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In an attempt to explain inelastic neutron scattering data for LiV2O4, the dynamical spin susceptibility
��Q ,�� at zero temperature is calculated. The starting point is a weak coupling approach based on the
local-density approximation band structure for that material. It is supplemented by a random-phase approxi-
mation treatment of local on-site interactions and contains an adjustable parameter. Due to the geometrically
frustrated lattice structure, the magnetic response is strongly enhanced in the vicinity of a nearly spherical
surface in Q space. We compare these results with recent low-temperature neutron scattering data. The mea-
sured spin relaxation rate � is used to estimate the spin-fluctuation contribution to the specific heat.
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I. INTRODUCTION

The metallic spinel LiV2O4 has been identified as the first
3d system with heavy quasiparticles.1–3 The low-temperature
specific heat coefficient �=C /T�0.4 J mol−1 K−2 is consid-
erably enhanced as compared with that of simple metals, and
the same holds true for the spin susceptibility �S. For high
temperatures, T�50 K, the latter shows a Curie-Weiss be-
havior, �S�T�=�0+C / �T+��, where the Curie constant C
=0.47 cm3 K / �mol V� and the Weiss temperature �=63 K
�0 implies an antiferromagnetic interaction between the V
ions. No magnetic ordering has been observed down to
0.02 K.1 Concerning the entropy S�T� whose temperature de-
pendence is determined from the specific heat, one finds that
S�T=60 K�−S�0��10 J / �mol K�, which is close to 2R ln 2,
where R denotes the gas constant. Thus, at 60 K, there is
nearly one excitation per V ion. This strongly suggests that
the low-lying excitations, which lead to the heavy quasipar-
ticle behavior, result from spin degrees of freedom. Needless
to say that the original discovery of the heavy quasiparticles
in LiV2O4 has initiated many subsequent experimental stud-
ies including transport, nuclear magnetic resonance
�NMR�,4,5 muon spin relaxation ��SR�,6 photoelectron spec-
troscopy �PES�,7 and inelastic neutron scattering work.8–10 A
special feature of the spinels and hence of LiV2O4 is that the
V ions occupy the sites of a pyrochlore lattice. The latter
consists of corner sharing tetrahedra. For a microscopic un-
derstanding of the observed heavy quasiparticle behavior
with an average number nd=1.5 of d electrons per V ion, two
different approaches starting from either a strong or a weak
coupling limit are possible. They have been reviewed in Ref.
11, and we want to discuss them briefly now.

Density functional calculations based on the local-density
approximation �LDA� demonstrate that electrons near the
Fermi energy EF are of t2g character.12–14 The calculated den-
sity of states within LDA is too small by a factor of 25 in
order to explain the large � coefficient. Therefore, in Ref. 15,
the limit of strong correlations was taken as a starting point.
In that limit, charge fluctuations between V ions are strongly
suppressed due to both the on-site and nearest neighbor in-
tersite electron Coulomb repulsions.16 Thus, in the ground

state, slowly varying charge configurations include V sites
that are either singly �spin 1/2� or doubly �spin 1� occupied.
In the latter case, S=1 is due to the Hund’s rule. The ground
state consists of configurations in which the spin-1 /2 and
spin-1 sites form two subsets of chains �rings�, and the spin
chains are effectively decoupled because of geometrical frus-
tration in the pyrochlore lattice. Within this spin chain
model, the nearest neighbor �nn� exchange couplings Jnn are
assumed only. The linear specific heat coefficient �
=2kBR /3Jnn, where kB is the Boltzmann constant, of the
spin-1 /2 chains is found to be large. Only a factor of 2 is
missing as compared with experiment. Here, Jnn�3 meV is
the nn spin-1 /2 chain coupling, as obtained from LDA+U
calculations. The spin-1 chains with a gapped spectrum do
not contribute to � coefficient. Our recent analysis has
shown, however, that in the model formulation, the next-
nearest neighbor �nnn� coupling Jnnn cannot be excluded,
which may lead to a considerable renormalization of the
above estimate of �. Moreover, if Jnnn /Jnn�0.24, the spin-
1 /2 chain system may even enter the regime of dimerization.
Of course, effects of the kinetic energy which were omitted
so far should also be included in an extended spin chain
model.

Because of these growing complications, it is of interest
to investigate what results for the spin correlations are, when
one starts from the limit of weak correlations instead. In this
limit, the d electrons are in broad LDA energy bands in con-
trast to nearly localized electronic states in the opposite limit.
Since the effects of electron Coulomb repulsions are ne-
glected �except for those already contained in the LDA�, the
geometrically frustrated lattice structure plays a role only as
it affects the form of the LDA energy bands. As shown be-
low, this results, however, in a characteristic form of the Q
dependence of the unenhanced dynamic spin susceptibility
��0��Q ,��. So, the starting points of both approaches are
very different. The hope is that both limits can eventually
brought to convergence in a region which is between the two
limiting situations.

The present work was first motivated by results of quasi-
elastic neutron scattering measurements8–10 carried out on
polycrystalline samples of LiV2O4. At low temperatures,
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strong quasielastic neutron scattering was found in a range of
wave vectors, 0.4 A−1	Q	0.8 A−1. The quasielastic line-
width ��Q� is of a few meV, indicating a slow spin dynamics
in the above Q region. Because of the relation between the
measured dynamic structure factor and the imaginary part of
the dynamic spin susceptibility S�Q ,� ;T�= �1
−e−
�/kBT����Q ,� ;T�, calculation of ��Q ,� ;T� is of funda-
mental importance to interpret inelastic neutron scattering
data.

