA has been well established in quantum integrable
systems.18,25–29 For the sake of completeness, we sketch the
main idea and results of the TBA for the fermion model in
this section. At zero temperature, all quasimomenta ki of N
atoms form two-body bound states, i.e., kj =
 j�± i 1

2c, accom-
panied by the real spin parameter 
 j�. Here, j=1, . . . ,M.
However, at finite temperature, spin quasimomenta form
complex strings 
�,j

n =
�
n + i 1

2 �n+1−2j�c, with j=1, . . . ,n.18

Here, the number of strings �=1, . . . ,Nn. 
�
n is the position

of the center for the length-n string on the real axis. The
number of n strings Nn satisfies the relation M =M�+�nnNn.
There are M� real 
 j� and there are N−2M� real ki for un-
paired fermions. In the presence of a magnetic field, the
ground state consists of two Fermi seas: one contains bound
pairs and the other contains unpaired fermions.

In the thermodynamic limit, i.e., N, L→	 with N /L fi-
nite, it is assumed that the distributions of Bethe roots are
sufficiently dense along the real axis. After introducing the
root distribution functions ��k�, ��k�, and �n�k� for paired
fermions, unpaired fermions, and the spin n string, as well as
their hole densities �h�k�, �h�k�, and �n

h�k�, the BA equations
	Eq. �6�
 can be transformed into the forms18

��k� + �h�k� =
1


− a2 � ��k� − a1 � ��k� ,

��k� + �h�k� =
1

2
− a1 � ��k� − �

n=1

	

an � �n�k� ,

�n�
� + �n
h�
� = an � ��
� − �

n=1

	

Tnm � �n�
� . �9�

Here, � denotes the convolution integral �f �g����=�−	
	 f��

−���g����d�� and

am��� =
1

2

m�c�
�mc/2�2 + �2 . �10�

The function Tnm��� can be found in Takahashi’s book.18

The equilibrium states at finite temperature T are de-
scribed by the equilibrium quasiparticle and hole densities.
The partition function Z=tr�e−H/T� is defined as

Z = �
�,�h,�,�h,�n,�n

h

We−E��,�h,�,�h,�n,�n
h�/T, �11�

where the densities satisfy the BA equations 	Eq. �9�
 and
WªW�� ,�h ,� ,�h ,�n ,�n

h� is the number of states corre-
sponding to the given densities. By introducing the combi-
natorial entropy S=ln W, the grand partition function can be

presented as Z=e−G/T, where the Gibbs free energy G=E
−�N−HMz−TS. Here, � is the chemical potential. The en-
tropy and Gibbs free energy are given in terms of the BA
root distribution functions of particles and holes for bound
pairs and unpaired fermions, as well as spin degrees of free-
dom.

The energy per unit length is defined by

E = �
−	

	 �k2��k� + 2�k2 −
c2

4
���k��dk − MzH . �12�

Here, H is the external magnetic field and Mz= �N
−2M� /2L denotes the atomic magnetic momentum per unit
length �where the Bohr magneton �B and the Landé factor
are absorbed into the magnetic field H�.

The entropy per unit length is given by18

S = �
−	

	

�	��k� + �h�k�
ln	��k� + �h�k�
 − ��k�ln ��k�

− �h�k�ln �h�k�dk + �
−	

	

�	��k� + �h�k�
ln	��k� + �h�k�


− ��k�ln ��k� − �h�k�ln �h�k�dk

+ �
n=1

	 �
−	

	

�	�n��� + �n
h���
ln	�n��� + �n

h���


− �n���ln �n��� − �n
h���ln �n

h���d� . �13�

The equilibrium states are determined by the minimization
condition of the Gibbs free energy, which gives rise to a set
of coupled nonlinear integral equations—the TBA
equations.18 In terms of the dressed energies �b�k�
ªT ln	�h�k� /��k�
 and �u�k�ªT ln	�h�k�/��k�
, for paired
and unpaired fermions, these are

