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Light wave behaviors in two-dimensional quasiperiodic regular and generalized decagonal Penrose-tiling
dielectric media, which display similar long range structure order and different local configurations, are studied
comparatively in relation with both global and local orders through the approximant structures. We show that
these structures generate analogous photonic band gaps, which are determined by the lattice global average
order. Light localization, with frequency levels lying inside the main photonic band gaps, occurs in local
regions of high symmetry patterns in the generalized decagonal structure, while it is absent in the regular
Penrose tiling. This is analyzed in terms of local symmetry that favors resonances between neighbor scatterers,
as well as relations between local and global structure configurations that determine the localized mode
frequency levels relative to the photonic band gaps.
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I. INTRODUCTION

Quasiperiodic �QP� dielectric media are intensively
studied1–4 both for their potential applications on photonics
due to the flatband structures and near-isotropic photonic
gaps and their fundamental interest, as these nonperiodic but
yet determinist structures provide instructive examples for
investigating light wave behaviors in complex dielectric me-
dia in relation to structure environments at various scales,
especially the effects of global average order and local con-
figurations on photonic gap opening and light localization.
Indeed, investigations on photonic states in QP dielectric me-
dia have shown that two-dimensional �2D� QP and related
dielectric structures can support isotropic band gaps,1 and
that the lowest main photonic band gap is related to the
average interplane distance in the dielectric structure.2 It is
also reported that light localization occurs in 2D dielectric
QP structure of dodecagonal �12-fold� symmetry inside the
photonic band gaps.3 The same work concluded, however,
that the localization phenomenon is absent in 2D QP struc-
tures of lower symmetry, namely, the decagonal �tenfold� and
octagonal �eightfold� ones, due to long-range correlations.
We have shown, in a previous study, that light localization
does occur in octagonal QP dielectric structures, but at the
band-gap edges, and that the localization mechanism can be
attributed to antibonding type local resonances, favored by
the high degree of symmetry of the local patterns. Further,
dislocalization effect is induced by introduction of disorders
through structure randomization. The band structures are,
however, not significantly modified.4

This raises the general problem of electromagnetic wave
behavior in QP dielectric structures, more precisely, the rela-
tion between the electromagnetic modes and the QP struc-
tures at long- and short-range translational and rotational
symmetry orders. A QP structure is generally characterized,
at long distance, by quasiperiodic translational order and glo-
bal average rotational symmetry incompatible with periodic-
ity, and, at local scale, by symmetry centers that display the
maximum global rotational symmetry or only the symmetry
of a subgroup. For the structures mentioned above, the local-

ization occurs, in the physical space, at local scales on maxi-
mum symmetry local centers �respectively 8- and 12-fold
rings in the octagonal and dodecagonal structures�, indicat-
ing local interactions as underlying mechanism. In the fre-
quency spectra, the localized modes have their frequency
levels lying inside or at the edge of the photonic band gaps,
which in turn depend on the long-range order of the dielec-
tric structure. Indeed, it is proposed that the isotropic photo-
nic band-gap opening is determined by the global transla-
tional and rotational orders in octagonal QP structures.2

Moreover, the relations of the dislocalization effect as well as
the band structures to the structure disorders4 should be con-
sidered at both local and global structure scales.

In the present work, we investigate the electromagnetic
wave behaviors in relation to both local and global orders in
Penrose tiling and related QP structures. Indeed, a compara-
tive study of these different yet intimately related tilings will
allow us to understand the structure effects and their conse-
quences on light wave states at different structure scales in
QP dielectric media.

II. APPROXIMANT STRUCTURES

Penrose tiling and related structures are probably the best
known QP lattices, and the most studied model structures in
relation to QP metallic alloys. This family of tilings is inter-
esting for our purpose since it displays various local arrange-
ments with different symmetries under similar long-range
global orders. Such structures have been studied as well for
various purposes as potential photonic band-gap materials,
and most attention are focused on gap properties5 as well as
laser effects6 and structure-defect related localization.7 No
attention was paid, however, to the structure configuration
particularities at global and local scales, and no particular
light wave behavior has been reported in relation to different
local structure environments.

