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We show how the electron-gas methods of Luttinger, Ward, and Nozières can be applied to an SU�N�,
multichannel generalization of the infinite-U Anderson impurity model within a Schwinger boson treatment.
Working to all orders in a 1/N expansion, we show how the Friedel-Langreth relationship and the Yamada-
Yosida-Yoshimori and the Shiba-Korringa relations can be derived under the assumption that the spinon and
holon fields are gapped. One of the remarkable features of this treatment is that the Landau amplitudes depend
on the exchange of low-energy virtual spinons and holons. We end the paper with a discussion on the extension
of our approach to the lattice, where the spinon-holon gap is expected to close at a quantum critical point.
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I. INTRODUCTION

The standard model of interacting electronic systems is
based on the theoretical framework established by Landau1

in the 1950s, whereby the properties of interacting fluids of
fermions are linked to noninteracting fermions by adiabati-
cally turning on the interactions. This is the basis of the
Landau Fermi liquid, and it leads to the concept of quasipar-
ticles. It also provides the formal basis for the diagrammatic
description of interacting Fermi fluids. In the early 1960s,
Luttinger and Ward2 showed how many aspects of the Lan-
dau Fermi liquid theory—such as the relationship between
fermion density and Fermi-surface volume, the relationship
between the linear specific heat capacity and the quasiparti-
cle density of states—can be deduced from first-principles
resummations of diagrammatic perturbation theory to infinite
order.

Many new electronic materials discovered over the past
two decades, such as the high-temperature superconductors,
colossal magnetoresistance, and heavy electron materials, do
not fit so naturally into the Landau scheme. In these materi-
als, the interactions between the fermions become so large
that they project out large tracts of the many-body Hilbert
space. For example, in many narrow-band transition metal or
f-electron materials, the charge fluctuations of the localized
orbitals are restricted to certain valence states, and in local
moment systems, the electrons in a localized moment are
restricted to states of fixed definite occupancy. In these sys-
tems, the validity of the adiabatic approach is increasingly in
question, and a more appropriate starting point is the one
where the Coulomb interaction has been taken to infinity
from the outset, explicitly removing certain states from the
Hilbert space. For example, in the infinite-U Anderson
model, states of double occupancy are excluded, whereas in
the Kondo model, all charge fluctuations of the local moment
are excluded, as illustrated in Fig. 1.

When cast as a field theory, infinite-U models become
gauge theories in which the Hubbard operators that create
and destroy the highly correlated electrons are written as
composite products of “slave operators.” In such an ap-
proach, the constraints on charge fluctuations become con-
served local quantities associated with local gauge invari-
ances and the basic fields entering into the Hamiltonian are

“fractionalized” fields, which carry either spin or charge but
not both. The gauge theory approach to strongly correlated
electron systems poses a number of important technical and
qualitative challenges. In particular, how does the Landau
Fermi liquid emerge within a gauge theory of unbroken sym-
metry, and what happens to the spectrum of gauge particle
excitations? This question assumes an increased importance
in the context of recent speculations that fractional particles
may become free at a quantum critical point.3–6

The past ten years have seen considerable progress in
methods that combine the Luttinger-Ward approach with a
new generation of large N expansions which use Schwinger
bosons, rather than Abrikosov pseudofermions to represent
the localized moments.7–11 We now briefly review some of
these recent developments. Cox and Ruckenstein7 were the
first to apply a large N approach to a multichannel Kondo
single impurity Kondo model using a fermionic spin repre-
sentation. Parcollet and Georges8 developed the original for-
malism for the Schwinger boson large N approach to this
model, employing a multichannel Kondo model, focusing
their interest mainly on the overscreened case,9 built upon
this earlier work to develop a Luttinger-Ward approach,
showing how it can be used to derive a Friedel sum rule for
the single impurity model and a Luttinger sum rule for the
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FIG. 1. �Color online� Schematic diagram illustrating the evolu-
tion of the impurity f-spectral function with the strength of the
repulsive interaction U. Shaded areas denote the regions where the
impurity f-spectral function is large. As U is increased, high-energy
regions of the Hilbert space are projected out of the low-energy
model, giving rise to the infinite-U Anderson model and Kondo
model as effective low-energy theories. As long as adiabaticity is
preserved, the spectral weight at the Fermi surface is preserved, no
matter how large U becomes.
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lattice. Assuming that the Fermi liquid state could be treated
in a 1/N expansion. Rech et al.10 showed how the fully
screened Kondo impurity model could indeed be treated in
the large N limit using the Schwinger boson method, dem-
onstrating the emergence of Fermi liquid behavior. Lebanon
et al.11 extended these methods to the infinite-U Anderson
model, showing how a Baym-Kadanoff approximation
scheme can be developed from the 1/N expansion of the
Luttinger-Ward functional using the leading-order term to
develop a conserving approximation at finite N.

One of the key insights emerging from the large N solu-
tions to the fully screened Kondo and Anderson impurity
models is that the development of a Fermi liquid is accom-
panied by the formation of a gap �g of order of the Kondo
temperature TK in the spectrum of the fractional particles.10,11

In this paper, we explore the general consequences of this
observation for the infinite-U Anderson impurity model. In
particular, we show that the assumption of a gap in the frac-
tionalized particle spectrum enables us to extend the
Luttinger-Ward approach beyond the leading orders consid-
ered so far to all orders in the 1/N expansion. In our ap-
proach, the expansion in powers of 1 /N plays a completely
analogous role to the expansion in powers of the interaction.
The Luttinger-Ward approach was first applied to the finite-U
Anderson model by Yamada and Yosida,12 Shiba,14 and
Yoshimori,13 who used conservation laws to develop a set of
conserving identities that apply to all orders in the strength
of the interaction U. Here, taking advantage of these new
insights, we show how a parallel set of results can be ob-
tained for the infinite-U Anderson model.

Many structural aspects of our work, including the inter-
play between virtual fractional excitations and the composite
heavy quasiparticles, may enjoy a wider application to the
Anderson and Kondo lattices. These are points that we return
to in a discussion at the end of the paper.

II. SUMMARY OF KEY ASPECTS OF THE PAPER

The starting point for our work is the infinite-U Anderson
model, which we formulate by representing the Hubbard op-
erators as a product of slave fermion �“holon”� and a
Schwinger boson �“spinon”�,15,16 X�0=b�

†�, where b�
† creates

a spinon with spin component � and �† creates a charged
holon. Since there is no natural perturbative expansion in
terms of the parameters of the original model, we consider a
family of infinite-U impurity Anderson models with SU�N�
spin symmetry, employing a 1/N expansion around the large
N limit. There are a number of special tricks that need to be
carried out in order to realize such a large N expansion:

�a� The spin S of the moment, described by the number of
Schwinger bosons nb=2S, must be allowed to grow with N,
so that 2S /N remains finite.

�b� More surprisingly, the number of electron-scattering
channels K must also grow with N,8 in order to screen the
large moment S. The special case 2S=K describes the fully
screened model.10

The introduction of K channels requires that we general-
ize the Hubbard operators as follows:17

X�0 → X�� = b�
†��, �1�

where �� �1,K� is the channel index. X�� creates a localized
electron with spin component � and channel index �.

We formulate these features into an infinite-U Anderson
impurity model11 as follows:

H = �
k���

�k�ck���
† ck��� + HI. �2�

Here, ck���
† creates a conduction electron with momentum k�,

channel index �� �1,K�, and spin index �� �1,N�. The term

HI =
V
�N

�
k���

�ck���
†
��

†b� + H.c.� + �0�
�

b�
†b�

describes the interaction of the conduction electrons with a
magnetic ion located at the origin. The �N denominator in
the hybridization ensures a well-defined large N limit. The
energy of a singly occupied impurity �0 is taken to be nega-
tive. The conserved operator Q=��b�

†b�+����
†�� general-

izes the no-double occupancy constraint of the infinite-U
Anderson model by restricting the “valence” nb�Q. Q is
also the maximum size S=Q /2 of the local moment that can
develop at each site. The condition Q=K is required for per-
fect screening of the local moment.

The spinon and holon operators carry the conserved
charge Q, and in order to discuss these fields, we need to
consider the enlarged Fock space of general Q�K. The par-
tition function for the general problem is given by

ZQ = Tr�PQe−�H� ,

where the projection operator PQ imposes the constraint Q̂
=Q. In doing so, we are really considering a whole family of
Anderson and/or Kondo models which includes under-
screened models, where Q	K is larger than the number of
screening channels, and the overscreened models, where the
number of channels K	Q exceeds the number of spinons
per site.