Our aim is to include a realistic electronic band structure
for LiV2O4 into random-phase approximation �RPA� like cal-
culations of the dynamic spin susceptibility. The latter is en-
hanced due to exchange-correlation effects of electrons on
the vanadium 3d orbitals. The calculations are performed for
T=0. We restrict ourselves to the study of ��Q ,�� along
high-symmetry directions in the reciprocal space and focus
on the analysis of its low-frequency behavior. As shown be-
low, even such a restricted consideration allows us to gain
insight into the low-temperature spin dynamics of LiV2O4
and provides a basis for a comparison of computational re-
sults with experimental data. Our main findings are the fol-
lowing: �i� the dominant maxima of the calculated unen-
hanced spin susceptibility ��0��Q ,��, i.e., the one from LDA
occur in the same region of Q space where the largest inten-
sity of the inelastic neutron scattering is found, and �ii� a
moderate value of the electronic local exchange-correlation
coupling K is sufficient within RPA to bring the system close
to a magnetic instability and thus to a strong slowing down
of spin fluctuations for wave vectors Q determined by �i�.

Because we assume local, Hubbard-like electron interac-
tions, the exchange-correlation coupling K is Q independent
and therefore treated here as an orbital-independent adjust-
able parameter. Along the way, we will discuss possible ex-
tensions of the theory in some detail but not pursue them
further.

The random-phase approximation was applied to the one-
band Hubbard model by Izuyama et al. in their seminal
work17 and developed further by Doniach.18 The multiband
generalization of the RPA to the dynamic spin susceptibility
adopted here is in a close relation with earlier works by
Cook19 and Callaway et al.20,21 We also mention papers by
Stenzel and Winter22,23 along that line. The connection with
these works will be pointed out at various places in the dis-
cussion below.

We also address the problem of spin-fluctuation contribu-
tion �sf to the low-temperature specific heat coefficient �. As

known,24–26 slow spin-fluctuation dynamics can be described
approximately by a system of overdamped oscillators. In
general, these oscillators are characterized by Q-dependent
spin relaxation rates �Q. Based on the available inelastic
neutron scattering data8–10 and our RPA calculation of
��Q ,�� in LiV2O4, we suggest below a model describing a
particular distribution of �Q in Q space. Then, we show that
a diversity of experimentally determined values of �Q leads
to a theoretical estimate for �sf that falls also into a broad
range with the largest value being close to � observed in
experiment.

A similar RPA approach to a fluctuation mechanism in
LiV2O4 based on a tight binding model for the V 3d bands
has been proposed in Ref. 27 in an attempt to explain the
specific heat enhancement. The numerical calculations have
been performed for the supersymmetric case where all spin
and/or orbital fluctuations are controlled by the same nearly
critical interaction parameter. In the numerical calculations,
the instability is obtained only around the center of the Bril-
louin zone, and the large mass enhancement is due to contri-
butions from all possible spin and/or orbital fluctuations at
Q=0. In our approach, we take the complementary view-
points that �i� only the spin fluctuations are close to be criti-
cal and �ii� the critical spin fluctuations at T=0 are located in
a wide region of Q space far away from the Brillouin zone
center in accord with the experimental evidence from inelas-
tic neutron scattering. Thus, in our model, the extended re-
gion of nearly critical spin fluctuations in momentum space
is a promising candidate for the large mass enhancement.

II. ELECTRONIC BAND STRUCTURE AND
UNENHANCED DYNAMIC SPIN SUSCEPTIBILITY OF

LiV2O4

To define a reciprocal lattice for the cubic spinel structure
of LiV2O4, it is convenient first to introduce the orthogonal
basis vectors G���, ��=x ,y ,z�, of the length a*=2� /a
�0.76 A−1; here, a=8.23 Å is the lattice parameter.3 The
irreducible Brillouin zone �BZ� of the underlying fcc lattice
is a polyhedron depicted in Fig. 1, where X, Y, and Z points
on their faces are given by the end points of the vectors
±G���. A cube that encloses the polyhedron provides us with
a larger cubic BZ most appropriate in characterizing the pe-
riodic properties of ��Q ,�� in Q space. An arbitrary wave
vector Q will be denoted by Q=q+G, where q belongs to
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FIG. 1. �Color online� LDA bands originating
from V da1g and eg� states �left panel� and orbital
resolved densities of states per eV, per V atom
�right panel�. Densities of a1g and eg� states are
plotted by dashed and solid lines, respectively.
The size of circles in the left panel is proportional
to the weight of the a1g orbital in the state. The
Fermi energy is at zero.
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the first cubic BZ and G is a reciprocal-lattice vector; G
=2��n�G���, where n� are integers.

In the present work, the band structure for LiV2O4 is cal-
culated within the LDA in the framework of linear muffin tin
orbitals and using the atomic sphere approximation. The
main features of the calculated band structure agree well in
many details with the LDA results obtained by other
authors.12–14

In LiV2O4, the vanadium 3d bands and the oxygen 2p
bands are well separated by an energy of �2 eV. The octa-
hedral component of the crystal field is strong enough to split
the vanadium 3d bands into two separate and nonoverlapping
bands originating from t2g and eg orbitals. A weak trigonal
component of the crystal field produces a further splitting of
the low-lying set of t2g orbitals into �a1g+eg�� orbitals. The
latter dominate the electronic states near the vicinity of the
Fermi energy. The complexity of the band structure results in
many sheets of the Fermi surface.

Recalling that LiV2O4 is found to be a paramagnet down
to very low temperatures, we assume that the system remains
spin disordered at all temperatures and carry out a calcula-
tion of the dynamic spin susceptibility for T=0. Without ex-
ternal magnetic field, the longitudinal and the transverse sus-
ceptibility are the same.

In the multiband model under consideration, the time- and
space-Fourier transforms of the dynamic spin susceptibility
for the LDA band electrons take the following familiar forms

�G,G�
�0� �q,�� =

1

V
�
,�

�
k

���k,q;���k − q/2,�e−i�q+G�r�k

+ q/2,���k + q/2,��ei�q+G��r�k − q/2,� ,

�1�

���k,q;�� = −
f��k + q/2� − f�k − q/2�

E��k + q/2� − E�k − q/2� + 
� + i�
.