Indeed, there are many ways to construct Penrose tilings
belonging to various local isomorphism classes. We are in-
terested here in two kinds of structures, i.e., the regular Pen-
rose tiling and the generalized decagonal Penrose tiling. Both
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these two structures exhibit global average tenfold �C10�
symmetry and long-range decagonal bond-orientational sym-
metry, but with different local configurations. Most notably,
the highest local symmetry center in the regular Penrose til-
ing displays pentagonal �C5� symmetry, which belongs only
to a subgroup of the global average symmetry group, while
that in the generalized decagonal Penrose tiling displays C10
symmetry, belonging to the maximum global average sym-
metry group. We will consider the periodic approximant
structures of these Penrose tilings, which locally reproduce
structure patterns of their parent QP lattices. The latter can,
in turn, be successively approached by their approximants of
increasing order and size. More importantly, exact solution
of Maxwell’s equations can be obtained on approximant
structures displaying periodic boundary conditions.

Penrose tilings are formed by two kinds of rhombi, both
of edge length a, the oblate one with 2� /5 inner angle and
the prolate one with 2� /10 inner angle. For simplicity, we
will use a direct tiling approach to generate approximant
structures. Analogous structures can also be obtained using
the cut-and-projection method.8 Figure 1�a� displays an ap-
proximant whose unit cell is in the form of the oblate rhom-
bus. This structure contains 29 nodes per cell, and is charac-
terized by two fundamental lengths Wn� and Hn that
correspond, respectively, to the width and the height of the
cell,

Wn� = �5a�n�−2,

Hn = �5a�n−1/�1 + �2, �1�

with n�=4, n=5, and �= �1+�5� /2. It is equivalent to the
approximant �4,5� of the regular Penrose tiling in the nota-
tion of Ref. 9 and will be referred as such in the following.

Approximants of higher order can be obtained from the
�4,5� structure. It is straightforward to construct a higher or-
der approximant structure simply through inflation, by de-
composing the rhombus tiles into smaller ones and fitting
them together, and introducing periodical tiling mismatches
�or “phasons”� at the cell boundaries10 to accommodate the
periodicity. Figure 1�b� displays a � inflated structure �the
tiles are decomposed into smaller ones by a factor of ��. The
unit cell size corresponds to �n� ,n�= �5,6� in Eq. �1�. This
structure will be referred to as the �5,6� approximant of the
regular Penrose tiling.

An approximant displaying local tenfold symmetry of the
decagonal Penrose tiling can also be obtained from the regu-
lar Penrose tiling. To achieve this, we first deflate the �4,5�
structure by a factor of 1 /�2 by decomposing the rhombus
tiles into larger ones, which are subsequently inflated by a
factor of �3, so that the final structure is also � inflated as
compared to the �4,5� approximant, but with a different tile
rearrangement for the inflation such that the inflated tiling
possesses tenfold local environments �Fig. 1�c��. The ob-
tained structure is locally similar to the �3 inflated Tb decago-
nal tiling obtained through pentagrid method.11 It has the
same size as the �5,6� approximant of the regular Penrose
tiling and will be referred to below as the �5,6� approximant
of the decagonal Penrose tiling.

(a)

(b)

(c)

FIG. 1. ��a� and �b�� Two approximants ��4,5� and �5,6�� of the
regular Penrose tiling containing, respectively, 29 and 76 nodes. �c�
A �5,6� approximant of the decagonal Penrose tiling containing the
same number of nodes and the same tiles as �b�. The unit cells are
indicated by solid lines and the structure-inflation relation by
dashed lines. A “ribbon” is shadowed in �a�.
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This simple approach directly yields two �5,6� approxi-
mants with unit cells of the same size and containing the
same number of lattice nodes �76� as well as the same num-
ber of prolate and oblate tiles �29 and 47, respectively�. Their
structures can be viewed as “isomeric,” which are con-
structed by exactly the same rhombi, but with different local
arrangements.

All the three approximant structures display similar global
orders, i.e., average pseudo-ten-fold symmetry, decagonal
bond-orientational symmetry, as well as similar interline dis-
tances �see below�. These structures will allow us to investi-
gate the effects of global and local orders on the electromag-
netic wave states.