We shall make the key assumption that the fully screened
state where Q=K develops an additional stability with re-
spect to the over- and underscreened states where Q�K.
This assumption is motivated by the discovery of a spinon-
holon gap in the large N Schwinger boson solution of the one
and two impurity Kondo models10 and the leading Baym-
Kadanoff approximation to the infinite-U Anderson model.11

The structure of these solutions leads us to believe that the
gap in the fractional particle excitation spectrum is robust in
its extension to finite N. The emergence of a gap in the
infinite N limit provides a vital infrared cuttoff to the fluc-
tuations of the fractional excitations. This cutoff plays a dual
role: it stabilizes a Fermi liquid with a large Fermi surface
while, at the same time, providing a vital low-energy cutoff
to the fluctuations of the fractional holon and spinon fields
removing them from the low-energy Hilbert space. The pres-
ence of the gap guarantees that the 1/N expansion contains
no nonperturbative infrared divergences, and this, in turn,
guarantees its survival over a finite range of 1/N values.

Suppose E0 is the energy of the ground state with Q=K
and E± be the ground-state energies of the state where Q
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=K±1 is modified by one unit, then the “commensuration
gap” associated with complete screening of the moment at
site j0 is

�g =
1

2
�E+ + E− − 2E0� . �3�

This gap is manifested as a gap in the spectral functions of
the spinon and the holon, as illustrated in Fig 2. With a gap,
we can calculate the low-temperature properties of the model
in the grand-canonical ensemble where we remove the con-
straint and associate a chemical potential 
 with the con-
served charge Q,

ZG�
� � e−�F�
� = Tr�e−��H−
�Q−K��� . �4�

Although the chemical potential 
 only imposes Q̂=Q on the
average, the existence of commensuration gap guarantees
that there is a finite range of 
,


� �E0 − E−,E+ − E0� ,

for which the constraint is imposed with exponential accu-
racy once T��.

Our approach makes use of Coleman-Paul-Rech generali-
zation of the Luttinger-Ward free energy functional to the
gauge theory of interacting bosons and fermions,10,18,19

which can be compactly written as

F = T Str�ln�− G−1� + �G� + Y�G� , �5�

where Str�A�=Tr�AB�−Tr�AF� denotes the supertrace of a
matrix containing both bosonic �B� and fermionic �F� com-
ponents �where the underline notation is used to denote a
sum over internal frequencies and a trace over the internal
quantum numbers of the matrix�. G= �G0

−1−��−1 is the matrix
describing the fully dressed Green’s function of all elemen-
tary particles and fields entering the Lagrangian, including
the slave particles, where � is the self-energy matrix and G0
the bare propagator of the fields. Diagrammatically, the
propagators for the Anderson model are denoted as follows:

In the above expressions, we display two alternative nota-
tions for the propagators. In the second column, we adopt a
traditional notation using continuous, wavy, and dashed lines
to represent the conduction, spinon, and holon propagators,
respectively. In the third column, we display the alternative
“railway track” notation that we use in cases where it is
necessary to clearly show the flow of spin and charge in the
respective propagators. At the interaction vertices

the spin and charge of the electron fields divide up amongst
the holon and spinon fields. In the Feynman diagrams, each
vertex is associated with a factor iV /�N. The generating
functional Y�G� may be written as the sum of all closed-loop
two-particle irreducible skeleton Feynman diagrams. These
can be ordered in a 1/N expansion as follows:

�6�

Each blue loop over spin gives a factor of N, whereas each
red loop over charge gives a factor of K=kN.

The functional Y�G� is the generating functional for the
self-energies of the fields, so that variation of Y�G� with re-
spect to the full Green’s functions G of the conduction,
spinon, and holon fields, �=−���Y /�G, self-consistently
determines the self-energies � of these fields,9,19 where �
= +1 �−1� for bosons �fermions�. We refer to Y�G� as the
Luttinger-Ward functional. Approximations to this functional
are the basis of Kadanoff-Baym conserving many-body
approaches.20

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
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FIG. 2. The spectral gap in the holon and spinon spectra. Cre-
ation of a holon or spinon increases Q→K+1, whereas the destruc-
tion of a holon or spinon decreases Q→K−1.
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The key difference between our approach and the classic
Luttinger-Ward approach to the interacting electron gas is the
appearance of the holon and spinon fields. In the Luttinger-
Ward approach, the Y�G� is a generating functional for the
self-energies of the fields. The second derivative of the gen-
erating functional with respect to the Green’s functions gen-
erates the off-shell scattering vertex function between the
fields �=�2�2Y�G� /�G2. Nozières and Luttinger21 demon-
strated that the multiple forward scattering generated by this
vertex gives rise to the on-shell Fermi liquid amplitudes be-
tween the electron quasiparticles. The Landau amplitudes are
determined as solutions of the Dyson equation represented
by the following Feynman diagrams:

= +
Γ ΓΛ Λ

This feature is preserved in our approach, but the off-shell
scattering vertex also involves virtual holon or spinon pairs,
as shown below:

+=

+ +

Λ

Λ Γ

Γ

Λ Γ

ΓΛ

In this way, scattering off the virtual fractionalized excita-
tions determines the scattering amplitudes of low-energy
Fermi liquid. Remarkably, despite these effects, all of the key
conservation properties of the Landau Fermi liquid are pre-
served, as long as the fractionalized excitations remain
gapped.

In the context of impurity models, the Landau Fermi liq-
uid becomes Nozières’ “local” Fermi liquid,22,23 in which the
energies of each electronic quasiparticles are expressed in
terms of the elastic scattering phase shift ���, where � is the
channel index and � the spin index. If �� is the spacing of
states in the continuum, then the energy of each electron in
the continuum is shifted down by an amount −� ����

�
���. The

Fermi liquid theory is then defined in terms of the depen-
dence of the phase shifts on the quasiparticle occupancies,

�����,�nk��	� =
�

N
+ ��� + �

k�,��,��

���,�����nk����, �7�

where the impurity Landau parameter

���,���� = 
�,�;������̂��,�;���� �8�

is the expectation value of the interaction energy between
quasiparticles of flavor and/or spin �� ,�� and ��� ,���.

By comparing the free energy of the infinite-U Anderson
model obtained in the Luttinger-Ward approach, we are able
to diagrammatically identify each of the terms in the above
expansion. In particular, the conduction electron phase shift
is given by

������ = Im ln„1 − i���c�� − i0+�… ,

where �c��� is the conduction electron self-energy, � the
density of conduction electron states at the Fermi surface,
and 0+ is a small positive infinitesimal. We are also able to
identify the Landau parameter with the on-shell forward scat-
tering amplitude between quasiparticles

���,���� = ���,������ = 0,�� = 0� .

As in the finite-U Anderson model, each of these quantities
enjoys expression entirely in terms of conduction electron
states.

The ability to link the quasiparticle physics with the
gauge theory diagrammatics enables us to derive the key
conservation relationships for the infinite-U Anderson impu-
rity model, working to all orders in the 1/N expansion.
These relationships survive in the leading Kadanoff-Baym11

approximation that defines the large N limit, and we can
illustrate them explicitly in practical calculations. The key
conservation laws that appear from this approach are the
Friedel sum rule,24–26

�c =
�

N

K − n�
K

+ O TK

ND
� , �9�

the Langreth relation,26

Im t��� − i0+���=0 = sin2 �c/�� , �10�

where � is the density of states of the electron fluid, the
Yamada-Yosida-Yoshimori relationship12,13 between the spin,
charge, and channel susceptibilities and the linear specific
heat coefficient,

NK
�

�0 = K
N2 − 1

N + K

�s

�s
0 + N

K2 − 1

K + N

� f

� f
0 +
�c

�c
0 , �11�

and the Korringa-Shiba relationship14 between the dynamical
spin susceptibility and the impurity susceptibility,
������ /���=0= �N� /K��� /N�2.