�2�

In Eqs. �1� and �2�, the plane-wave matrix elements are cal-
culated on the basis of Bloch functions �k�r�, with the band
index  and energy E�k�. Here, f�k� is the Fermi distribu-
tion function.

In the next section, the exchange-correlation enhanced
spin susceptibility �G,G��q ,�� is derived within the RPA. In
this derivation, G�G� matrix elements of �G,G�

�0� �q ,�� are
involved, which lead to the well known problem of large
matrix inversion. Since the magnetically active 3d orbitals of
vanadium ions are rather compact, a large set of the
reciprocal-lattice vectors G has to be taken into account and
thus a matrix �G,G�

�0� �q ,�� of high dimension has to be in-
verted. One encounters a similar problem when calculating
the inverse dielectric matrix for electrons in transition
metals.28 To overcome this difficulty, an elegant procedure
based on a simple and reliable approximation has been pro-
posed and developed by several authors.21,28 We are now in a
position to discuss some preliminaries of this procedure, the

central point of which is the search for a separable form for
the plane-wave matrix elements entering Eq. �1�.

Taking into account a four-site basis within the primitive
lattice cell, there are altogether 12 bands of dominant d char-
acter, which originate from partially occupied a1g+eg� orbit-
als of the vanadium ions. Therefore, one expects that the
Bloch functions �k�r� for the actual d bands near the Fermi
energy can be well described by the orbital basis set �k,�m of
Bloch functions defined in terms of atomiclike a1g+eg� orbit-
als localized on the pyrochlore lattice sites j+�:

�k,�m =
1

	N
�

j
eikjwm�r − j − �� . �3�

Here, the sum is over N j sites of the underlying fcc lattice.
The � vectors form a four-point basis. Furthermore, wm�r
− j−�� is the mth orbital from the a1g+eg� orbital set on the
pyrochlore lattice site j+�. For shortening the notation, we
use below a composite index ��m� to refer to wm�r− j−�� as
the ��m�th orbital belonging to the jth primitive lattice cell.
We recall the following unitary transformation between the
band and the orbital representations for Bloch functions:

�k�r� = �
�m

a��m��k��k,�m. �4�

Here, a��m��k� are elements of the �12�12� matrix satisfy-
ing the following orthogonality and completeness relations:

�
�m

a��m�
* �k�a��m���k� = ��,

�


a��m��k�a
���m��
* �k� = ��m,��m�, �5�

where � is the Kronecker symbol. The plane-wave matrix
elements in Eq. �1� can now be written as

�k + q/2,��ei�q+G��r�k − q/2,�

= �
��m�

�
�m

A���m����m�
� �k,q�F���m����m��k,q + G�� , �6�

where

A���m����m�
� �k,q� = a

���m���
* �k + q/2�a��m��k − q/2� , �7�

while the form factor F involves integrals over pairs of wm
orbitals localized either at the same site or at two different
lattice sites. The compactness of these orbitals suggests ne-
glecting the two-center integrals, which leads to the follow-
ing approximation for the form factor:

F���m����m��k,q + G� � ����ei�q+G��
 drwm��r�ei�q+G�rwm�r�

= ����F��m����m��q + G� . �8�

We have checked that the neglect of the overlap integrals
between the calculated d orbitals on different sites in LiV2O4
is a rather accurate approximation. The approximation re-
sults, in particular, in a k independence of the form factor F
in Eq. �8�, the advantage of which will be exploited in the
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next section. It is worth noting that in Eq. �8�, the factors
ei�q+G�� are invariant under translations by 2G in reciprocal
space.

For shortening the notation, it is helpful to replace in the
upper equations the double “orbital” index ���m����m� by a
symbol L and to introduce the following orbitally projected
expression:

�LL��q,�� =
1

N
�
,�

�
k

�AL
��k,q��*���k,q;��AL�

��k,q� .

�9�

In the following, the left-hand side of Eq. �9� is referred to as
the matrix � in the orbital L representation. The elements of
the orbital � matrix are periodic in reciprocal space: �LL��q
+G ,��=�LL��q ,��. With these notations, the LDA spin sus-
ceptibility �Eq. �1�� takes the following form:

�G,G�
�0� �q,�� = �

LL�

FL
*�q + G��LL��q,��FL��q + G�� . �10�

It is apparent from Eqs. �2�, �9�, and �10�, that the computa-
tion of three types of quantities is required in a wide range of
q, k, and �: These are the multiband matrix ��, the matrix

elements AL
�, and the form factor FL.

For an analysis of inelastic neutron scattering as a func-
tion of momentum 
�q+G�=
Q and energy 
� transfer, the
diagonal �G�=G� term �G,G�q ,��=��Q ,�� should be calcu-
lated including the relevant electron interactions. This will be
discussed in the next section. At this stage, we calculate first
the unenhanced ��0��Q ,��. This is done along three high-
symmetry directions �X, �K, and �L in reciprocal space,
which are further abbreviated by X, K, and L, respectively.
For each of these directions D, wave vectors q and G are
parallel and the use of a modulus QD of the wave vector Q
=q+G is sufficient, provided the system has space inversion
symmetry.

In the static ��=0� limit, the spin susceptibility
��0��Q ,0� is calculated, and the results are displayed in Fig. 2
as a set of functions �D

�0��Q� with wave vectors of length Q
along the directions D=X, K, L. For Q�2a*, the suscepti-

bility is considerably suppressed due to the form factor.
One notices a significant variation of �D

�0��Q� over the
whole range of the wave vectors chosen. Since we intent to
apply the RPA theory, the positions of the maxima in Q
space of the unenhanced susceptibility ��0��Q ,0� provide a
valuable information: At these wave vectors and in their vi-
cinity, one expects the strongest spin correlations when the
enhanced ��Q ,0� is calculated.