III. LIGHT WAVE BEHAVIORS

The dielectric structures are formed by scatterers that are
infinitely high dielectric cylinders of �=13 and radius

r=0.24a. The cylinders are placed perpendicular to the lat-
tice plane at the lattice nodes in an air background, with a
corresponding filling rate f �22% for all the three structures.
Maxwell’s equations are solved for TM polarization using a
plane-wave method. The obtained band diagrams are dis-
played in Fig. 2. Two main photonic band gaps are obtained
for all the three structures. The most notable difference be-
tween the regular and decagonal approximants is that, for the
decagonal approximant, three modes are shifted into each of
the two gaps from the lower frequency ranges as compared
to approximants of the regular tiling �this point will be dis-
cussed bellow in relation to local structure patterns�. As far
as the gap characteristics are concerned, all these structures
display midgap frequencies of, respectively, about �̄gap
�0.32 and 0.54��a /2�c� for the two photonic gaps, with
comparable gap widths between the structures. Indeed, al-
though the two gaps for the decagonal �5,6� approximant are
slightly larger than those for the regular �5,6� approximant,
the differences are less than 4%. We note also that the pho-
tonic bands outside the gaps have similar structures for the
two �5,6� approximants, indicating that light wave propaga-
tion in these frequency ranges is not substantially modified
by local structure configuration differences.

A. Photonic band gaps

Let us first consider the gap positions in relation to the
structure parameters. There are various discussions concern-
ing the gap opening mechanism in Penrose-tiling-related
structures.5 Here, we show that the main photonic gaps can
simply be related to the global average order of the dielectric
structures through fundamental lattice parameters, though the
situation is rather complex due to the tenfold global rota-
tional symmetry of the QP structures that is reduced to a
twofold one in passing to approximant structures. The Fou-
rier transforms of these three structures are displayed in Fig.
3. We note that, for all the three approximants, the strong-
intensity components are almost identical in positions, their
corresponding wave vectors have, therefore, similar magni-
tudes and directions. Photonic band gaps are determined by
strong-intensity Fourier components.2 Therefore, the fact that
the photonic gaps display nearly the same midgap frequen-
cies suggests that it is the strong-intensity Fourier compo-
nents corresponding to similar wave vectors in the three
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FIG. 2. Band diagrams of ��a� and �b�� the �4,5� and �5,6� ap-
proximants of the regular Penrose tiling and �c� the �5,6� approxi-
mant of the decagonal Penrose tiling. Arrows in �c� indicate the
states inside the two main band gaps; two of them have close fre-
quency levels.

(b) (c)(a)

D1

D2D2
D1

D2
D1

FIG. 3. The Fourier transforms of ��a� and �b�� the �4,5� and
�5,6� approximants of the regular Penrose tiling and �c� the �5,6�
approximant of the decagonal Penrose tiling. Circles and labels �D1
and D2� indicate the high intensity components responsible for the
gap opening.
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structures that are responsible for the gap opening.
Indeed, the gap position in a dielectric structure is gov-

erned by both dielectric and geometrical parameters. The
midgap frequencies �gap are related to the wave vector Kp on
which the gap is opened through the following relations:

�gap
2 = c2k2/�̄ �2�

and

k =
1

2
2�Kp, �3�

where �̄ stands for the average dielectric constant.
For the three approximants, the midfrequency of the two

main photonic gaps corresponds, respectively, to Kp1
�1.22/a and Kp2

�2.05/a. These values are very close to
the average radius of two pseudodecagonal rings defined by
two sets of strong-intensity Fourier components �the two
component sets for the �4,5� approximant are indicated by
circles in Fig. 3�a��. Indeed, as shown by Table I, where the
maximum and minimum values of the wave-vector magni-
tudes for the two rings are listed for the three approximants,
the wave-vector magnitudes of the two pseudodecagonal
rings agree well with the two Kp values. This indicates
clearly that the gap opening is determined by the Fourier
components of the dielectric function corresponding to these
wave vectors.