�b�k� = 2�k2 − � −
1

4
c2� + Ta2 � ln	1 + e−�b�k�/T


+ Ta1 � ln	1 + e−�u�k�/T


�u�k� = k2 − � −
1

2
H + Ta1 � ln	1 + e−�b�k�/T


− T�
n=1

	

an � ln	1 + �n
−1�k�


ln �n��� =
nH

T
+ an � ln	1 + e−�u���/T


+ �
n=1

	

Tmn � ln	1 + �n
−1���
 . �14�

The function �n���ª�n
h��� /�n��� is the ratio of the string

densities. The Gibbs free energy per unit length is given by
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G = −
T


�

−	

	

dk ln	1 + e−�b�k�/T
 −
T

2
�

−	

	

dk ln	1 + e−�u�k�/T
 .

�15�

The TBA equations provide a clear picture of band fillings
with respect to the field H and the chemical potential � at
arbitrary temperatures. However, it is a challenging problem
to obtain analytic results for the thermodynamics at low tem-
peratures from the TBA 	Eq. �14�
.

We focus on quantum phase transitions in the 1D strongly
attractive Fermi gas at T=0 by analyzing the dressed energy
equations

�b�
� = 2�
2 − � −
c2

4
� − �

−B

B

a2�
 − 
���b�
��d
�

− �
−Q

Q

a1�
 − k��u�k�dk ,

�u�k� = �k2 − � −
H

2
� − �

−B

B

a1�k − 
��b�
�d
 , �16�

which are obtained from the TBA equations 	Eq. �14�
 in the
limit T→0. The dressed energy �b�
��0 	�u�k��0
 for
�
��B ��k��Q� corresponds to the occupied states. The
positive part of �b��u� corresponds to the unoccupied states.
The integration boundaries B and Q characterize the Fermi
surfaces for bound pairs and unpaired fermions, respectively.
The Gibbs free energy per unit length at zero temperature is
given by

G��,H� =
1


�

−B

B

�b�
�d
 +
1

2
�

−Q

Q

�u�k�dk . �17�

The magnetization Mz=nP /2 per unit length is determined
by H, g1D, and n through the relations

− �G��,H�/�� = n, − �G��,H�/�H = Mz. �18�

IV. QUANTUM PHASE TRANSITIONS

The ground state is antiferromagnetic, i.e., the number of
the fermionic atoms with up-spin states and the number of
the fermionic atoms with down-spin states are equal. In this
case, the integral limit for the unpaired Fermi sea Q=0 and
��k�=0. For strong coupling, i.e., L�c��1, the dressed energy
equations 	Eq. �16�
 reduce to the form

�b�
� � 2�
2 − � −
c2

4
� −

1

2
�

−B

B 2�c��b�
��d
�

c2 + �
 - 
��2 .

�19�

For convenience of notation, we denote

pb = −
1


�

−B

B

�b�
�d


pu = −
1

2
�

−Q

Q

�u�k�dk �20�

as the pressure for bound pairs and unpaired fermions. Sub-
stituting Eq. �19� into pb, we have

pb�1 +
2B

�c�� � 4B�� −
1

3
B2 +

c2

4
� . �21�

Furthermore, from the Fermi points �b�±B�=0, we have

B2 � � +
c2

4
−

pb

2�c�
. �22�

From relation �18�, together with Eqs. �21� and �22�, we
obtain the pressure and the ground state energy per unit
length as

pb �
�2

2m

2n3

24
�1 +

3

2���� ,

E0 �
�2n3

2m
�−

�2

4
+

1

48
2�1 +

1

����� . �23�

For the strongly attractive 1D Fermi gas, the low-energy
excitations split into collective excitations carrying charge
and collective excitations carrying spin. This leads to the
phenomenon of spin-charge separation. The spin excitation is
gapped with a divergent spin velocity