The structure of the paper is as follows. In Sec. III, we set
up various formal preliminaries. In Sec. IV, we recapitulate
the relationship between conservation laws and Ward identi-
ties, using them to rederive a general set of Friedel sum
rules. In Sec. V, we show how these can be used to derive the
Langreth26 relation for the scattering t matrix and a general
set of Friedel sum rules. In Sec. VI, we introduce the off-
shell interaction vertices amongst the electrons and the frac-
tional particles. Using the Friedel relations, we express the
charge, spin, and flavor susceptibilities in terms of these ver-
tices. In Sec. VII, we use our gap hypothesis to derive an
expression for the low-temperature free energy and use this
to relate the specific heat with the spin, charge, and flavor
susceptibilities. In Sec. VIII, we identify the Nozières inter-
action parameters22,23 with the on-shell interaction vertices of
the gapless electrons and use our results to derive an identity
between the linear specific heat coefficient and a linear
combination of the spin, charge, and flavor susceptibilities.
Our result here is a generalization of the
Yamada-Yosida-Yoshimori12,13 identities for the finite-U
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Anderson model. In Sec. IX, we derive the Korringa-Shiba
relationship14 between the uniform susceptibilities and the
power spectrum at low energies. Finally, in Sec. X, we dis-
cuss the extension of these ideas to a lattice environment.

III. PRELIMINARIES

Our starting point is the infinite-U Anderson model,

H = �
k���

�k�ck���
† ck��� +

V
�N

�
k���

�ck���
†
��

†b� + H.c.� + �0�
�

b�
†b�

− 
�Q − 2S� , �12�

where the spin components � are taken to run from −j to +j,
where N=2j+1, and the flavor components � are taken to
run from −f to +f , where K=2f +1. The bare conduction
electron, spinon, and holon Green’s functions are given by

Gck�,k�
�0� �z� =

1

z − �k�
�k�,k� ,

Gb
�0��z� =

1

z − ��0 − 
�
,

G��0��z� =
1

z + 

, �13�

where we use the symbol z to denote the analytic extension
of the Matsubara frequencies into the complex plane. In an
impurity model, it is generally convenient to trace the con-
duction electron propagator over its momentum indices to
obtain the local propagator. The bare local conduction propa-
gator is given by

Gc
�0��z� = �

k�

1

z − �k�
� � i�� for z = � ± i0+, �14�

where the expression on the right is the large bandwidth limit
of the local propagator, choosing the negative sign for the
retarded propagator �z above the real axis� and the positive
sign for the advanced propagator �z below the real axis�.

When interactions are turned on, each of the fields ac-
quires a self-energy correction in the full propagators,

Gc�z� = ��Gc
�0��z��−1 − �c�z�	−1,

Gb�z� = �z − ��0 − 
� − �b�z��−1,

G��z� = �z + 
 − ���z��−1. �15�

Each of these self-energies is obtained by differentiating the
Luttinger-Ward functional, shown in Eq. �6� with respect to
the Green’s functions,

Σb(ω) = −β
δY

δGb(ω)
=

+ ....+

X

X
=

2 3

ν

O(K /N )

α
ν

O(K/N)

ν + +.... ,

Σχ(ω) = +β
δY

δGχ(ω)
=

+ ....

XX

+
=

2

α

O(1)

να α

O(K/N )

+ +....
,

Σc(ω) = +β
δY

δGc(ω)
=

+ ....

X
X

+
=

3O(1/N)

ν

O(K/N ) �16�

where the cross indicates the line which is eliminated by the
functional differential. Although our discussion today will
focus on keeping all orders in this expansion, it is interesting
to briefly reflect on the leading terms in the diagrammatic
expansion. The leading-order contributions to the self-
energies are derived from the virtual separation of the elec-
tron into spinon-holon pairs. These terms are already suffi-
cient to develop a conserving approximation with all the key

features of the infinite order resummation. The second-order
terms in this expansion contain the subleading effects of
electron-electron scattering.

IV. FRIEDEL SUM RULES AND LUTTINGER-WARD
IDENTITIES

The Fermi liquid description of this model centers around
the relationship between the conduction electron phase shift
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and the thermodynamics and the charge, spin, and flavor sus-
ceptibilities. We begin with a derivation of the Friedel sum
rule. This part of the paper closely follows earlier work on
the Kondo model.

In addition to the local conserved charge Q=nb+n�, there
are three globally conserved physical quantities, charge �QC�,
�Table I� magnetization �M =QS�, and flavor �F=QF�, asso-
ciated with this model, which we write as

Q̂C = �
k���

ck���
† ck��� − �

�

��
†��,

Q̂S = �
k���

�̃ck���
† ck��� + �

�

�̃b�
†b� = M̂ ,

Q̂F = �
k���

�̃ck���
† ck��� − �

�

�̃��
†��, �17�

respectively, where �̃=sgn��� is 1 for “up spins” and −1 for
“down spins,” and �̃=sgn��� is 1 for flavors �	0 and −1 for
flavor index ��0. Each of these conserved quantities is as-
sociated with a corresponding external field, which we intro-
duce into the Hamiltonian by writing

H = H − ��Q̂C − BM̂ − BFQ̂F,

=H − �
A=C,S,F

BAQ̂A, �18�

where we introduce the notation �BC ,BS ,BF����� ,B ,BF�.
We shall write each of these conserved quantities using the
shorthand

Q̂A = �†q̂A� , �19�

where �†��ck�
† ,b† ,�†� denotes the complete spinor of elec-

tron, spinon, and holon fields. We can write the expectation
value of these operators in terms of the triplet of electron,
spinon, and holon Green’s functions,

G = �Gck�k�,Gb,G�	 , �20�

as


Q̂A� = Tr��†q̂A��	 = − T Str�q̂AG� , �21�

where � is the thermal density matrix and the supertrace
denotes a trace over each particle species �with a minus sign

for fermions� and their quantum numbers, and the underline
beneath the supertrace denotes a summation over Matsubara
frequencies,

Str�q̂AG� = �
i�n

Str�q̂AG�i�n��

= �
i�n

Tr�qAGB�i�n�� − �
i�n

Tr�qAGF�i�n�� .

An alternative, and convenient way to formulate the con-
served quantities at absolute zero is to replace qA by its more
general form, qA→qA����, where

���� =
�G0

−1���
��

, �22�

so that


Q̂A� = − T Str� �q̂A�G� . �23�

This is a particularly useful device in the single impurity
model where we work with the local conduction electron
propagator. In this case, the charges do not couple trivially in
the local propagator and we need to introduce frequency de-
pendent vertices with the external fields. To see this, note
that the bare local propagator becomes

Gc
0�z,B� = �

k
��z − �k� + qc

ABA�−1

= Gc
0�z� − �Gc

0�z��2�BAqc
A��z�� + O�B2� ,

where

�c�z� =
��Gc

0�z��−1

�z
=

�
k�
 1

z − �k
�2

�Gc
0�z��2 �24�

is identified as the frequency dependent vertex function. The
conduction electron vertex �c��� vanishes in the wideband
limit �c→0. This is the basis of the famous “Anderson-
Clogston” compensation theorem,27,28 according to which the
conduction band polarization of charge, spin, or flavor de-
grees of freedom in the ground state is


Qc
A� = Tr�qc

A�Gc� = O�TK/D� ,

where D is the electron bandwidth and TK is the Kondo
temperature.

Ward identities are properties of the zero temperature self-
energies, Green’s functions, and scattering vertices that result
from the conservation laws. A key step in making the transi-
tion from finite to zero temperature is the replacement of
Matsubara sums at finite temperature by continuous integrals
along the imaginary axis at low temperature,

T�
�n

A�i�n� =
T→0�

−�

� d�

2�
A�i�� � �

−i�

i� d�

2�i
A��� . �25�

Here, �n represents the Bose-Matsubara frequencies �n
=2n�kBT along bosonic propagator lines, or the fermion
Matsubara frequencies �n= �2n+1��kBT along fermion
lines. Our ability to make this replacement presumes the ex-

TABLE I. The diagonal components of the conserved charge,
spin, and flavor operators qC, qS, and qF, resolved into their con-
duction �c�, spinon �b�, and holon ��� components.