Let us consider two spots, labeled D1 and D2, in each
Fourier spectrum in Fig. 3. They are located each on one of
the pseudodecagonal rings. Let us refer to the wave vectors
on these spots, respectively, as KD1

n and KD2
n . Their respec-

tive magnitudes have the general forms

KD1
n = 2Fn/Hn,

KD2
n = 2Fn+1/Hn, �4�

with n the approximant order and Hn the unit cell height
which is defined in Eq. �1�. Fn is the nth order Fibonacci
number that can be expressed as

Fn = ��n − �− ��−n�/�5. �5�

We get, for, respectively, the �4,5� and �5,6� approximants,
KD1

5 �1.241/a, KD2
5 �1.986/a and KD1

6 �1.227/a, KD2
6

�1.994/a. The wave vectors in an approximant structure are
derived from that of the parent QP structure. In the present

case, KD1
n and KD2

n are related to two wave vectors, which
will be referred to as KD1 and KD2, of the regular and the
decagonal QP lattices that have almost identical Fourier
transforms. As a matter of fact, KD1 and KD2 are parallel to
KD1

n and KD2
n , and belong each to a set of ten wave vectors

�K�0,1,1,1̄,1̄� and K�0,2,1,1̄,2̄�, respectively, in a five-dimensional
notation� that point to the vertices of a perfect decagon. Their
respective magnitudes are

KD1 = 2�2/a�5�1 + �2� � 1.231/a ,

KD2 = �KD1 � 1.992/a . �6�

The wave vectors of a QP lattice are shifted when the QP
lattice is transformed into an approximant. The latter is ob-
tained, in the present case, by substituting � with Fn+1 /Fn.9

The approximant and the QP lattice wave vectors considered
above are related to each other through the relations

KD1
n =

�5Fn

�n KD1,

KD2
n =

�5Fn+1

�n+1 KD2. �7�

It is straightforward, taking into account Eq. �5�, to check
that KD1

n and KD2
n tend to KD1 and KD2 for n tending to

infinity, i.e., Fn+1 /Fn tending to �. The vectors KD1
n and KD2

n

of the approximants considered here are, thus, derived from
the wave vectors KD1 and KD2 of the QP structures. The
same argument holds for −KD1

n and −KD2
n , which are derived

from −KD1 and −KD2.
More notably, KD1

n and KD2
n are parallel to “ribbons”

formed by oblate and prolate rhombi that lie parallel to the
long diagonal of the rhombus unit cell. One of the ribbons is
shadowed in Fig. 1�a�. The relative occurrence frequencies
for the oblate and prolate rhombi in such ribbons for an
approximant of order �n� ,n� are Fn−1 :Fn−2. The vector KD1

n

has its magnitude equal to the inverse of the average distance

d̄n between the line segments in the ribbons, d̄n=1/KD1
n

=Hn /2Fn �d̄5�0.806a and d̄6�0.815a for the �4,5� and �5,6�
approximants�. In an infinite size QP lattice, the average dis-
tance between the line segments along a ribbon parallel to
KD1 is, thus, exactly the inverse of KD1,

TABLE I. The maximum and minimum wave-vector magnitudes for the two pseudodecagonal rings of the
Fourier transforms of the �4,5� and �5,6� approximants in Fig. 3, together with the magnitudes of the
corresponding wave vectors for the parent QP lattice and those of the two gap wave vectors Kp1

and Kp2
. All

the magnitude values are normalized to 1/a.

Ring vectors

QP Gap vectors

�4,5� �5,6�

Kmin Kmax Kmin Kmax

Inner ring 1.205 1.252 1.223 1.241 1.231 Kp1
1.22

Outer ring 1.979 2.008 1.986 1.997 1.992 Kp2
2.05
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d̄ =
1

KD1
� 0.812a . �8�

The wave vector KD2, from which KD2
n is derived, corre-

sponds to a higher order reflection along the same ribbons,
its magnitude KD2 being exactly � times greater than KD1.

Indeed, the ten wave vectors on each of the two
pseudodecagonal rings for the three approximants are de-
rived from the ten wave vectors of each of the vector sets
K�0,1,1,1̄,1̄� and K�0,2,1,1̄,2̄� of the QP structures, where these
vectors correspond to strong-intensity Fourier components,
and, as mentioned above, point to the vertices of two perfect
decagons. In other words, for approximant structures of in-
creasing order, the pseudodecagonal rings in the Fourier
transforms will increasingly approach perfect decagonal
ones. The wave vectors of the sets K�0,1,1,1̄,1̄� and K�0,2,1,1̄,2̄�
are each parallel to a family of ribbons in the QP lattice, with
their magnitudes inversely proportional to the average inter-
line-segment distance along the ribbons �with respective co-
efficients 1 and � for the two sets�. However, unlike the two
pairs of wave vectors ±KD1 and ±KD2 considered above, the
shifts are not purely radial for the other eight vectors in each
set when passing to the approximant structures. As a matter
of fact, in the reciprocal space, the QP lattice is described by
the D10 group, with ten twofold axes perpendicular to the
principal C10 axis, while the rhombus approximants are de-
scribed by the D2 group �the maximum subgroup compatible
with the periodicity�. So only two of the ten twofold axes,
which are parallel to the diagonals of the rhombus unit cell,
are preserved in the approximant structures. The K�0,1,1,1̄,1̄�
and K�0,2,1,1̄,2̄� vector sets lie parallel to five of the ten two-
fold axes of the QP structure, among which only the twofold
axis parallel to the rhombus long diagonal is preserved, the
four others are all broken. The vector shifts are, however,
very weak. As shown in Table I, the shifts are less than 2%
and 1% in magnitude for, respectively, the �4,5� and �5,6�
approximants.

