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This paper studies the transport properties of charge carriers through graphene superlattices consisting of
monolayer or bilayer graphene on the basis of the transfer-matrix method. Emphasis is placed on the relation-
ship between the Klein paradox and resonant tunneling in double-barrier junctions. It is shown that normal
incidence transmission probabilities for two kinds of graphene structure exhibit different features. Independent
of structure parameters, they are always perfectly transmitted in a monolayer graphene structure. In contrast,
the transmission resonances occur in a bilayer graphene structure. However, the angularly averaged conduc-
tivities for both depend on the thickness and height of the barriers as well as the width and number of the well.
That is to say, the angularly averaged conductivities in monolayer and bilayer graphene superlattices can be
controlled by changing the structure parameters even if Klein tunneling exists.
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I. INTRODUCTION

Recently, great interest has been aroused in research on
the physical properties of graphene due to the successful fab-
rication experiment by Novoselov et al.1 Graphene is a
monolayer of carbon atoms densely packed in a honeycomb
lattice, which can be viewed as either an individual atomic
plane pulled out of bulk graphite or unrolled single-wall car-
bon nanotubes. In graphene, the energy bands can be de-
scribed at low energy by a two-dimensional Dirac equation
centered on hexagonal corners �Dirac points� of the honey-
comb lattice Brillouin zone.2,3 The quasiparticle excitations
around the Dirac point obey linear Dirac-like energy disper-
sion. The presence of such Dirac-like quasiparticles is ex-
pected to lead to a number of unusual electronic properties in
graphene such as unconventional quantum Hall effect,4–8

strong electric-field effect,9 finite minimal conductivity,4,10

special Andreev reflection,11,12 and so on. It is also interest-
ing that the presence of such quasiparticles in graphene can
provide us with an experimental test for the Klein
paradox.13,14

The Klein paradox describes a tunneling phenomenon of a
relativistic electron through a high potential barrier.13–18 It
predicts that the electron can pass through the high potential
barrier to approach the perfect transmission in contrast to the
conventional nonrelativistic tunneling where the transmis-
sion probability exponentially decays with the increasing of
the barrier height.15–18 This relativistic effect can be inter-
preted in the framework of Dirac’s hole theory as a manifes-
tation of the generation of positron-electron pairs.15–18 Al-
though the Klein paradox was understood several decades
ago, it has never been observed experimentally. Indeed, to
observe it requires a very high potential drop and it becomes
almost impossible to realize in general solid-state systems. It
is only expected to occur in the high energy systems. Very
recently, however, Katsnelson et al.13 proposed an experi-
mental realization of the prediction of the Klein paradox by
using electrostatic barriers in a two-dimensional monolayer
or bilayer graphene. They have designed an experimental
setup and demonstrated theoretically that the effect can be
tested in the graphene systems.

However, their research on the Klein paradox in the
graphene systems is only applicable to the single-barrier
junction. It is well-known that transport of an electron de-
scribed by the Schrödinger equation in the semiconductor
superlattice �Kronig-Penney-like model� can exhibit different
features as compared with those in a single-barrier junction.
Now, transport of an electron in monolayer graphene needs
to be described by the Dirac-like equation. Then comes a
problem: can any new features exhibit when Dirac fermions
or bilayer graphene fermions are transmitted through
graphene superlattices in contrast to single-barrier junction?
In view of this problem, we extend in this paper the studies
on a single-barrier junction13 into graphene superlattices con-
sisting of monolayer or bilayer graphene by using the
transfer-matrix method. The transmission probability and
conductivity for these systems will be calculated, and the
relationship between the Klein paradox and transport prop-
erties of charge carriers through two kinds of superlattices
will be discussed. The rest of the paper is organized as fol-
lows: we will describe the theory and method in Sec. II,
present the results and discussion in Sec. III, and give a
summary in Sec. IV.