Particle

Conserved quantity

qC qS qF

c 1 �̃ �̃

b 0 �̃ 0

� −1 0 −�̃
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istence of well-defined scales associated with the excitation
spectrum. This is a situation that may not be satisfied at a
quantum critical point, or an overscreened Kondo model
where the spinon and holon propagators may exhibit E /T
scaling, with temperature as the relevant excitation scale.
However, away from a quantum critical point, the conduc-
tion electron lines are characterized by a well-defined Fermi
energy and the existence of a well-defined gap in the spinon
and holon spectrum guarantees that the continuous version of
the Matsubara sums is valid for these lines too. Provided that
the replacement �Eq. �25�� is allowed, the zero temperature
conserved quantities may be written in the form


Q̂A� = − �
−i�

i� d�

2�i
Str�q̂A����G���	 . �26�

The starting point for the development of Ward identities
is the Luttinger-Ward functional. The conserved charges are
conserved at each vertex in the diagrams contributing to the
generating function Y. For the quantity QA, the charge q

A is
associated with each propagator line G inside the functional.
When we shift the frequency of each propagator by a con-
stant differential times the corresponding charge,

G��� → G�� + ��
A�, ��

A = ��q
A, �27�

the generating functional is unchanged. Since the derivative
of the generating functional with respect to the Green’s func-
tions is the self-energy, this leads to the Ward identity

�Y�G�
��A = �

−i�

i� d�

2�i
Str��dG

d�
q̂A� = 0, �28�

and integration by parts then yields

�
−i�

i� d�

2�i
Str�q̂Ad�

d�
G� = 0. �29�

Equations �26� and �29� sum up to an integral over a full
differential; rotating the integration contour around the nega-
tive real axis, we get the Friedel sum rules


Q̂A� = −
1

�
Im Str�q̂A ln�− G−1�− i0+��	 . �30�

In impurity problems, we are interested in change in these
quantities that results from coupling the impurity to its envi-
ronment, which is given by

�QA = 
Q̂A� − 
Q̂A�0

= � −
1

�
Im Str�q̂A ln�G−1/G0

−1�	�
�=−i0+

= �
−

1

�
Im Str�q̂A ln�1 − G0��������	�

�=−i0+
. �31�

The quantities on the right-hand side are the “phase shifts” of
the electrons, spinons, and holons. If we identify

� = �Im�ln�1 − G0��������	��=−i0+ � = c,b,�� ,

�32�

then we can write

�QA = � qc��
A ���

c

�
+ � q��

A ��
�

�
− � qb�

A ���
b

�
.

At first sight, this is very different from the expression we
would expect for a Fermi liquid, where there are no holon or
spinon contributions. However, as long as the spinons and
holons are gapped, their corresponding phase shifts are either
� or 0 and do not vary with the external fields. General
arguments lead us to believe that in the impurity model, the
spinon phase shifts are zero, while the � phase shifts are �.
To see this, consider the Friedel sum rule for the conserved
charge Q=nb+n�, for which �qc ,qb ,q��= �0,1 ,1�. In this
case,

�Q = 2S = K = − N
�b

�
+ K
��
�

. �33�

Provided all the phase shifts are positive definite, then this
quantity can never exceed K and the maximum value is only
attained if �b=0 and ��=�. If the spinon phase shifts are
zero, then for a perfectly screened impurity, with K=2S, it
follows that the holon phase shifts equal � and the spinon
phase shifts vanish as long as the spinon-holon gap is pre-
served.

The general sum rules then become

�QC = �
��

�c��

�
− �

�

���
�

= �
��

�c��

�
− K ,

�QA = �
��

qc��
A �c��

�
�A = S,F� , �34�

where the conduction electron phase shift is

�c�� = �Im ln�1 − Gc
0�c�����=−i0+. �35�

The � fermion contribution only enters into the charge Frie-
del sum rule since ��q��

C =0 and ��q��
S,F=0. The first sum rule

expresses the conventional Friedel sum rule. In general, the
impurity charge �QC contains a conduction electron and a
holon contribution,

�QC = �Qe
C − 
n�� . �36�

According to the Anderson-Clogston theorem,27,28 the first
term is of order TK /D, where D is the bandwidth, and van-
ishes in the infinite bandwidth limit. The remaining term is
simply the charge associated with the empty f states at the
impurity, �QC=−
n��. Using the phase shift expression for
�QC in Eq. �34�, the Friedel sum rule can then be rewritten
as
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�
��

�c��

�
= K − 
n�� . �37�

In the case where there is no magnetic or flavor polarization,
all phase shifts are equal, �c��=�c and ����c��=NK�c, so
that the Friedel sum rule becomes

�c =
�

N
1 −


n��
K

� . �38�

V. LANGRETH SUM RULE AND THE KONDO
RESONANCE

The emergence of the Kondo resonance is one of the sig-
nature features of the Kondo effect. The “Langreth sum
rule”26 links the Friedel sum rule to the formation of the
Kondo resonance by providing a rigorous constraint on the
size of the spectral function associated with the localized
state.

The t matrix of the conduction electrons is determined by
the spectral function of the electrons localized in the mag-
netic moment,

t�i�n� = −
V2

N
�

0

�


TX��
† ���X���0��ei�n�d� . �39�

We shall assume here that there is no magnetic or flavor
polarization, so that the t matrix is identical for all � and �.
The t matrix is determined diagrammatically by the process
of repeated scattering off the localized state and is given by

c Σct

+=

= +

t Σc Σc Σc+

Σ ,

...

�40�

or

t�z� = �c�z� + �c�z�Gc
�0��z��c�z� + ¯ =

�c�z�
1 − Gc

0�z��c�z�
.

�41�

From Eq. �35�, we see that the denominator in the t matrix is
also the argument of the scattering phase shift. In the limit of
a broad bandwidth, we can replace Gc

�0���+ i��=−i��, so
that the phase shift and t matrix become

t�� + i�� =
�c�� + i��

1 + i���c�� + i��
,

�c = �Im ln�1 + i���c���=−i0+. �42�

If we examine the decay processes associated with the con-
duction electron self-energy, we see that there are two types
of process. In one type, the electron decays into holon and
spinon combinations, but since these are gapped excitations,
they produce no contribution to the inelastic electron decay
processes at the Fermi energy. The only remaining decay
processes involve the production of electron-hole pairs, such
as

Σ′′
c (ω) ∼ Im

[ ]

= π
∑

k, k′, k′′

∣∣∣∣∣
k’’

k

k’

∣∣∣∣∣
2

fk′(1 − fk)(1 − fk′′)

�43�

where the internal loop of gapped fractional quasiparticles
does not contribute to the low-energy decay processes. These
are the well-known decay processes of the conventional
Fermi liquid, producing an inelastic decay rate that grows
quadratically with energy and temperature, �c�������2

+ ��T�2�. At zero temperature and frequency, the conduction
electron self-energy is thus entirely real, �c��0�=0. So from
Eq. �42�, tan �c=���c�0�, and the on-shell t matrix is given
by

t�0 + i�� =
1

��

tan �c

�1 + i tan �c�
=

sin �c

��
e−i�c, �44�

and the imaginary part of the t matrix is then

Im t�0 + i�� =
sin2 �c

��
. �45�

The existence of this quantity as an adiabatic invariant is
well known in the finite-U Anderson model, and its appear-
ance in the limit that U→� is an important test of these
methods.

VI. STATIC SUSCEPTIBILITIES

The susceptibilities of the impurity contribution to the
conserved charges can now be obtained by differentiating the
above expressions with respect to the corresponding fields,

�A=d
Q̂A�imp/dBA, at zero field BA=0. Since the spinon and
holon are gapped, their phase shift is pinned to the constant
values of 0 and �, and therefore the only contribution to the
susceptibilities comes from derivatives of the conduction
electron phase shift �=Im ln�1−Gc

0�c�:

�A = � 1

�
�
��

qc��
A d���

dBA �
BA=0

. �46�

Explicitly, the derivatives of the phase shift are given by

d�

dBA = � − Im Gc
d�c

dBA − Im�Gc + Gc
0��cq̂c

A�
−i0+

, �47�

and in the wide bandwidth limit wherein �c vanishes,

d�

dBA = � − Im Gc
d�c

dBA�
−i0+

. �48�

To calculate the derivatives of the self-energies, it is
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useful to introduce the bare and full off-shell interaction
vert*ices. The bare interaction vertex � is defined as the
functional Hessian of the Luttinger-Ward functional,

�aa���,��� = �2�i�2�a�a�

�2Y�G�
�Ga����Ga�����

= 2�i�a�
��a���
�Ga�����

, �49�

where a and a� list the particle species c, b, and � and
their corresponding indices � and/or �, while ��b ,�c ,���
= �1,−1,−1� grade the anticommuting character of the Fermi
fields. The 2�i factors come to compensate for the integra-
tion measure and replace the 1/T factors in the zero tempera-
ture limit when the discrete Matsubara frequencies are re-
placed by the continuous imaginary variable �. For
example, the interaction vertex between an electron and a
spinon is

Λcb(ω, ω′) =
−(2πi)2δ2

δGc(ω)δGb(ω′)

O(1/N) O(K/N ) O(K/N ) O(K/N ) O(K/N )4 433

+ .... =+ + ...+++ + .