For each direction D, two maxima of �D
�0��Q� at wave

vectors Qc1
D and Qc2

D are found; the second strongly sup-
pressed maximum at Qc2

L �2a* along the L-direction is not
depicted here. The maxima at smaller Qc1

D ��Qc2
D � are located

in the first cubic BZ, while those at Qc2
D are in the next BZ.

From now on, let us refer to the three wave vectors Qc
=Qc1

X,K,L as the “critical” ones. From Fig. 2, we obtain the
following estimates: Qc1

X 0.50 Å−1, Qc1
K 0.65 Å−1, and

Qc1
L 0.75 Å−1. Remarkably, these three values occur within

the range 0.4 Å−1	Q	0.8 Å−1, where the main quasielastic
neutron scattering is observed.8–10

The frequency distribution of spin fluctuations of the sys-
tem of independent electrons may be seen from Fig. 3,
where representative results of the calculated Im �D

�0��Q ,��
are shown for three wave vectors of different lengths
chosen along each of the high-symmetry directions D. For
instance, at small wave vectors Q along the L direction,
Im �L

�0��Q ,�� shows a low-� single-peaked structure. With
increasing values of Q, the low-� peak moves upward, and
an additional broad distribution arises and grows gradually at
higher frequencies. At the critical wave vector Qc1

L , the pro-
nounced low-� peak at 
��0.2 eV still survives. However,
a large portion of the spectral weight is found now within a
broad distribution over much higher frequencies. As Q grows
further, the low-� peaked feature gets suppressed, and most
of the spectral weight is shifted to the high-frequency region.
As long as considerable spectral weight of the low-� peaked
feature of Im �L

�0��Q ,�� is present, like at QQc1
L , its posi-

tion on the � axis is regarded as a bare �unrenormalized� spin
relaxation rate ��0��Q� characteristic of low-� spin fluctua-
tions. As expected, bare values of ��0��Q�, for instance,
��0��Qc1

L �0.2 eV, are much too high to explain the slow
spin dynamics found in the experiment.8–10 Similar argu-
ments are also applicable to the behavior of Im �D

�0��Q ,��
along K and X directions displayed in Fig. 3. Therefore, in-
teractions between quasiparticles must play an essential role
to reach the observed energy scale � of spin fluctuations. In
the next section, interaction effects are taken into account in
the form of RPA theory.

III. RANDOM-PHASE APPROXIMATION APPROACH TO
THE DYNAMIC SPIN SUSCEPTIBILITY OF LiV2O4

Within linear response theory, the time-Fourier transform
of the dynamic spin susceptibility obeys the following inte-
gral equation:

��r,r�;�� = ��0��r,r�;�� +
 dr���0�

��r,r�;��K�r����r�,r�;�� . �11�

Here, K�r� is a first derivative of the spin-dependent part of
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ΓL [QQQ]

0.0 0.5 1.0 1.5 2.0
|Q| (2π/a)
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FIG. 2. �Color online� Unenhanced static spin susceptibility
��0��Q ,0�, in states per eV, per primitive cell �four V atoms�, cal-
culated along high-symmetry directions as a function of �Q�.
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the exchange-correlation potential Vxc
s taken in the local ap-

proximation. Since K�r� is a periodic function, K�r+ j�
=K�r�, its reciprocal-space counterpart K�G� is a function of
the reciprocal-lattice vectors G. After performing the double
space-Fourier transformation, Eq. �11� is expressed as

�GG��q,�� = �GG�
�0� �q,�� + �

G1G1�

�GG1

�0� �q,��KG1G1�
�G1�G��q,�� ,

�12�

with KG1G1�
=K�G1−G1��. Solving Eq. �12� requires an inver-

sion of an infinite matrix �1−��0�K�GG� in reciprocal-lattice
�G� representation. To tackle the problem, first, one has to
examine the convergence of the matrix elements of the sus-
ceptibility as the dimension of the �G�-basis increases. To
avoid this, we use below a procedure suggested and devel-
oped in Refs. 21 and 28.

The separable form �Eq. �10�� of ��0�=F*�F allows us to
solve the matrix inversion problem by transforming it from

G representation to the orbital L representation. Actually, the
iteration procedure applied to Eq. �12� yields the matrix ex-
pansion �=F*��1+M +M2+ ¯ �F, where the matrix ele-
ments of M are

ML1L3
�q,�� = �

L2
� �

GG�

FL1
�q + G�KGG�FL2

* �q + G���
��L2L3

�q,�� . �13�

Assuming a convergence of the above power series of M at
any q and �, it can be converted into a familiar form �1
−M�−1. Before doing this, let us consider the matrix elements
��FKF*�L1L2

entering the definition �Eq. �13�� of the matrix
M and specify its indices as L1= ��1m1����1m1� and L2

= ��2m2����2m2�. Then, by using the definition �Eq. �8�� for
the approximate form factor F and the inverse Fourier trans-
formation for K, a matrix element ��FKF*�L1L2

can be pre-
sented as a space integral of a product function of K�r� and
two pairs of localized orbitals wm�r− j−��. In general, there
are one-center and two-center integrals. We neglect interac-
tions between different sites and retain only the one-center
integrals. Thus, we use the approximation

� �
GG�

F�q + G�KGG�F
*�q + G���

L1L2

� ��1�2
K�m1�m1;m2�m2� ,

K�m1�m1;m2�m2� = v0

v0

drwm1�
�r�wm1

�r�K�r�wm2�
�r�wm2

�r� .

�14�

Furthermore, we keep only the diagonal matrix elements
K�m ,m ;m ,m� which are assumed to be independent on m.
Thus, the unique coupling constant K is the only adjustable
parameter in our approximate approach. Finally, we arrive at
the following expression for the enhanced spin susceptibility:

�G,G��q,�� = �
LL�L�

FL
*�q + G��LL��q,����1

− K��q,���−1�L�L�FL��q + G�� , �15�

where the elements of the matrix ��q ,�� are given by Eq.
�9�. The essence of the procedure is instead of inverting the
large matrix needed to solve Eq. �12� to invert the smaller
matrix �1−��0�K�LL� in the orbital basis.