vs =
n���
�2

�1 +
2

���� . �24�

Therefore, the spin sector cannot be described by a confor-
mal field theory. However, the charge sector is still critical31

with central charge C=1 and the charge velocity

vc =
vF

4
�1 +

1

���� �25�

for the fully paired ground state, where the bound pairs be-
have like hard-core bosons. In the above equation, vF
=�n /4m. The bound pairs can be broken by a strong
enough external field or thermal fluctuations. In the strong
interaction limit, it was demonstrated in a recent experiment
that the nature of the pairing is likely to be molecular and the
mismatched Fermi surfaces do not prevent pairing but indeed
quench the superfluidity.8 The state with polarization can be
viewed as an ideal mixture of bosonic pairs and fermionic
quasiparticles.

With polarization 0� P�1, from Eq. �16�, we obtain

pb � −
4B


�B2

3
− � −

c2

4
+

pb

2�c�
+

2pu

�c� � ,

pu � −
Q


�Q2

3
− � −

H

2
+

2pb

�c� � , �26�

From the Fermi points �b�B�=0 and �u�Q�=0, we have

2�B2 − � −
c2

4
� +

pb

�c�
+

4pu

�c�
� 0,
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Q2 − � −
H

2
+

2pb

�c�
� 0. �27�

It follows that

pb �
8

3
�� +

c2

4
−

pb

2�c�
−

2pu

�c� �
3/2

,

pu �
2

3
�� +

H

2
−

2pb

�c� �
3/2

. �28�

With the help of relation �18� and by lengthy iteration, we
find that the effective chemical potentials for pairs �b=�
+�b /2 and unpaired fermions �u=�+H /2 are given by

�b �
�2n22

2m
� �1 − P�2

16
�1 +

4�1 − P�
3���

+
4P

��� � +
4P3

3����
�29�

and

�u �
�2n22

2m
�P2�1 +

4�1 − P�
��� � +

�1 − P�3

12��� � . �30�

These results can give explicit chemical potentials for the
two different species:

�↑ = � + H/2, �↓ = � − H/2. �31�

In addition, we have the total chemical potential �=�E /�n
−HP /2. Here, the energy per unit length with polarization
	Eq. �8�
 follows from the relation E=n�−G�� ,H�
+nHP /2. Indeed, the energy obtained from the TBA formal-
ism is in agreement with the result 	Eq. �8�
 derived from the
BA.30 The integration boundaries

B �
n�1 − P�

4
�1 +

�1 − P�
2���

+
2P

��� � ,

Q � nP�1 +
2�1 − P�

��� � �32�

are the largest quasimomentum for bound pairs and unpaired
fermions.

Analysis of the dressed energy equations 	Eq. �16�
 shows
that the fully paired ground state with Mz=0 is stable when
the field H�Hc1, where

Hc1 �
�2n2

2m
��2

2
−

2

8
� . �33�

This critical field makes the excitation gapless. If the exter-
nal field H�Hc1, the pairing gap, defined by �= �Hc1

−H� /2, is completely diminished by the external field.
Slightly above the critical point Hc1, the system has a linear
field-dependent magnetization

Mz �
2�H − Hc1�

n2 �1 +
2

���� , �34�

with a finite susceptibility

� �
2

n2�1 +
2

���� . �35�

This behavior differs from the Pokrovsky-Talapov-type
phase transition occurring in a gapped spin liquid. We note
that this smooth phase transition in the attractive Fermi gas is
reminiscent of the transition from the Meissner phase to the
mixed phase in type II superconductors.13

On the other hand, if the external field H�Hc2, where

Hc2 �
�2n2

2m
��2

2
+ 22�1 −

4

3����� , �36�

all bound pairs are broken and the ground state becomes a
normal ferromagnetic state of fully polarized atoms. Slightly
below Hc2, the phase transition is determined by the linear
field-dependent relation