The derivatives of the self-energies with respect to the
fields BA are expressed in terms of the bare interaction vertex
by

d�a���
dBA = − �

a�
� d��

2�i
�aa���,����a�Ga�

2 ����

���a�����q̂a�
A −

d�a�����

dBA � . �50�

Adopting a heuristic matrix notation, we may write this as

d�

dBA = − ��G2�qA −
d�

dBA� , �51�

which implies that

�1 − ��G2�
d�

dBA = − ��G2��qA� , �52�

or

d�

dBA = − ��G2��qA� , �53�

where

� = �1 − ��G2�−1� �54�

is the solution to the Dyson equation

� = � + ��G2� .

Restoring the indices, we then have

�aa���,��� = �
a�
� d��

2�i
�aa���,����2�i�a�,a����� − ���

+ �a�Ga�
2 �����a�a����,���	 .

It is instructive to represent this equation diagrammatically.
For example, the vertex with incoming and outgoing elec-
trons is �cc, represented as

α’ ω’ν’

α’ ω’ν’α ν ω

α’ ω’ν’

α’ ω’ν’α ν ω

α ν ω α ν ω α ν ω

α ν ω

α’ ω’ν’

α’ ω’ν’

α ν ω

α ν ω

α’ ω’ν’

α’ ω’ν’

α ν ω

α ν ω

α’ ω’ν’

α’ ω’ν’

α"ω"

α"ω"

ν"ω"

ν"ω"

α" ω"ν"

α" ω"ν"

+Λcχ Γ Λ Γcccccχ

+= ΛccccΓ Λcb Γbc

+

The self-energy derivatives are then reduced to

d�a���
dBA = − �

a�
� d��

2�i
�aa���,����a�Ga�

2 �����a�����qa�
A .

�55�

Unlike the Fermi liquid in the original works of Luttinger
and Ward, the on-shell interaction vertex which represents
the Fermi liquid is normalized by the appearance of interme-
diate spinon and holon states.

Incorporating the expression for the self-energy deriva-
tives within Eqs. �46� and �48�, we can write the suscepti-
bilities as

�A =
Im Gc

�
� d�

2�i
�
��a

qc��
A �c��,a�0,��Ga

2����aqa
A�a.

�56�

Since we work in the wideband limit and �c vanishes, the
summation over �aq̂a gives nonvanishing contribution only
for one particle species,

�S =
Im Gc

�
K�
���

�̃�̃�� d�

2�i
�c�,b���0,��Gb

2��� , �57�

�F =
Im Gc

�
N�
���

�̃�̃�� d�

2�i
�c�,����0,��G�2��� , �58�
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�C =
Im Gc

�
N�
���
� d�

2�i
�c�,����0,��G�2��� . �59�

VII. LOW-TEMPERATURE FREE ENERGY

For the recapitulation of the hard argument of Luttinger-

Ward, if we use the zero temperature Green’s function �G̃
�G�T=0, the leading change in the free energy at finite tem-
peratures, �F=F�T�−F�T=0�, can be computed solely from
the finite temperature trace of the logarithm of the zero tem-
perature Green’s function,

�F = �T Str�ln�− G̃−1�	�T=0
T . �60�

This is a quite nontrivial result, and for clarity, here we
repeat the original Luttinger-Ward derivation in the context
of the current work. At small finite temperature, we have two
things to keep track of in the free energy; the discreteness of
the frequency summations and the temperature dependence
of the Green’s functions. However, since the free energy is
stationary at low temperatures with respect to small changes
in G, to calculate the low-temperature corrections to the free
energy, we may use the zero temperature Green’s function

�G̃�G�T=0 in the Luttinger-Ward expression

F�T � 0� = T Str�ln�− G̃−1� + �̃G̃� + Y�G̃,T� , �61�

where �G0
−1− G̃−1�= �̃ is the zero temperature self-energy.

Small finite temperatures introduce a discreteness into the
frequency summations that produces corrections of order T2

in the free energy. To keep track of these changes, we must
write

T�
i�n

A�i�n� = �
−i�

i� d�

2�i
�1 + �����A��� ,

where

���� = 2�iT�
n

��i� + �n� − 1� �62�

keeps track of the discreteness. Luttinger and Ward made the
insightful observation that at low temperatures, one can re-
gard ���� to be infinitesimal, so that inside the Luttinger-
Ward functional, the leading-order effect of finite tempera-

ture is taken into account by making a variation G̃→G̃+�G,
where

�G = + �G̃ ,

in other words,

Y�G̃,T� − Ỹ�G̃� =� d�

2�i
Tr�2�i

�Ỹ

�G̃���
����G̃���� ,

�63�

where Ỹ =Y�G̃ ,0�.
It is instructive to briefly digress to see how this replace-

ment works in the leading-order contribution to the
Luttinger-Ward functional, given by

Y1�G,T� = KN V
�N

�2

T2 �
�n,�r

Gc��n�G��i�r − i�n�Gb�i�r� .

�64�

So we can write

Y1�G̃,T� = KV2� d�1d�2d�3

�2�i�3 2�i��i�1 + i�2 − i�3�

��1 + ���1���1 + ���2���1

+ ���3��G̃c��1�G̃���2�G̃b��3� . �65�

To leading order in �, we have

�Y1 = KV2� d�1d�2d�3

�2�i�3 2�i��i�1 + i�2 − i�3�

�����1� + ���2� + ���3��G̃c��1�G̃���2�G̃b��3�

=� d�

2�i�NK2�i
�Ỹ1

�G̃c���
����G̃c���

+ K2�i
�Ỹ1

�G̃����
����G̃���� + N2�i

�Ỹ1

�G̃b���
����G̃b����

=� d�

2�i
Tr�2�i

�Ỹ1

�G̃���
����G̃���� ,

where the factors of N, NK, and K arise because the func-
tional derivative refers to the variation of Y1 with respect to
a given spin and/or flavor leg of the propagator. The same
series of manipulations can be carried out on diagrams of
arbitrary order.

Returning from the digression, let us now use the relation

�Y = − Str���G� =
T→0

−� d�

2�i
Str������G���� �66�

to identify

2�i
�Ỹ

�G̃���
= − ��̃��� . �67�

With this identification, we can rewrite Eq. �63� as

�Y = −� d�

2�i
Str��̃�������G̃���� = − T�Str��̃G̃	�T=0

T .

�68�

We see that the finite temperature change in the generating
functional correction term exactly cancels the change from
the second self-energy term in the free energy functional, so
that for small finite temperatures,

�F = �T Str� �ln�− G̃−1� + �̃G̃	�T=0
T + �Y

= �T Str�ln�− G̃−1�	�T=0
T , �69�

as promised.
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Now, in principle, this expression involves finite tempera-
ture contributions from all fields, including the fractionalized
excitations. If we carry out the Matsubara summations, we
see that

�F = −
T2�2

3

1

2�

d

d�
�Str Im ln�− G̃−1���=−i0+, �70�

and the density of states of each field contributes to the spe-
cific heat coefficient �=−d2F /dT2. It is this observation that
primarily motivates our gap hypothesis, for with a gap in the
holon-spinon spectrum, the only remaining contribution to
the linear specific heat is derived from the conduction elec-
trons,

� =
2�2

3

d

d�

1

2���
��

Im ln G̃c
−1

�G̃c
0�−1

��
�=−i0+

. �71�

Note that as was previously done for susceptibilities, we sub-
tract the effect of the empty conduction band to get the im-
purity contribution to the specific heat coefficient. We have

removed the tilde sign G̃→G as from now on, we restrict our
derivation to the Green’s function at zero temperature.

In the single impurity model, the low-energy thermody-
namics can then be entirely expressed in terms of the con-
duction electron phase shift

�c = Im ln�1 − Gc
0�c� , �72�

in terms of which

� =
�2

3 �
��

1

�
�d�c

d�
�
�=−i0+

. �73�

The linear coefficient of the specific heat is then

� = −
�2

3 �
��

1

�
Im Gc�d�c

d�
�

−i0+
, �74�

and we see that the renormalization of the density of states is
entirely encoded in the frequency dependence of the conduc-
tion electron self-energy at the Fermi surface.