Because of the composite character of orbital indices L,
matrix operations in L representation require additional com-
ments. In particular, matrix elements of a transposed matrix
�̃ are related to those of the direct matrix as �̃L1L2

=�L̄2L̄1
,

where each composite index Ln= ��n�mn����nmn� is also trans-

posed to give L̄n= ��nmn���n�mn��. Therefore, for a Hermitian
conjugate matrix �†, one has �L1L2

† =�
L̄2L̄1

*
. There are 144 dis-

tinct indices L; therefore, � is a �144�144� matrix. The
large number of elements �LL��q ,�� that have to be deter-
mined for each value of q and � makes the numerical cal-
culations of � a rather complicated problem. At some stage
pointed out below, we will introduce a simplification �“diag-
onal” approximation for the matrix �� allowing us to reduce
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FIG. 3. �Color online� Unenhanced Im ��0��Q ,�� calculated at
three different wave vectors chosen along the high-symmetry direc-
tions D=L, K, X. The critical wave vectors Qc1

L,K,X are denoted by
the Cartesian component lengths 0.583, 0.667, and 0.667 �in units
of a��, respectively.
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the matrix dimensionality and, thus, make a numerical analy-
sis feasible.

According to definition �9�, the matrix ��q ,�� can be
generally decomposed as follows:

��q,�� = ��1��q,�� + i��2��q,�� . �16�

Here, the elements of the Hermitian matrix ��1�= ��+�†� /2
are even functions of �, while those of the anti-Hermitian
matrix ��2�= ��−�†� /2i are odd functions of �. Note that
��2��q ,0�=0 for all q.

Let us consider the static, �=0, limit and solve the eigen-
value problem for the Hermitian matrix ��q ,0�=��1��q ,0�:

�
L�

�LL��q,0�VL�
�k��q� = ��k��q�VL

�k��q� , �17�

where VL
�k� are components of the kth eigenvector with the

eigenvalue ��k�. The static spin susceptibility takes the fol-
lowing form:

�G,G�q,0� = �
k

�F�k��q,G��2
��k��q�

1 − K��k��q�
, �18�

with F�k��q ,G�=�LFL
*�q+G�VL

�k��q�. In solving Eq. �17�, we
adopt a diagonal approximation21 which consists in retaining
in �LL� only the diagonal composite indices, L= ��m���m�
and L�= ���m�����m��. Then, �LL� becomes a �12�12� ma-
trix. A partial justification is that the moduli of the off-
diagonal, ���m��� ��m�, matrix elements �Eq. �7�� are small
in our calculations. To assess the accuracy of the diagonal
approximation, a small set of arbitrary wave vectors q was
chosen, and Im ��0��q ,�� was calculated �at G=G�=0� as a
function of � including either all or only diagonal elements
of the matrix �. At each q probed, we found rather tiny
differences between the two curves.

Like in Sec. II, we consider below only the high-
symmetry X, K, and L directions in reciprocal space. For
each direction D, let us pick out the critical wavevector Qc

D

and rearrange the set of ��k��Qc
D�=�D

�k� in the following order:
�D

�1���D
�2���D

�3��¯. For brevity, a set of nondegenerate �D
�k�

is discussed here. The first members of the set �D
�k� at k

=1,2 , . . ., are positive in order to ensure �G,G�q ,0��0, pro-
vided K is below some critical value Kc. It is apparent from
Eq. �18� that along the D direction, the �D

�1� mode is the most
critical one in the sense that 0�1−K�D

�1��1−K�D
�2��1

−K�D
�3��¯. A magnetic instability occurs if the condition

1−K�D
�1�=0 is fulfilled. This defines Kc. Among the three

directions under consideration, the smallest Kc=0.49 eV oc-
curs along the L direction at Qc1

L 0.75 Å−1. Since for X and
K directions the instability conditions are fulfilled at values
of K that are close but somewhat larger than Kc=0.49 eV,
the latter value is chosen to be the best estimate of the critical
value of the exchange-correlation parameter K. In LiV2O4,
spin dynamics of a magnetically disordered state with
strongly enhanced spin fluctuations may be described by Eq.
�15� with the parameter K approaching Kc from below.

The enhancement of the static susceptibility �Eq. �18�� in
a spin disordered state is controlled by a generalized Stoner
factor SK�Q�= �1−K��1��Q��−1, which is a function of both

K and Q, with the obvious property SK�Qc1
L �→� as K

→Kc. Thus, the Stoner factor describes the proximity of the
system to the instability. As may be seen from Fig. 4, the
strongest enhancement of the static susceptibility �Eq. �18��
is found for spin fluctuations at and nearby the critical wave
vectors Qc and at Qc2

X . At the same time, the Stoner factor is
of a moderate size for the remaining wave vectors.

Very similar Q dependence of the exchange-correlation
effects is seen from the calculated imaginary part of the en-
hanced dynamic spin susceptibility Im �D�Q ,��.