Mz �
1

2
n�1 −

�Hc2 − H�
4n22 �1 +

10

3����� , �37�

with a finite susceptibility

� �
1

8n2�1 +
10

3���� . �38�

A mixed phase occurs in the region Hc1�H�Hc2, with
coexistence of spin singlet bound pairs and unpaired fermi-
ons with ferromagnetic order. The external field-
magnetization relation

H

2
�

�2n2

2m
��2

4
+ 42�mz�2�1 +

4�1 − 2mz�
���

−
8mz

3����
−

2

16
�1 − 2mz�2�1 +

8mz

��� �� �39�

follows by Eqs. �29� and �30�. It indicates the energy transfer
relation among the kinetic energy variation �Ek=�u−�b, the
binding energy �b, and the Zeeman energy �BH:

�Ek + �b = �BH , �40�

which qualitatively agrees with the relation identified in
experiment.23 In the above equation, we take the Bohr mag-
neton �B=1 and mz=Mz /n.

Figure 2�a� shows the magnetization and the susceptibility
for �c�=10 and n=0.5,1 ,1.5,2. The magnetization gradually
increases from Mz=0 to n /2 as the field increases from Hc1
to Hc2. It is important to note that the points of intersection at
H=�b indicate where the Fermi surface of unpaired fermions
exceeds the one for the bound pairs. This point separates the
mismatched pairing phase into different breached pairing
phases.6,9 The susceptibility shows discontinuities at the
critical points, with �=0 for H�Hc1 and H�Hc2. However,
� is finite and quickly decreases in the vicinity of Hc1. For
larger densities 	Fig. 2�c� illustrates the case n=2
, � slowly
increases as H→Hc2. We note that the coexistence of pairing
and magnetization in the 1D attractive Fermi gas is similar to
the Shubnikov phase of superconductivity and magnetization
in type II superconductors.13

Figure 3 shows the phase diagram in the n-H plane for the
particular value �c�=10. As n→0, the two critical fields ap-

PHASE TRANSITIONS AND PAIRING SIGNATURE IN… PHYSICAL REVIEW B 76, 085120 �2007�

085120-5



proach the binding energy �b. The two critical fields have
opposite monotonicity: Hc1 decreases with increasing n
whereas Hc2 increases with n. For the 1D Fermi gas in a
harmonic trapping potential,21,22 the density is position de-
pendent and decreases away from the trapping center. Thus,
for sufficiently large center density, the system has subtle
segments; the mixed phase lies in the center and the fully
paired phase �or the fully unpaired phase� sits in the two
outer wings for H��b �or H��b�. Nevertheless, for suffi-
ciently low center density, the cloud is either a fully paired
phase or a fully unpaired phase for H��b or H��b, respec-
tively.

For the 1D Fermi gas, the local pair correlation is defined
by

gp
�1� = ��↓

†�0��↑
†�0��↑�0��↓�0�� �

1

2

dE

dc
. �41�

For weakly attractive interaction,

gp
�1� � n2�1 − P2�/4, �42�

indicating a two-component free Fermi gas phase. For
strongly attractive interaction, the local pair correlation is
given by

gp
�1�

n2 �
�1 − P�

4
���� +

2�1 − P�2�1 + 3P�
24�2 +

82P3

3�2 � .

�43�

This has maximum and minimum values corresponding to
the fully paired phase for H�Hc1 and the fully unpaired
phase for H�Hc2, respectively. Depairing weakens the pair
correlation in the region Hc1�H�Hc2. The phase transitions
in the vicinities of the critical points are of second order.