The above analysis shows that the Fourier components of
the dielectric function, responsible for the main band gap
opening in the approximant structures, are of the same origin
in the QP structures. Consequently, pseudo-Brillouin zones
can be defined for the QP structures upon these two wave-
vector sets �K�0,1,1,1̄,1̄� and K�0,2,1,1̄,2̄�� in the form of perfect
decagons. The wave-vector shifts being weak in passing
from QP to approximant structures, the parent QP structures
will display similar photonic bands gaps as the approximant
structures.

In a QP lattice, the average inter-line-segment distance in
a ribbon is determined by the heights of the oblate and pro-
late tiles, and the spatial distribution of ribbons by the global
average symmetry. Further, planes passing by infinite high
scatterer axes and line segments in ribbons that are parallel to
each other can be defined. The main band gap is, therefore,
related to the average distance between these planes in the
QP dielectric media, and determined by fundamental lattice
parameters through global average structure orders. This
point can also be compared to the case of the octagonal QP
structure,4 where the band structure is not significantly modi-

fied by the introduction of structure disorders since the struc-
ture randomization through tile flips does not modify the
global average structure order.

B. Localization

Let us now consider the modes inside the main photonic
band gaps for the decagonal approximant �Fig. 2�c��. The
corresponding electric-field patterns are displayed in Figs.
4�a�–4�f�. It is obvious that for these modes, the field is lo-
calized on the decagonal ring, contrary to the work in Ref. 3
which concluded that localization effect is absent in the de-
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FIG. 4. �Color online� Electric-field patterns for the localized
modes inside ��a�–�c�� the first and ��d�–�f�� second main photonic
band gaps of the �5,6� decagonal approximant �see Fig. 2�c��. The
“�” and “�” signs indicate the field polarities. The field intensity
of �c� along the dashed line is displayed in �g�, where the shadowed
zones represent the cross sections of the scatterers.

STRUCTURAL EFFECTS ON LIGHT WAVE BEHAVIOR IN… PHYSICAL REVIEW B 76, 085107 �2007�

085107-5



cagonal structures. The electric field of the highest frequency
mode in the first gap has a decapole distribution, while that
in the second gap has an icosapole distribution. The other
two modes in each gap have lower frequency levels which
are close to each other and are characterized by electric-field
distributions orthogonal to each other. The field intensity on
the decapole, along a row of scatterers and normalized to
unity on an area of a2, is displayed in the same figure �Fig.
4�g��. Obviously, the field intensity is confined in the ring
and is characterized by a Gaussian-like distribution on the
scatterers, with a peak width corresponding roughly to the
cylinder diameter. Such localization effect is absent in the
two regular Penrose-tiling approximants.

This localization effect in the decagonal approximant can
be analyzed in the nearest-neighbor resonance framework,
and these modes can be considered as various resonant states
on the decagonal ring. Indeed, the decagonal ring is de-
scribed by the D10 group, whose character table is given in
Table II. Here, we are interested in the s and the tangential p
�denoted as pT� modes on the scatterers. The characters of
their respective representations, namely, �S and �T, are given
in the same table.