The derivative of the self-energies with respect to the fre-
quencies can be calculated in a similar way to the derivatives
with respect to the fields BA. The analogous expression is

d�a���
d�

= − �
a�
� d��

2�i
�aa���,����a�Ga�

2 �����a�����

+ �
a�

�aa���,0��a�� Im Ga�

�
�

−i0+
. �75�

The additional second term results from the discontinuous
jump across the real axis: �G=−2i Im G�0− i��. In the first
term, the contribution from the local conduction electrons to
the summation vanishes in the band limit. On the other hand,
in the second term, only the conduction electrons contribute
since the holon and boson are gapped and their spectral func-
tion vanishes at the Fermi level. Explicitly,

�d�c
��

d�
�

−i0+
= −� d�

2�i��
��

�c�,b���0,��Gb
2���

− �
��

�c�,����0,��G�2����
− � Im Gc

�
�

−i0+
�
����

�c��,c�����0,0� , �76�

dω
d =Σ

+Γcχ

Γcb

Γcc+

.

The next step in our derivation is to compute the Ward iden-
tities that relate the frequency and field dependences of the
electron self-energies to the electron Landau parameters.

The derivation of the Friedel sum rules in Sec. II relied on
the Ward identities of Eq. �29�, which were derived by shift-
ing the frequencies in diagrams of the Luttinger-Ward func-
tional Y�G� on by a shift ��a

A=��qa
A proportional to the con-

served charge QA carried by the corresponding particle:
Gc���→Gc��+��c

A�. In the Luttinger-Ward diagrams, such
shifts correspond to shifts along closed loops. Since the in-
teraction vertex conserves the charges QA, it is also possible
to think of similar shifts in the self-energy diagrams.12,13,29,30

The interesting case is when the external legs of the self-
energy carry the relevant charge qa

A�0; in this case, in ad-
dition to the closed loops, also the external frequency is
shifted and the self-energy change can be related to the fre-
quency derivative of the self-energy,

��a

��A =
1

qa
A

d�a

d�
. �77�

These identities introduce, in addition to Eq. �75�, alternative
equations for the frequency derivative of the self-energies,

1

qa
A

d�a���
d�

= − �
a�
� d��

2�i
�aa���,����a�Ga�

2 �����a�qa�
A

+ �
a�

�aa���,0�qa�
A �a�� Im Ga�

�
�

−i0+
. �78�

The conduction electrons carry the three charges qc
A�0, and

it is possible to plug these derivatives into the expression for
the specific heat coefficient of Eq. �74�, which gives

�

�0
=

1

NK�� d�

2�i
�
��a

qc��
A �c��,a�0,��Ga

2����aq̂a
A�a

− �
��a

�q̂c
A����c��,a�0,0�qa

A�a

Im Ga

� � , �79�

with �0= �NK�2 /3���Im Gc� /�� the specific heat coefficient
of the bare conduction band. Rewriting the latter equation,
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we can relate the specific heat coefficient to the various sus-
ceptibilities,

�

�0
=
�A

�0
A −

1

NK
�
��a

q̂c��
A �c��,a�0,0�qa

A�a

Im Ga

�
, �80�

where �0
A= �NK Im Gc� /� are the bare Pauli susceptibilities.

The latter expression can be simplified as a set of Ward iden-
tities relating the specific heat to the susceptibilities and the
on-shell Fermi liquid interaction vertex,

�

�0
=
�S

�0
S +

1

NK

Im Gc

�
�
������

�̃�̃��c��,c�����0,0�

=
�F

�0
F +

1

NK

Im Gc

�
�
������

�̃�̃��c��,c�����0,0�

=
�C

�0
C +

1

NK

Im Gc

�
�
������

�c��,c�����0,0� . �81�

In deriving these identities, we assumed gapped spinon and
holon spectra which restrict the summation over a in Eq. �80�
to the conduction electrons. As discussed in the following
section, it is possible to directly relate the on-shell conduc-
tion electron interaction vertex �c��,c���� to the Fermi liquid
amplitudes ���,���� by comparing the latter Ward identities
to the Nozières Fermi liquid expressions. Note that it is pos-
sible to derive three additional spectral sum rules for the
off-shell interaction vertices by equating Eq. �76� with Eq.
�78�.

VIII. YAMADA-YOSIDA RELATIONS

As was mentioned in the Introduction, the phase shift in a
Nozières-type local Fermi liquid can be written as a function
of the energy and the occupation,

�����,�nk���,��	� = �0 + ��� + �
k�����

���,�����nk�����,

�82�

where �� is the energy derivative of phase shift and the im-
purity Landau parameter

���,���� = 
��,������̂�������� �83�

is the expectation value of the interaction between quasipar-
ticles. The density of the quasiparticles is �0+�� /�, where �0
is the bare density of states, which implies that the impurity
contribution to the specific heat coefficient is given by �
=�0�� /��0. For a local Fermi liquid, the impurity Landau
parameter can be parametrized in terms of two numbers �1
and �2 through

���,���� = �1�1 − ��������� + �2����� − ����� . �84�

The response of the conserved charges QA to their fields BA

can be represented in terms of the phase shifts through

�A =
1

�
�
��

qc��
A ����

BA . �85�

The resulting susceptibilities read

�S

�0
S −

�

�0
= �
������

�̃�̃����,���� = − �1 − K�2,

�F

�0
F −

�

�0
= �
������

�̃�̃����,���� = − �1 + N�2,

�C

�0
C −

�

�0
= �
������

���,���� = �NK − 1��1 + �N − K��2,

�86�

where the Pauli susceptibilities are �0
A=NK�0 /�. By compar-

ing the latter equations to the set of Eqs. �81�, it is easy to
read off the relations between the Landau parameters and the
on-shell interaction vertex,

���,���� = −
Im Gc

�NK
�c��,c�����0,0� . �87�

From Eqs. �86�, it is possible to express the Fermi liquid
parameters in terms of the reduced susceptibilities

�1 =
�C/�0

C

NK
−

1

N + K
�F/�0

F

K
+
�S/�0

S

N
� ,

�2 =
�F/�0

F − �S/�0
S

N + K
, �88�

which produce the following relation between the suscepti-
bilities and specific heat coefficient:

NK
�

�0 = K
N2 − 1

N + K

�s

�s
0 + N

K2 − 1

K + N

� f

� f
0 +
�c

�c
0 , �89�

generalizing the Yamada-Yosida relation12,13,31 to our
infinite-U model with K channels. Note that also the on-shell
interaction vertex can be parametrized in a similar way,

�c��,�����0,0� = �1�1 − ��������� + �2����� − ����� ,

�90�

with �1,2=−�NK�1,2 / Im Gc. These two Fermi liquid param-
eters control the low-temperature thermodynamics and are
renormalized due to intermediate spinon and holon states.

An interesting observation is that the prefactors of the
susceptibility terms in Eq. �89� correspond to the three cen-

tral charges of the SU�N�K̂, SU�K�N̂, and U�1�̂ Kac-Moody
algebras, respectively.32 In terms of the relevant Kac-Moody
currents, the free fermion problem is decomposed to the free
current Hamiltonians HS

0, HF
0 , and HC

0 . The fraction of the
degrees freedom in section A, �A

0 /�0, is given by the ratio of
the central charge of section A to the total central charge
NK.33 Equation �89� emerges under the assumption that for
the fully screened impurity problem, the fixed point Hamil-
tonians have a similar form to the bare Hamiltonians with
renormalized Fermi velocities and no residual degrees of
freedom,34
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HA
FP = 1 +

3�
A

�
�HA

0 , �91�

where 
A represents the impurity effective couplings and � is
the size of the system. Under this assumption, �A /�A

0

=�A /�A
0 =3�
A /�, where �A is the impurity contribution to

the specific heat coefficient in section A. Summing up the
impurity contribution to the specific heat coefficient �
=�A�A, we recover Eq. �89�,

�

�0 = �
A

�A
0

�0

�A

�A
0 =

1

NK
�K

N2 − 1

N + K

�S

�S
0 + N

K2 − 1

N + K

�F

�F
0 +
�C

�C
0 � .

IX. SHIBA-KORRINGA RELATIONS

The Korringa-Shiba relations relate the impurity’s
nuclear-spin–lattice-relaxation time T1 with the Knight shift
K at small magnetic fields. Alternatively, it also relates the
impurity static susceptibility with the low frequency impurity
spin power spectrum. In the context of our paper, this rela-
tion is important as a manifestation of the soft mode forma-
tion in the susceptibility power spectrum even though the
spinon spectrum is gapped. This relation was first deduced
from experimental data by Korringa, and only later it was
proven14 by Shiba for the finite-U Anderson model summing
up the perturbative expansion in U to arbitrary order. Below,
we show how Shiba’s arguments can be extended to the
infinite-U Anderson model and to the Kondo model by sum-
ming up the perturbative expansion in 1/N.