V. EXCLUSION STATISTICS

Strong thermal fluctuations can destroy the magnetically
ordered phases, delineated by the two critical fields, above a
critical temperature Tc, which, in principle, can be also cal-
culated from the TBA equations. On the other hand, at tem-
peratures much lower than the degeneracy temperature Td

ª

�2

2mn2��b, the bound pairs are stable against weak thermal
fluctuations. However, the individual pair wave functions do
not overlap coherently, i.e., the existence of bound pairs does
not lead to long range order at finite temperatures. This can
be seen from the finite temperature TBA equations 	Eq. �14�

in which the unpaired band is empty due to a large negative
chemical potential. This behavior is similar to that of three-
dimensional �3D� attractive fermions.32 In 1D, the dynamical
interaction and the statistical interaction in the pairing scat-
tering process are inextricably related.33–36 This means that
one bound pair excitation may cause a fractional number of
holes below the Fermi surface due to the collective signature.
This is the key point in understanding GES for 1D interact-
ing many-body systems. We shall show that the bound pairs
can be viewed as ideal particles obeying GES. GES has re-
cently been applied to the 3D unitary Fermi gas.37

In the absence of the magnetic field and at low tempera-
tures, the unpaired dressed energy is positive due to a large
negative chemical potential. It follows that the BA and TBA
equations can be written as

��k� + �h�k� =
1


− �

−	

	

a2�k − 
���
�d
 , �44�

�b�k� = 2�k2 − � −
1

4
c2� + Ta2 � ln	1 + e−��k�/KBT
 . �45�

After neglecting exponentially small terms in Eq. �15�, the
pressure for the bound pairs is given by

pb �
2

�22�2

2m

�
0

	 ��d�

1 + e	�−2A�T�
/KBT , �46�

with the function A�T�ª�2B2 / �2m�= ��+ 1
4c2− pb / �2c��. Fur-

thermore, using the Sommerfeld expansion and iterating the

FIG. 2. �Color online� Magnetization Mz and susceptibility � vs
the external field H in the units 2m=�=1, according to Eq. �39�.

FIG. 3. �Color online� Phase diagram for homogeneous systems
with �c � =10 according to Eqs. �33�, �36�, and �39�.
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pressure pb with Eq. �45�, we obtain the cut-off energy A���
in the form

A��� � A0�1 +
16�2

32 �1 −
2

���� +
1024�4

94 �1 −
4

����� ,

�47�

where

A0 =
�2

2m

n22

16
�1 +

1

���� . �48�

Here, �=KBT /Td is the degenerate temperature. The pair dis-
tribution function n���ª���� is given by

n��� =
1

��1 − e	�−2A�k�
/KBT
, �49�

where �=1+1/ �2��.
The chemical potential follows as

� � �0�1 +
16�2

32 �1 −
4

3���� +
1024�4

94 �1 −
56

15����� −
1

2
�B.

�50�

Here,

�0 �
�2

2m

n22

16
�1 +

4

3���� , �51�

which is consistent with Eq. �29�. The total energy per unit
length and the free energy per unit length in the strong cou-
pling regime are

E � E0�1 +
16�2

2 �1 −
2

���� +
1024�4

54 �1 −
4

����� −
1

2
n�b,

F � E0�1 −
16�2

2 �1 −
2

���� −
1024�4

154 �1 −
4

����� −
1

2
n�b,

�52�

respectively. Here,

E0 =
�2n3

2m

2

48
�1 +

1

���� �53�

is consistent with Eq. �23�, obtained from Eq. �16�.
We see that in the strongly attractive regime and in the

absence of the magnetic field, the bound pairs behave like
hard-core bosons at low temperatures and have massless ex-
citations, i.e.,

F�T� = F�0� −
C�KBT�2

6�vc
+ O�T4� . �54�

Here, the central charge C=1 and vc is given by Eq. �25�.
The specific heat is given by

cv =
nKB�

3�1 +
1

����
�1 +

128�2

52 �1 −
2

����� . �55�

On the other hand, the statistical signature of the fully
paired state can be described by GES.33,35 In this formalism,
the pair distribution function is given by

n��� � 	�� + w���
−1, �56�

where w��� satisfies the GES relation

w����	1 + w���
1−� = e	�−2A�T�
/KBT. �57�

Here, � denotes the energy of pairs. For the strongly attrac-
tive Fermi gas, we find the GES parameter