II. THEORY AND MODEL

We consider two kinds of superlattice, each consisting
respectively of monolayer graphene or bilayer graphene. The
schematic potential of electron and hole for the monolayer
graphene superlattice is shown in Fig. 1. The system consists
of two kinds of monolayer graphene strip alternately. The
coordinate of the ith interface is marked by l�i�. The growth
direction is taken as the x axis, which is termed as the super-
lattice axis. We focus here on the case where the width
�along the y direction� of the graphene strip, w, is much
larger than �l�i+1�− l�i�� ��l�i+1�− l�i���w�. In this case, details
of the microscopic description of the strip edges become ir-
relevant.

The top subgraph in Fig. 1 shows schematic diagrams of
the spectrum of quasiparticles in a monolayer graphene
structure. Due to the difference of Fermi energy and band
structure between two monolayer graphene strips, the poten-
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tial profile of the system is the multiple quantum well struc-
ture which is given by

V�x� = �V0, l�2i−1� � �x� � l�2i�, i = 1,2, . . .

0, otherwise.
� �1�

This is similar to the potential profile of the semiconductor
superlattice. The difference between them is that the charge
carriers in the present system are described by the following
Dirac-like equation rather than the usual Schrödinger equa-
tion.

H� = − i�vF� � + V�x� , �2�

where vF�106 ms−1 is the Fermi velocity, and �= ��x ,�y�
are the Pauli matrices. The electrons and holes in the semi-
conductor superlattice are normally described by separate
Schrödinger equations, which are not in any way connected.
In contrast, electron and hole states in the graphene superlat-
tice are interconnected, exhibiting chiral properties. They are
described by two-component wave functions �spinor wave
functions�.

If the monolayer graphene is replaced by the bilayer
graphene in the above system, it becomes the bilayer
graphene superlattice. There are some basic differences and
similarities between them. The charge carriers in the bilayer
graphene have a parabolic energy spectrum, which means
they are massive quasiparticles with a finite density of states
at zero energy, similar to conventional nonrelativistic elec-
trons. They are described by the following off-diagonal
Hamiltonian:13

H� = −
�2

2m
	 0 �kx − iky�2

�kx + iky�2 0

 + V�x� , �3�

where kx and ky are the wave vectors along the x and y
directions, respectively. On the other hand, these quasiparti-
cles are also chiral and described by spinor wave functions,
similar to relativistic particles or quasiparticles in the mono-
layer graphene.

A. Tunneling in monolayer graphene superlattice

In order to solve the transport problem in a monolayer
graphene superlattice �sketched in Fig. 1�, we assume that
the incident electron wave propagates at an angle � along the
x axis. The general solution to Eq. �2� can be expressed as

�1�x,y� = �aie
ikixx + bie

−ikixx�eikyy ,

�2�x,y� = si�aie
ikixx+i�i − bie

−ikixx−i�i�eikyy . �4�

Here �1�x ,y� and �2�x ,y� represent the components of the
Dirac spinor in the ith monolayer graphene strip, where ai
and bi are the transmission amplitudes, and

si = sgn�E − Vi�, kix =
�E − Vi�

�vF
cos��i� ,

kiy =
�E − Vi�

�vF
sin��i� .

Upon applying the continuity of the wave function at the
boundaries, the following transfer matrix is obtained:

	 1

b1

 =

1

1 + e2i�	 1 − ei��+�� 1 + e−i��−��

e2i� + ei��+�� e−i��−���− 1 + ei��+���

S�Z�

�	eikxl�n��e−i� − ei��/�2eiqxl�n� cos����
eikxl�n��ei� + ei��/�2e−iqxl�n� cos����


a�n�, �5�

with S�z�=S�z= l�2��S�z= l�3��¯S�z= l�i��¯S�z= l�n−1��,

S�z = l�i�� = 	t11 t12

t21 t22

 , �6�

t11 = eik�i−1�l�i��e−i��i� − ei��i−1��/�2eik�i�l�i� cos���i��� ,

t12 = e−ik�i−1�l�i��e−i��i� + e−i��i−1��/�2eik�i�l�i� cos���i��� ,

t21 = eik�i−1�l�i��ei��i� + ei��i−1��/�2e−ik�i�l�i� cos���i��� ,

t22 = e−ik�i−1�l�i��ei��i� − e−i��i−1��/�2e−ik�i�l�i� cos���i��� ,

l�i� = INT�i/2�D + INT��i + 1�/2�L ,

k�i� = �kx�, mod�i,2� = 0,

qx, otherwise.
�

��i� = �� , mod�i,2� = 0,

� , otherwise.
� �7�

Where kx� and qx are the wave vector out and in the barrier
along the x axis, the INT� � function returns the integer part

l(n-1)l(4)l(3)l(2)