Under D10 group, the �S and �T representations can be
decomposed in the following way:

�S = �1 + �3 + �5 + �6 + �7 + �8, �9�

�T = �2 + �4 + �5 + �6 + �7 + �8, �10�

where �1 and �3 describe, respectively, the bonding and an-
tibonding states of the s wave; �2 and �4 those of the pT
wave. The other states are all doubly degenerate partially

bonding ��5 and �6� and partially antibonding ��7 and �8�
states, and there are no nonbonding states under D10 group.
For the three localized modes inside the first band gap, the
field patterns in Figs. 4�a� and 4�b� are both described by the
�8 representation for the s wave, while that in Fig. 4�c� by
the �3 representation for the s wave. As far as the three
modes inside the second gap are concerned, the field patterns
in Figs. 4�d� and 4�e� are both described by the �8 represen-
tation for the pT wave, while that in Fig. 4�f� by the �4
representation for the pT wave. Their corresponding frequen-
cies are given in Table III, where �8� and �8� stand for the two
doubly degenerate partially antibonding states described both
by the �8 representation.

In the nearest-neighbor approximation, the interscatterer
interaction is described by a coupling parameter g that is
proportional to 	�n

*
H
�n+1�, with 
�n� the wave function on
the nth scatterer and H the Hamiltonian. The energy levels
can be calculated using Hückel theory.12 For weak g value,
we obtain the frequency levels on a decagonal ring

� = �0 + g, �0 +
�

2
g, �0 +

� − 1

2
g, �0 −

� − 1

2
g,

�0 −
�

2
g, �0 − g , �11�

where �0 stands for the mode frequency of an isolated indi-
vidual scatterer. These frequency levels correspond, respec-
tively, to those of �1 ��2�, �5, �6, �7, �8, and �3 ��4� states
for, respectively, the s and pT waves.

TABLE II. The character table of D10 group. The characters of the �S and �T representations are also
listed.

D10 E 2C10 2C5 2C10
3 2C5

2 C2 5C2� 5C2�

�1�A1� 1 1 1 1 1 1 1 1

�2�A2� 1 1 1 1 1 1 −1 −1

�3�B1� 1 −1 1 −1 1 −1 1 −1

�4�B2� 1 −1 1 −1 1 −1 −1 1

�5�E1� 2 � �−1 −�−1 −� −2 0 0

�6�E2� 2 �−1 −� −� �−1 2 0 0

�7�E3� 2 −�−1 −� � �−1 −2 0 0

�8�E4� 2 −� �−1 �−1 −� 2 0 0

�S 10 0 0 0 0 0 2 0

�T 10 0 0 0 0 0 −2 0

TABLE III. The frequency levels of the s and pT modes inside the two main photonic gaps. The first two
Mie resonance frequencies are also listed.

s and pT mode frequencies

Mie frequencies�8� �8� �3 �4

�S 0.27 0.27 0.29 �̄Mie1
0.19

�T 0.52 0.52 0.54 �̄Mie2
0.43
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Equation �11� implies, for the �3 ��4� and �8 modes of the
s and pT waves, the relation between the frequency levels

� �̄�3
− �̄0

��8
− �̄0

�
s

= � �̄�4
− �̄0

��8
− �̄0

�
pT

=
2

�
. �12�

As mentioned above, nonbonding states are not compatible
with the decagonal symmetry; there are, thus, no resonant
states with frequency levels �̄= �̄0 on the decagonal ring. Let
us consider the case of an individual scatterer with the same
dielectric constant. As a matter of fact, the first two Mie
resonances13 occur for an infinite cylinder of �=13 for the
size parameter x=2�r /	=0.29 and 0.65, with 	 the incident
wavelength. This corresponds to the frequencies �̄Mie1
=0.19 and �̄Mie2

=0.43��a /2�c�. Taking these two frequen-
cies for the s and pT wave frequencies on an individual scat-
ter, �̄Mie1

= 
�̄0
s, �̄Mie2
= 
�̄0
pT

, the values in Table III follow
closely the relations given by Eq. �12�. Therefore, the modes
in the first gap can be considered as the antibonding ��3� and
partially antibonding ��8� states between the ten scatters,
each in the first Mie resonant state. Those in the second gap,
the antibonding ��4� and partially antibonding ��8� states
between the same scatters in the second Mie resonant state.