Results for the calculated Im �D�Q ,�� are shown in Fig.
5. They have to be compared with the unenhanced spin sus-
ceptibility Im �D

�0��Q ,�� plotted in Fig. 3. Let us follow the
evolution of the � dependence of Im �L�Q ,�� along the L
direction with increasing K→Kc. Like in Fig. 3, three char-
acteristic wave vectors are chosen to distinguish the behavior
at critical QL�Qc1

L from those at smaller and larger wave
vectors. As expected, the net frequency dependence of
Im �L�Q ,�� is most strongly affected at Qc1

L . In the upper
panel of Fig. 5, a large portion of the spectral weight is
transferred to the low-energy region, though at Qc1

L , the over-
all spectral distribution still extends up to �2 eV. The pro-
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FIG. 4. �Color online� Evolution of the static spin susceptibility
��Q ,0� for different values of the coupling constant K→Kc

=0.49 eV. Representative values of K �in eV� chosen are shown in
the bottom panel.
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nounced low-� feature seen at Qc1
L strongly dominates those

at smaller and larger wave vectors.
Generally, in the low-� limit, the imaginary part of

��Q ,�� can be accurately approximated by

Im ��Q,�� � zQ��Q��/��Q� , �19�

where the weight factor zQ�1. Again, by choosing the L
direction as the most representative one, we have compared
the initial gradients of several curves representing
Im �L�Qc1 ,�� for different K	Kc and found that the initial
slope is proportional to SK

2 �Qc1
L � and thus grows very fast as

K→Kc. The factor SK
2 �Q� stems from the Stoner enhanced

static susceptibility, ��Q��SK�Q���0��Q�, and a renormaliza-
tion of the spin relaxation rate, ��Q����0��Q� /SK�Q�. Far
away from Qc1

L , the same relation holds, however, with much
weaker enhancement factor, SK

2 �QL��SK
2 �Qc1

L �. Concerning
the evolution of Im �D�Q ,�� for D=X, K with increasing K,
our calculations show a similar behavior, i.e., strongly en-
hanced spin fluctuations at QD�Qc

D in the low-� region.
If the value of the adjustable coupling parameter K is

tuned close to Kc, then ��Qc� may be reduced to values as

low as the experimentally observed ones. However, this
should not be taken as a literal explanation of experimental
data because close to the critical condition, RPA becomes
less reliable. Furthermore, in our approach, we ignored the
quantitative contribution of intersite charge correlations to
the reduction of ��0�. Instead, our purpose is to show that like
in many other materials, in the case of LiV2O4, the RPA
theory is a useful tool in taking into account the qualitative
effects of strong electron correlations, which provide a basic
mechanism for a strong reduction of spin relaxation rate in a
broad region of Q space.

To complete our analysis, it is tempting to associate the
coupling parameter K with the exchange-correlation integral
I �i.e., the local Stoner parameter� calculated within the local
spin-density approximation �LSDA� at T=0. The corre-
sponding procedure was suggested and discussed in Refs.
29–32. We performed calculations for LiV2O4 with the
Perdew-Wang form for the exchange-correlation potential
and found I=0.65 eV. Assuming this estimate as the bare
value of the coupling K0= I and taking the paramagnetic
static susceptibility ��0��Q� calculated at T=0, we obtain
K0��0��Q��1 both for Q=0 and Q=Qc. This implies an
unstable paramagnetic state in LiV2O4 at T=0. The instabil-
ity of a paramagnetic state obtained in LSDA calculations for
LiV2O4 was also reported in Refs. 13 and 14. At first sight,
this observation is in conflict with the assumptions of a para-
magnetic ground state.

However, the following arguments show that the actual
value of the coupling parameter K is smaller than the bare
value K0 and may be well below the critical value Kc be-
cause of possible strong renormalization due to zero-point
spin fluctuations. Actually, because we apply LSDA theory,
the calculated exchange-correlation integral I has to be con-
sidered as a mean-field value. The self-consistent renormal-
ization �SCR� theory33,34 of spin fluctuations in nearly
ferro-or antiferromagnetic metals modifies the condition for
a magnetic instability with respect to the mean-field predic-
tion. At T=0, the main effect of the SCR correction to the
RPA spin susceptibility is a reduction of a bare, mean-field
coupling parameter entering the Stoner enhancement factor.
In our notation, this reads as

K = K0 − �FQ��
�

�m�
2�0. �20�

Here, �FQ� is the mode-mode coupling constant for dominant
spin fluctuations at QQc, and �m�

2�0 is the mean square
local amplitude of the spin fluctuations at T=0:

�m�
2�0 =

1

2�



0

�

d�
1

N�
q

Im ��q,�� . �21�

The exact dynamic spin susceptibility in Eq. �21� can be
replaced approximately by the RPA expression with the ac-
tual coupling parameter K. Thus, Eqs. �20� and �21� lead to a
complicated equation for K. As �FQ� is still unknown, we
cannot give a quantitative estimate for K from the equation
obtained and restrict ourselves to the following remark on its
property: Provided a large region of q space is occupied with
well developed and enhanced spin fluctuations, the mean-
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FIG. 5. �Color online� Enhanced Im ��Q ,�� calculated at K
=0.95Kc for the same wave vectors as in Fig. 3. Note that the size
along the vertical axis is amplified to that in Fig. 3.
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field coupling K0�Kc is reduced to a value below Kc. The
distribution in q space of enhanced low-� spin fluctuations is
discussed in the next section. These fluctuations contribute
considerably to the renormalization of the coupling constant.
Whether the resulting value of K occurs near the critical Kc
depends on the energy parameter �FQ� that can now be re-
garded as the only adjustable parameter of the theory.

Now, we discuss to which extent geometrical frustration
inherent in the pyrochlore lattice can influence magnetic
properties of itinerant electron system.