The expression deduced by Korringa reads

K2T1T = C , �92�

where C is a constant. The Knight shift K describes the
mean-field response observed by the nuclear moment, which,
for low Larmor frequency, is proportional to the static impu-
rity susceptibility �S. On the other hand, the relaxation rate
T1

−1 is proportional to the low frequency power spectrum of
the impurity susceptibility. Explicitly, in terms of impurity
susceptibilities, K and T1

−1 are given by

K = AHF�S
zz���� ,

T1
−1 = − T�gN�N�2AHF

2 �S
+−��� − i0+�

�
,

where AHF is the hyperfine coupling and gN and �N are the
nuclear spin g factor and Bohr magneton, respectively, and
� is the Larmor frequency. The latter expression with Kor-
ringa’s empirical rule immediately gives the Shiba relation
between the static susceptibility and the spin power spectrum
at low frequencies where the susceptibilities become isotro-
pic,

��S��� − i0+�
�

�
�→0

= −
�S

2

C�gN�N�2 . �93�

Extending Shiba’s arguments to the infinite-U Anderson
model, we see that by taking the derivative of the dynamic
susceptibility d�� /d� and substituting �→0, the only con-

tribution to the low frequency power spectrum comes from
the following diagram:

Im

The line that intersects the upper conduction electron line
denotes the nonanalytic part of the derivative of the Green’s
function, which arises from the jump across the real axis
�dGc /d��na=−2iGc��−i0+���i��. Since the boson and holons

are gapped, there are no similar contributions from deriva-
tives of the boson and holon Green’s functions. The analytic
part of the Green’s function derivatives produces no imagi-
nary contribution and should not be considered here. The
other diagrams arise from derivatives of bare interaction ver-
tex �. These diagrams have more than one electron-hole
pair; hence, their contribution to the imaginary part is super-
linear in � and the derivatives vanish as �→0.14

A straightforward calculation of the diagram gives

��S��� − i0+�
�

�
0

=
K�Gc��− i0+��2

�
�
�����

�̃�̃�

��
−i�

i� d�d��

�2�i�2 Gb
2����b�c����,0�

��c��b���0,���Gb
2���� . �94�

In order to obtain the relation between the power spec-
trum of Eq. �94� and the static susceptibility of Eq. �57�, we
need to resort to the symmetry properties of the vertex func-
tion �. In addition to the symmetry to the exchange of vari-
ables which is inherited from the bare interaction vertex �,
there is an additional symmetry of the vertex function as a
two-particle vertex. In general, a two-particle vertex ���̄,���̄
is a function of the incoming spins � and �� and of the
outgoing spins �̄ and �̄�. In our model, there is no annihila-
tion or creation of spin; therefore, each incoming spin must
identify with an outgoing spin,

���̄,���̄� = ��1����̄����̄� + ��2����̄�����̄�. �95�

In the full interaction vertex function, the incoming and out-
going spins of each particle are already identified as �= �̄
and ��= �̄; hence, we can write

�c�b����,��� = �cb
�1���,��� + �cb

�2���,�������. �96�

The static susceptibility of Eq. �57� gets a contribution only
from the exchange part of the vertex ��2� as the direct part
��1� drops out of the summation ��̃�̃��. The resulting sim-
plified expression is

�S = NK
Gc��− i0+�
�

�
−i�

i� d�

2�i
Gb

2����cb
�2��0,�� . �97�

A similar simplification can be presented for the power
spectrum of Eq. �94� by noticing that
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�
�

�̃�b�c�� = �̃��bc
�2�, �98�

�
��

�̃��c��b�� = �̃��cb
�2�. �99�

Taking further advantage of the symmetry to variables ex-
change, we can rewrite the power spectrum as

��S��� − i0+�
�

�
0

=
NK�Gc��

2

�
� d�

2�i
Gb

2����cb
�2��0,���2

.

The right-hand side of the latter equation can be expressed in
terms of the static susceptibility of Eq. �97�, which gives the
Shiba relation

��S��� − i0+�
�

�
0

=
�

NK
�S

2. �100�

According to this derivation, the Korringa constant C of Eq.
�92� is NK / ���gN�N�2�.

This result implies that the dynamical susceptibility is
dominated at low frequencies by intermediate electron-hole
pair states. These intermediate states of the Fermi liquid
dress the dynamical susceptibility to produce a nonvanishing
power spectrum at low frequencies. While the spin-charge
decoupled excitations remain gapped, there are soft magnetic
modes that are carried by intermediate quasiparticles.

X. DISCUSSION

This paper was motivated by an interest in the way a
Landau Fermi liquid can emerge within the constrained Hil-
bert space of highly correlated electron systems. In such
highly constrained systems, we can no longer appeal to adia-
baticity or the use of infinite order expansions in the strength
of the interaction. By combining the Luttinger-Ward ap-
proach with a new class of large N expansion for the infinite-
U impurity Anderson model, we have obtained a perspective
on the Fermi liquid that may have implications for our un-
derstanding of the corresponding Anderson and Kondo lat-
tice models.

In the single impurity model, we find that the Fermi liquid
contains low lying electronic quasiparticles that break up
into fractionalized excitations above a certain gap energy �g.
The assumption that this gap holds to all orders in our analy-
sis leads to a full set of conserving relationships between
dynamic and thermodynamic variables, but it also has quali-
tative implications for our understanding of the Landau
Fermi liquid.

Indeed, our results indicate a rather intimate relation be-
tween the opening of a gap in the spinon and holon spectra
and the formation of a heavy Fermi liquid. In particular, the
Landau scattering amplitudes that appear in our treatment
contain, as intermediate states, the virtual excitation of
spinon or holon pairs, for example,

These amplitudes are proportional to the inverse of the gap

and are finite as long as the gap is present. Through this
description, we showed how these virtual excitations give
rise to the renormalization of the electron-electron interac-
tion and a whole host of conserving relationships known to
be valid for the Fermi liquid.

Is this really a Fermi liquid? Landau’s notion of a Fermi
liquid certainly has no place for fractional quasiparticle ex-
citations, even if those particles are gapped. On the other
hand, the fractional particles that appear in this theory in-
volve fields with matrix elements that link states of different
Q: states that correspond to models with different impurity
spins S=Q /2. The excitation “gap” in the spinon spectrum
involves excitations from the ground state of the fully
screened model with spin S0=K /2 to excited states of the
underscreened model, with S=S0+ 1

2 ,

Gb�t� � �
�
�S0 +

1

2
,��b�

† �S0�e−i�E��S0+1/2�−Eg�S0��t

� e−i�Eg�S0+1/2�−Eg�S0��t, �101�

where Eg�S0� and Eg�S0+ 1
2
� are the ground-state energies of

the fully screened and underscreened models, respectively.
Thus, the appearance of the gap in the spinon-holon spec-
trum is purely a consequence of the stability of the fully
screened ground state.

Physical quantities, such as the spin or charge correlation
functions, or the f-spectral function involve combinations of
spinons or holons which do not change Q and do not display
this gap. For example, the spin raising operator creates a
spinon-antispinon pair. Such excitations are “gauge neutral”
and are contained in the physical Hilbert space of definite Q.
These pair excitations couple to the conduction sea, convert-
ing the sharp gap of the infinite N limit into a pseudogap at
finite N. The associated time scale in this gap, tc�� /�g gap,
can be interpreted as a confinement time scale, for after this
period the spinon-antispinon pair combines with holons from
the sea to produce an electron-hole pair,

s� + s̄� ——→
t �/�g

e�� + ē��. �102�

Diagrammatically,

α

β
. . .