Now let us consider the group velocities of the localized
modes inside the photonic gaps of the decagonal approxi-
mant. The group velocities of the �8�, �8�, �3, and �4 states
are displayed in Fig. 5. Strong velocity reductions can be
observed for these modes. Indeed, for the three localized
modes inside the first gap �the �8�, �8�, and �3 modes�, the
light group velocities are four magnitudes lower than that in
vacuum. As a comparison, the group velocities of the low
gap edge bands of all the three approximants are plotted in
the same figure. It is clear that these velocities �the lowest
among the bands below the first gap� are two magnitudes
higher than those of the localized modes. Similar behaviors
are obtained for the localized modes inside the second gap
�the �8�, �8�, and �4 modes�, where the �4 mode corresponds
to a still lower group velocity �
10−6c�, while those of the
low gap edge bands for all the three approximants are at least
3 magnitudes higher.

Figure 5 shows clearly the role played by the local struc-
tures on the light wave propagation. Indeed, for the decago-
nal approximant, the strong group velocity reduction is ob-
tained for the localized modes on the local tenfold symmetry
patterns, while the group velocities of the low gap edge
bands are not significantly affected by the local structure
differences and remain comparable to those of the regular
Penrose-tiling approximants. Moreover, we should be aware
that, here, the group velocities are calculated on approximant
structures. So they will be reduced as well following the
diminution of the Brillouin zone size with increasing approx-
imant order when approaching the QP structure. The com-
parison of these approximant structures of different orders
and/or sizes allows to discern the group velocity reduction
associated with local scale localization. Indeed, as exempli-
fied by the low gap edge bands, the velocity difference due to
the unit cell size increase in passing from the �4,5� to the

�5,6� approximants is much weaker than the velocity reduc-
tion due to the localization on the tenfold patterns.

IV. DISCUSSION

The analysis on these dielectric systems show that the
main photonic band-gap structures are determined by the
global structure orders of the QP media. As a matter of fact,
the gaps are related to the average distance between the
planes passing by the dielectric scatterers as well as to the
tenfold plane orientation symmetry �the decagonal bond-
orientational symmetry�, which are determined by funda-
mental lattice parameters of the QP lattices. The related wave
vectors, corresponding to strong-intensity components in the
Fourier spectra of the QP lattices, are only affected little
when passing to the approximant structures, where similar
photonic band gaps are obtained. This result can be com-
pared to the case of the lowest photonic band gap in the
octagonal dielectric structures studied previously.2 Analo-
gous effects are well known concerning the electronic
pseudogaps in the quasiperiodic alloys.14 Moreover, for the
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FIG. 5. �Color online� �a� Group velocities for the low-edge
bands of �a and b� the �4,5� and �5,6� approximants of the regular
Penrose tiling and �c� the �5,6� approximant of the decagonal tiling
at the first main photonic gap edge, and those of the three modes
��8�, �8�, and �3� inside the same gap of the decagonal �5,6� approx-
imant. �b� Group velocities for the low-edge bands of the same
approximants �a–c� at the second main-gap edge and the three
modes ��8�, �8�, and �4� inside the same gap of the decagonal �5,6�
approximant.
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regular and decagonal approximants of the same order, the
photonic bands have similar structures as well outside the
gaps. This can also be related to the global structure orders.
Indeed, as indicated by Figs. 3�b� and 3�c�, these structures
display the same strong-intensity components. Light waves
are only weakly scattered on the other components, and their
propagation is not substantially affected by the local struc-
ture configuration differences.

As compared to previous works on Penrose-tiling-related
dielectric structures,3,5 we show that local structure configu-
rations play an important role on the field distribution at
certain frequencies. High degree of symmetry of local pat-
terns implies short interscatterer distance and high neighbor
scatterer number, favoring thus strong resonances between
neighbor scatterers on such patterns. Indeed, Mie states de-
cay asymptotically as 1/r, the interaction between neighbor
scatterers increases with decreasing interscatterer distance. In
the decagonal structure, the ten scatterers on the decagonal
ring are separated by an interscatterer distance of ��−1�a
�0.618a, which is much weaker than the other interscatterer

distance a, as well as an average interplane distance d̄
�0.812a. The interscatterer interaction is, thus, stronger on
the decagonal rings as compared to the surrounding regions.
As far as the regular Penrose tiling is concerned, there are
five scatterers on the most symmetrical local patterns, i.e.,
the pentagonal rings; the interscatterer distance on the ring is

��3−��a�1.176a, which is larger than a and d̄. The inter-
scatterer interaction on the pentagonal ring is, therefore,
weaker as compared to the surrounding regions, disfavoring
localization effect on the pentagonal rings.