The concept of frustration is primarily used for localized
spin systems. In a given frustrated lattice, it means that the
exchange energy of nearest neighbor �nn� antiferromagnetic
bonds between local moments cannot be minimized simulta-
neously for each bond. On the other hand, for free electrons
with nn hopping on the same lattice, there is no frustration in
a similar sense. However, the “corner sharing tetrahedra”
property of the pyrochlore lattice leads to flat energy bands
for the electrons. This can be seen in the LDA bands in Fig.
1, where the topmost unoccupied bands derived from the t2g
vanadium orbitals have almost no dispersion. Next, we show
that the spin susceptibility ��0��Q� of LiV2O4 calculated in
the limit of noninteracting electrons is strongly affected by
these nearly flat bands. To this end, we divide the set of 12
bands, Fig. 1, into two subsets. The first contains the band
states with energies below 0.4 eV, while the second subset is
formed of the upper bands. To distinguish two kinds of
particle-hole excitations, the dynamic spin susceptibility can
be written now as ��0��Q ,��=�a

�0��Q ,��+�b
�0��Q ,��. Both

the intra- and interband electron transitions between band
states from the first subset are allowed and contribute to �a

�0�,
while only interband transitions between occupied k states
from the first subset to unoccupied �k+Q� states from the
second subset contribute to �b

�0�. With the use of the
Kramers-Kronig relation, the static susceptibility ��0��Q�
=�a

�0��Q�+�b
�0��Q� is calculated and the results for the L di-

rection is shown in Fig. 6. First, the contribution �a
�0��Q�

varies strongly with Q with the maximum at Q=0 that
strongly exceeds a value at the critical Qc

L. In contrast, for
the second contribution, one has �b

�0��0�=0 because of the
orthogonality condition given by Eq. �5� and a smooth be-
havior as a function of Q, since for finite Q, the wave func-

tions of different bands are no longer orthogonal. Because of
this contribution, the dominant maximum of the total static
susceptibility ��0��Q� is shifted away from the BZ center to a
critical wave vector Qc

L. Thus, for interacting electrons on the
pyrochlore lattice, antiferromagnetic fluctuations are more
preferable than ferromagnetic ones at least at T=0. The pres-
ence of a large one-particle density of states associated with
nearly flat electronic bands not far from the Fermi energy
explains this preference.

Another aspect of geometrical frustration is the suggested
strong degeneracy �multiplicity� of critical wave vectors Qc.
Expressed differently, the near Q independence of the sus-
ceptibility ��Q� in a large sector of the BZ means that on
approaching the critical interaction Kc, the system cannot
choose a unique wave vector of a magnetic structure which
minimizes the free energy of spin fluctuations. Instead, it is
frustrated between different structures with different wave
vectors and equally low free energy.

IV. DISCUSSION

In this section we want to put our results in a more gen-
eral context. Quasielastic neutron scattering studies of pow-
der samples of LiV2O4 suggest that in the low-T limit and in
a range of wave vectors, 0.4 A−1	Q	0.8 A−1, the vana-
dium spin system exhibits strongly enhanced and slow spin
fluctuations. A complete theoretical analysis of these data
would require calculations of the dynamic spin susceptibility
in a wide range of �Q ,�� space. In principle, that is possible
within our approximation scheme except for the large com-
putational time required. The calculation of ��Q ,�� can be
performed in any domain of �Q ,�� space, not only along the
high-symmetry Q directions. However, even the limited re-
sults of Secs. II and III provide a valuable and essential piece
of information on the spin-fluctuation dynamics in LiV2O4.

Actually, a particular Q dependence of the calculated un-
enhanced spin susceptibility ��0��Q ,0�, which involves the
actual band structure of LiV2O4, clearly displays in Fig. 2
that the particular critical wave vectors Qc1

X,K,L are grouped in
the range 0.5 A−1	Qc	0.8 A−1, where the pronounced
quasielastic neutron scattering is observed. However, the
bare spin relaxation rate ��0��Q��200 meV is much too
large to be compatible with experimental observations. This
disagreement has to be attributed to strong electron correla-
tions not included in LDA calculations. Taking them into
account by means of a RPA, we have obtained an enhanced
susceptibility ��Q ,�� as is seen by comparing Figs. 3 and 5.
As the coupling tends to the critical value, K→Kc, spin
fluctuations near Qc are strongly renormalized: A large frac-
tion of the spectral weight is shifted to low frequencies, thus
resulting in an enhanced low-energy response.

Next, we want to discuss in more detail the part of Q
space with slow spin fluctuations. The wave vectors Qc

=Qc1
X,K,Z are positioned on a smooth three dimensional sur-

face to which we refer as critical qc surface. This surface is
in the first cubic Brillouin zone, and we shall replace Q by q
in that case. We have checked by additional calculations that
spin fluctuations are slow everywhere on the qc surface.
Moreover, the broad maxima of ��q ,0� in Fig. 4 suggest that
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FIG. 6. �Color online� Two contributions �a
�0��Q� and �b

�0��Q�
�see text� to the unenhanced static spin susceptibility ��0��Q� calcu-
lated along the L direction.
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the region of slow fluctuations extends over a width of
��qc�−�q /2�� �q�� ��qc�+�q /2�, while the qc surface lies
midway between two bounds. The lower bound of this region
is shown by the surface depicted in Fig. 7. It intersects the X
axis �and the equivalent Y and Z axes� at �qc1

X −�q /2�
0.5a�0.4 Å−1�q1

X. The upper bound is a congruent sur-
face crossing the X axis at �qc1

X +�q /2�0.8a�0.6 Å−1

�q2
X. Thus, q1

X and q2
X are minimal radii of two bounds. The

width �q is estimated to be �q0.3a�	0.23 Å−1. Multiplic-
ity of critical wave vectors distributed over an extended re-
gion in q space is a consequence of geometrical frustration in
the pyrochlore lattice.

The suggested distribution in q space of strongly en-
hanced and slow spin fluctuations is compatible with the
angular averaged data derived from inelastic neutron scatter-
ing on polycrystalline samples.8–10 Indeed, as seen from Fig.
4, the next pronounced maximum of ��Q ,0� is found along
the X direction at Qc2

X 1.4a�1 Å−1. Together with the
other equivalent directions, it makes up a six-point manifold,
but their partners at Qc2

K,L are strongly suppressed by the form
factor. Therefore, this secondary manifold is not resolved in
the experiment.