� � 1 + 1/�2�� . �58�

Now, following Isakov et al.,38 at low temperatures, i.e.,
for KBT�Td, we find the cut-off energy

A�T� � A0�1 +
16�2

32�3 + O��4�� ,

which agrees with Eq. �47� to leading order and next leading
order in the strong coupling regime �for higher order terms,
the reader is referred to Ref. 36�. Figure 4 shows the close
agreement between the TBA distribution function 	Eq. �49�

and the GES’s most probable distribution of fermion pairs
	Eq. �56�
 for different values of interacting strength at low
temperatures. We see clearly that the dynamical interaction �
continuously varies the GES, with the most probable distri-
bution of fermion pairs approaching that of hard-core
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FIG. 4. �Color online� Comparison between the most probable
distribution profiles n��� for the values �=−10 and −20 at different
values of the degeneracy temperature �=KBT /Td. At zero tempera-
ture, n���=1/� leads to a Fermi surface at �=2A0. Fermi-Dirac
statistics with GES parameter �=1 appear for �→	. Attractive
interaction thus results in a more exclusive state than for pure
Fermi-Dirac statistics. The solid and dashed lines are obtained from
the TBA distribution function 	Eq. �49�
. The symbols show the
most probable distribution evaluated from the GES result 	Eq.
�56�
. The results from both approaches are seen to coincide well.
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bosonic molecules with an effective statistics parameter �
=1 as the interaction increases. In this sense, the dynamical
attractive interaction makes the fermions more exclusive. In
the GES formalism, the total energy per unit length and the
free energy per unit length follow as

E � E0�1 +
16�2

2�3 + O��4�� −
1

2
n�b,

F � E0�1 −
16�2

2�3 + O��4�� −
1

2
n�b, �59�

which again agree well with the TBA results 	Eq. �52�
 for
strong coupling, see Fig. 5.

VI. CONCLUSION

In conclusion, we have studied pairing and quantum
phase transitions in the strongly attractive 1D Fermi gas with
an external magneticlike field. Analytic results have been
obtained for the critical fields Hc1 and Hc2, magnetization,
critical behavior, and local pair correlation. The pairing in-
duced by an interior gap in the system differs from conven-
tional BCS pairing and gapped spin liquids. The smooth pair
breaking phase transitions seen in the attractive Fermi gas
are reminiscent of the superconductivity breaking phase tran-
sitions in type II superconductors.13 At low temperatures, we
predict that the hard-core bound pairs of fermionic atoms
obey GES. The thermodynamics of the hard-core pairs obey
universal temperature-dependent scaling.

We emphasize here that in the presence of an external
magnetic field, pair breaking in the 1D two-component
strongly attractive Fermi gas sheds light in understanding the
pairing signature of the 3D strongly interacting Fermi gas of
ultracold atoms in which superfluid and normal phases can
coexist. Although there is no long range order in 1D quantum
many-body physics, the mismatched Fermi surfaces do not
prevent pairing. This pairing signature has also been ob-
served in the 3D two-component atomic gas with high spin
population imbalances.8 In addition, for the 1D Fermi gas,
the magnetic field triggers spin imbalances when the external
field is greater than the first critical field Hc1 	Eq. �33�
 and
less than the second critical field Hc2 	Eq. �36�
. The energy
transfer relation 	Eq. �40�
 found for this model is also con-
sistent with experimental observations in the 1D Fermi gas.23

The phase diagram presented in Fig. 3 clearly shows the
phase separation and the pairing signature with changing
magnetic field. It may be possible to experimentally test our
theoretical predictions for the quantum phase transitions and
critical fields in the 1D two-component strongly interacting
Fermi gas via experimental advances in trapping ultracold
atoms.
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