α µ

β µ

α µ

β µ

α

β

Γ

. �103�

�This process can be loosely compared to “quark jets” in a
collider, where quark-antiquark pairs rapidly combine with
virtual quarks from the vacuum to form mesons or baryons.�

The processes that confine the spinons are precisely those
that gave rise to the gapless spin spectral function. From our
derivation of the Shiba relationship, we know that the decay
of spinon pairs into the electron-hole continuum is con-
strained to give rise to a spectral function with a pseudogap
whose zero-frequency intercept is determined by the relation
������ /���=0=�2� / �NK�:
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χ"
Ω

Ω

where the dots will represent the dc limit ����� /�
→�2� / �NK� predicted by the Shiba and the dashed line rep-
resents the gapped, N→� limit. A detailed calculation of this
conserving spectrum within the leading Kadanoff-Baym
approximation11 would be an interesting exercise for future
work. The Fourier transform of this power spectrum leads to
the correct 1 / t2 decay of the spin correlation function

S�t�S�0��. Thus, the confinement of the spinons through
their coupling to the electron continuum is an integral part of
the emergence of Fermi liquid behavior in the single impu-
rity model. The pseudogap in this function is quite unremark-
able from the Fermi liquid perspective, where the offset
peaks in the dynamical susceptibility are a well-known sig-
nature of the asymmetric Kondo resonance.

In this way, the confinement of spinons and holons to
form a Landau Fermi liquid appears very natural in the
Schwinger boson approach to the single impurity, and it can
be seen as a direct consequence of the way the gapped spin
fluid couples to the conduction fluid. This is a very different
kind of confinement to that considered in the context of in-
sulating spin liquids, where there is a broken gauge symme-
try and topological tunneling effects of the gauge field are
required to understand the confinement mechanism.5,6,35

Lattice: Heavy fermions

There are some interesting implications of this kind of
picture for the more general lattice models. Consider, for
example, the �K-channel� infinite-U Anderson-Heisenberg
lattice model

Hlattice = �
k���

�k�ck���
† ck��� + � HI�j� + �


i,j�
Hm�i, j� .

Here,

HI�j� =
V
�N

�
��

�� j��
† � j�

† bj� + H.c.� + �0�
�

bj�
† bj�

describes the atomic orbitals at the different sites and their
hybridization with the conduction band, where � j��

†

=�k�ck���
† e−ik�·R� j creates a conduction electron at site j. The

final terms Hm�i , j� describe the antiferromagnetic spin inter-
action between nearest neighbors, where

Hm�i, j� = −
JH

N
Bij

† Bij

and Bij
† =�� sgn���bi�

† bj−�
† creates a singlet pair of bosons

along the bond �i , j�. In the lattice model, the conserved
charges Qj =nb�j�+n��j� replace the no-double occupancy

constraint at each site, and as before, the fully screened case
corresponds to Qj =K.

The manipulations that we have carried out in this paper
can be extended to the model, but certain caveats apply. One
of the key differences in the lattice model is that in the large
N limit, the antiferromagnetic interactions induce pair con-
densation �−�JH /N�
Bij�=�ij� of the Schwinger bosons,
which mark the onset of short-range magnetic correlations.36

The important effect of the antiferromagnetism at a mean-
field level is described by

Hm�i, j� → ��ijBij
† + �̄ijBij + N

�̄ij�ij

J
� . �104�

The appearance of a spinon-pair condensate is restricted to
regions of large JH TK. Once pair condensation occurs, the
local gauge symmetry associated with conservation of the
Qi=K is broken, replaced by a global U�1� symmetry �where
the difference of the Qi on even and odd sublattices is con-
served�. Now, individual spinon and holon excitations start to
propagate between sites. The phase of the bond variables
becomes elevated into a compact U�1� gauge theory.35

We now discuss the qualitative phase diagram of this
model using some of the insights gained from our impurity
treatment. A rigorous application of our methods to the lat-
tice requires that we include the U�1� gauge fields into the
Luttinger-Ward functional, a task that is beyond the scope of
the current discussion. However, we expect that many quali-
tative aspects of the current analysis will survive.

There are two variables that tune quantum fluctuations in

the lattice model �Fig. 3�: “spin fluctuation parameter” 1/ S̃
= N

2S and “Doniach parameter” t=TK /JH, where TK is the im-
purity Kondo temperature.

The first parameter tunes the strength of the quantum spin
fluctuations and is loosely equivalent to the effect of lattice

frustration. By tuning the value of 1 / S̃, we can tune from

classical antiferromagnetism at small 1 / S̃, where the
Schwinger boson individually condenses to form an antifer-

romagnet, to a quantum antiferromagnetism at large 1/ S̃,
where a spin liquid with a gap develops.

The second parameter tunes the strength of the Kondo
effect. When t is small, boson pair condensation takes place
and the spin physics is that of an insulating antiferromagnet
or spin liquid with a decoupled background of conduction
electrons. At large t	 t2�1, no pair condensation occurs,
preserving the locality of the spinon and holon propagators.
The direct extension of our methods to this case predicts a
local heavy electron state which develops a large Fermi-
surface volume and enhanced momentum independent scat-
tering amplitudes. In the single impurity model, the charge of
the localized state is given by the difference of the electron
and the holon phase shifts �Eq. �34��,

K − n� = NK
�c

�
− K
��
�

.

The corresponding Luttinger theorem for the lattice38 tells us
that the charge density is given by the difference of the con-
duction electron and holon Fermi-surface volumes,
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ne = NK
vFS

�2��D − K
v�

�2��D .

This expression holds some interest for us, because in the
spin liquid phases of the model, where the Kondo effect is
inactive, we expect the Fermi-surface volume of the holons
to be zero, giving a small Fermi surface for the electrons. By
contrast, at large t=TK /JH, where the Kondo effect occurs,
the Fermi-surface volume of the gapped holons is now at a
maximum v� / �2��D=1, causing the electron Fermi surface
to expand by an amount �vFS=1/N, forming a large Fermi
surface. As long as the holons preserve their gap, the volume
of these Fermi surfaces will remain fixed.

The effect of tuning the ratio t=TK /JH has already been
considered in the context of a two impurity Kondo model10

�Fig. 3�a��. Figure 3�b� shows the schematic behavior ex-
pected in the large N lattice model. Here, depending on the

size of 1 / S̃, either a spin liquid �large 1/ S̃� or an antiferro-

magnet �small 1 / S̃� develops at small Kondo coupling t
=TK /JH. At large t, however, the heavy Fermi liquid with a
gap to spinons and holons will remain stable, with Fermi
liquid scattering amplitudes that are determined by the ex-
change of virtual spinons and holons. Provided the phase
transition between these two limits is of second order, then
the spinon-holon gap must close at the transition line, with
the concomitant divergence of the Landau scattering ampli-
tudes.

The closing of the spinon gap may have important impli-
cations for the evolution of the Fermi liquid parameters near
the antiferromagnetic instability. In the Schwinger boson
scheme, at the antiferromagnetic instability, the spinons con-
dense at one-half the magnetic wave vector, becoming gap-

less at two points in momentum space q� = ±Q� 0 /2. This will
give rise to strong electron-electron scattering at

q� = Q� 0/2 ± Q� 0/2 = � 0

Q� 0,
� �105�

as illustrated in

q~Q/2

q~ Q/2

The appearance of strong scattering at a staggered wave
vector is well known in a spin-density wave scenario. How-
ever, the additional appearance of strong scattering at q� =0 is
a new feature. In other words, a subleading effect of the
antiferromagnetic instability driven by spinon condensation
is the development of strong forward scattering reminiscent
of an almost ferromagnetic metal. Features of this sort have
been observed near the field-induced quantum critical point
in YbRb2Si2.39

These qualitative features of the large N limit of our
model are a topic of current active examination, and we hope
to report on them in greater detail in forthcoming work.
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FIG. 3. �Color online� The large N phase diagram of two impu-
rity and lattice models as a function of the ratio t=TK /JH. Boson
pair condensation 
bb��0 develops for t� t2 inducing short-range
magnetic correlations that compete with the “Kondo” screening. �a�
Computed large N phase diagram of the two impurity Kondo prob-
lem �Ref. 10� displaying the relative temperature scales. T=TK and
T=TF denote the lower and upper scales associated with the two
stage screening process �Ref. 10�. The Fermi temperature and
spinon gap close at the Varma-Jones quantum critical point at t
= t1, which separates the valence bond state from the two impurity
Kondo state. �b� Speculative sketch of the zero temperature phase
diagram for the Kondo lattice, based on the discussion in the text,

showing the dependence on the spin fluctuation parameter 1 / S̃

=N / �2S�. At large 1/ S̃ and small t, a spin liquid forms. At small 1 / S̃
and small t=TK /JH, the Schwinger boson pair condenses to produce
an antiferromagnet. The spin-liquid/AFM and spin-liquid/HF �Refs.
6 and 37� phase transition are expected to merge into a single quan-
tum critical point that separates the heavy electron state from the
antiferromagnet. The spinon and holon gaps close at each of these
quantum phase transitions.
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