Many metallic systems with enhanced spin fluctuations
show dramatically renormalized thermodynamic properties,
for instance, a tendency to the formation of heavy-fermion
properties: a strongly enhanced linear term �T of the specific
heat and a concomitantly enhanced magnetic susceptibility
�. In many 4f- and 5f-derived heavy-fermion systems, the
spin fluctuations are soft �have low �� over the large portion
of the reciprocal space, which provides a large value of �. A
different case is the nearly antiferromagnetic metal
Cr0.95V0.05, which is close to incommensurate magnetic or-
der. In contrast to the heavy-fermion systems, Cr0.95V0.05 has
a typical, unenhanced value of the measured �, which is
explained35 to be due to the small region in the momentum
space occupied by the exchange enhanced soft spin fluctua-
tions in this material.

It is promising now to develop a spin-fluctuation theory
for LiV2O4 and estimate the contribution of spin fluctuations

to the low-T specific heat. The theory is aimed at an approxi-
mate description of the low-� behavior of the calculated
��q ,�� in terms of overdamped oscillators. One has to start
with the following definition of the spin-fluctuation free
energy24–26:

Fsf =
3

�
�
q



0

�c

d�Fosc���
z�q���q�

�2 + �2�q�
, �22�

where Fosc���=kBT ln�1−exp�−
� /kBT�� is the thermal part
of the free energy of an oscillator, z�q� is the spectral weight
of a low-� spin-fluctuation mode, and �c is the cutoff fre-
quency. The specific heat is given by Csf�T�= �−T /N�
���2Fsf /�T2�, where N is the number of V atoms in the
system. In the limit T→0, simple calculation leads to the
familiar expression for the spin-fluctuation contribution �sf
=Csf�T� /T to the specific heat coefficient �:

�sf =
kB

2�

N
�
q

z�q�

��q�

, �23�

where the summation is over the cubic BZ.
Our aim now is to propose a reliable simple model de-

scribing variations of z�q� and ��q� in q space. The model
adopts the most essential low-� properties of ��q ,�� calcu-
lated for LiV2O4. We start by partitioning the q space into
three regions: �I� the interior of the surface depicted in Fig. 7,
i.e., �q�� ��qc�−�q /2�, �II� the critical region ��qc�−�q /2�
� �q�� ��qc�+�q /2�, and �III� the periphery, �q�� ��qc�
+�q /2�, of the cubic BZ. Within layer �II�, we approximate
��q� and z�q� by constants � and zII�1, respectively. Then,
in region �I�, �I�q�= �q /q1�� and zI�q�=1− �1−zII�q /q1,
which provides a piecewise continuity between regions �I�
and �II�. Here, q1�0.5a� and q2�0.8a� are minimal radii of
the lower �Fig. 7� and the upper bound surfaces for the criti-
cal region. Finally, as suggested from the analysis of
Im ��q ,�� at large q, in �III�, the weight z�q� decreases fast
to zero. Therefore, this contribution is neglected below. After
performing the integration in Eq. �23�, we arrive at the fol-
lowing expression:

�sf =
�2

32
kB

2�� q1

a��3

+ 2zII� q2

a��3� 1


�
. �24�

In Eq. �24� an additional factor 1.5 takes into account a de-
viation of the critical surface shape from a spherical one.

An analysis of the calculated Im ��q ,�� leads us to a
rather rough estimate zII1/4, while the reported8–10 low-T
values of 
� in the critical region of q fall within the limits
of 0.5 meV�
��5 meV. By substituting these parameters
into Eq. �24� and recalling that there are two V atoms in the
formula unit, we obtain the estimate for �sf as 300��sf
�30 in units of mJ/K2 mol. This estimate shows that slow
spin fluctuations over an extended region in q space may
explain the size of the enhanced specific heat coefficient in
LiV2O4.

It is instructive to estimate the Sommerfeld-Wilson ratio
RW=�2kB

2�S�T=0� / �3�B
2��, where �B is the Bohr magneton.

Taking the upper bound for � coefficient as �
�300 mJ/K2 mol and the value �S�T=0�=��0,0� calculated

FIG. 7. A surface in Q space representing the lower bound for
the critical region of strongly enhanced slow spin fluctuations. The
upper bound is the larger congruent surface at a distance ��Q �
�0.3a� from the smaller one shown.
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for K=0.95Kc in our theory, one obtains RW5. This result
is in a contrast with the estimate RW�0.1 obtained within
the RPA theory,27 where both spin and orbital critical fluc-
tuations were assumed to contribute.

V. CONCLUSIONS

The enhanced dynamic spin susceptibility of the multi-
band paramagnetic spinel LiV2O4 was calculated on the ba-
sis of the actual LDA band structure of this metallic system.
It was shown that the complexity of the band structure re-
sults in an unenhanced spin susceptibility that displays a key
information about spin fluctuations in this material, namely,
the position in Q space of dominant spin correlations. The
calculated moduli of these critical wave vectors Qc located
�at T=0� obviously far away from the Brillouin zone center
are in a good agreement with experiment.

The susceptibility enhancement due to electron interaction
is described and calculated in the RPA approach adopted to
the actual multiband system with nearly degenerate d orbit-
als. The most substantial approximation we made is the ne-
glect of the orbital dependence and the off-diagonal matrix

elements of the matrix K defined by Eq. �14�. A wave-vector
dependence of K is also omitted, which, we believe, is less
crucial since the vanadium d orbitals are well localized and
strong on-site electronic correlations dominate. The approach
developed above may be extended in the following ways.
Provided a particular model of electron interaction is chosen
and parametrized suitably, matrix elements of the K matrix
entering expression �15� may be evaluated.36 The resulting
few-parameter theory then can be put on a quantitative
ground by comparing the calculated model results with avail-
able experimental data.

Despite the approximations used in the description of
electron correlations in a multiband electronic system such
as LiV2O4, we believe that the approach developed here en-
abled us to catch, in accord with experimental observations,
the most essential effect of correlations: enormous magnifi-
cation and slowing down of spin fluctuations at critical wave
vectors Qc.
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