High degree of local symmetry favors light localization
on local structure patterns by leading to upshifts of frequency
levels for the antibonding resonant states, among which
those falling into the photonic band gaps correspond to the
localized photonic modes. However, we should be aware that
the localization effect depends, in turn, on the gap positions
that are determined by the global structure order. As a matter
of fact, a series of resonant modes are generated on the de-
cagonal ring �Eq. �11��, among which well defined localized
states are obtained only for those with high enough frequen-
cies so that they can be shifted into the photonic band gaps.
The lower frequency modes below the gap edges are suscep-
tible to coupling with extended wave modes of close fre-
quencies.

The relation between photonic band gaps and localized
modes is further illustrated by the difference between the
decagonal and octagonal structures. For the latter, only one
localized mode �the highest frequency antibonding state� of
each s and p waves is obtained, with the frequency level
lying at the low gap edges.4 For the decagonal structure,
however, several localized resonant modes of both the s and
p waves are shifted inside the gaps, allowing direct evalua-
tion of the frequency level relations �Eq. �12�� for this struc-
ture. This is obviously related to the higher degree of sym-
metry of the decagonal structure, where the shorter
interscatterer distance on the decagonal ring implies stronger
interaction between neighbor scatterers and a stronger fre-
quency increase for the antibonding states. Indeed, for the
same tile edge length a, the interscatterer distance on the

decagonal ring ���−1�a�0.618a� is about 20% weaker than
that on the octagonal ring in the octagonal structure
���2−�2�a�0.765a�. For a given average dielectric con-
stant �̄ value, the photonic gap midfrequency is inversely

proportional to the average interplane distance d̄. For the two

structure families, d̄ has comparable values �d̄=2a / �1+�2�
�0.824a for the octagonal QP lattice and d̄�0.812a for the
decagonal QP lattice�. Indeed, for an octagonal QP structure
with tile edge length a and with the same average dielectric
constant �̄ as the decagonal structure, photonic band gaps of
similar widths and midgap frequencies as compared to the
decagonal structure are obtained. The interscatterer coupling
is stronger on the local ring patterns in the decagonal struc-
ture, leading to higher resonance frequencies for the anti-
bonding states on the rings and, thus, localized modes inside
the gaps.

It is also worth noting that the midgap frequency scales
inversely with ��̄, thus it is inversely correlated with the
scatterer size in a 2D structure, while the Mie resonance
frequency levels scale inversely with the scatterer size. The
same localization effect should, therefore, last for weaker
filling rate. To illustrate this, let us consider the three local-
ized states �8�, �8�, and �3 inside the first photonic gap. In-
deed, for the cylinder radius reduced to half of its initial
value �r=0.12a�, the corresponding filling rate is reduced to
f �5.6% for the �5,6� decagonal approximant, for which the
first gap is shifted to a midfrequency of �mid
�0.46��a /2�c�. We can check that the three localized states
are shifted to higher frequencies as well and remain inside
the gap. As far as the scatterer dielectric constant � value is
concerned, as mentioned above, the gap midfrequency scales
inversely with ��̄, and the Mie resonance frequency levels
are inversely correlated with ��. Therefore, the presence of
localized states inside the photonic gaps can persist as well
down to rather weak � values. Let us still consider the three
localized states inside the first photonic gap. The first Mie
resonance is described by a well defined peak in the scatter-
ing coefficient for dielectric constant down to about 5. For
the same �5,6� decagonal approximant formed by dielectric
cylinders of �=5, the first photonic gap is shifted to �mid
�0.45��a /2�c�. The three localized states are still obtained
inside the gap.

V. CONCLUSION

In summary, light wave states in quasiperiodic Penrosey-
tiling-related dielectric media that display similar long-range
orders and different local configurations are comparatively
studied through investigations on the respective approximant
structures. Quasiperiodic structure effects on light wave be-
haviors at long- and short-range structure scales are ana-
lyzed, and relations between mechanisms underlying photo-
nic gap opening and light wave localization are discussed.
This study shows that local resonance induced light localiza-
tion on maximum symmetry centers can, indeed, be a general
phenomenon in quasiperiodic dielectric media, with the lo-
calized mode frequency levels relative to the photonic band
gaps, depending on the system symmetry.
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