1 2 3 4 nn-1

V0 E

x
y LD

i

l(1)

FIG. 1. Potential profile of quasiparticle transport in the mono-
layer graphene superlattice. The top picture corresponds to the sche-
matic diagrams of the spectrum of the quasiparticles in different
monolayers. The spectrums of electron and hole are linear. The
solid and dashed lines emphasize the origin of the linear spectrum,
which is the crossing between the energy bands associated with
crystal sublattices. The cross points represent the Dirac points.
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of a specified number. Then the angular dependence of trans-
mission probability T���= �an+1�2 for the system can be ob-
tained. If we take n=3, it gives the same results to Ref. 13.
For the double barrier case �n=5�, it can be simplified as

T��� =
e−2ikx�D−q�D+L��1 + e2i��2�1 + e2i��2

A1
2 + B1

2 , �8�

with

A1 = eiqxL + e2i��+qx�D+L/2�� + e2i��+qx�D+L/2�� + 2ei��+�+qx�2D+L��

+ e2i��+�+qxL/2� − 2ei��+�+qxL� �9�

and

B1 = 4ei��+�+kx�L+qx�D+L���sin��� + sin����sin�qxD� . �10�

Here L and D represent the width of the well and barrier,
respectively.

B. Tunneling in bilayer graphene superlattice

For the bilayer graphene superlattice, the general solution
to Eq. �3� can be expressed as

�1�x,y� = �aie
ikixx + bie

−ikixx + cie
	ixx + die

−	ixx�eikyy ,

�2�x,y� = si	aie
ikixx+2i�i + bie

−ikixx−2i�i − cihie
	ixx

−
di

hi
e−	ixx
eikyy , �11�

where ai, bi, ci, and di are the transmission amplitudes, and

si = sgn�Vi − E�, �kix = �2m�E − Vi� cos �i,

�kiy = �2m�E − Vi� sin �i, 	ix = �kix
2 + 2kiy

2 ,

and

hi = ��1 + sin2 �i − sin �i�2.

An important difference in the wave functions between the
monolayer and the bilayer graphene is that in the latter case
there are four possible solutions as shown in Eq. �11�, two of
which correspond to propagating waves and the other two to
evanescent ones. Similar to the case of the monolayer
graphene, utilizing continuity of the wave function at bound-
aries, the following transfer-matrix for the bilayer graphene
structure is obtained:

�
1 b1 c1

− e2i�1 − b1e−2i�1 c1h1

ik1 − ik1b1 c1q1

− ik1e2i�1 ik1b1e−2i�1 c1q1h1

 =�
1 1 1 1

e2i�2 e−2i�2 − h2 − 1/h2

ik2 − ik2 q2 − q2

ik2e2i�2 − ik2e−2i�2 − q2h2 q2/h2

S�Z�� ��
eik1l�n� e−q1l�n�

− eik1l�n�+2i�1 e−q1l�n�/h1

ik1eik1l�n� − q�1�e
−q1l�n�

− ik1eik1l�n�+2i�1 − q1e−q1l�n�/h1

	a�n�

d�n�

 ,

�12�

where

S�Z�� = S�Z=l�2��
−1 S�Z=l�2��

*
¯ S�Z=l�i��

−1 S�Z=l�i��
*

¯ S�Z=l�n−1��
−1 S�Z=l�n−1��

* , �13�

S�Z=l�i�� =�
eik2l�i� e−ik2l�i� eq2l�i� e−q2l�i�

eik2l�i�+2i�2 e−ik2l�i�−2i�2 − h2eq2l�i� e−q2l�i�/h2

ik2eik2l�i� − ik2e−ik2l�i� q2eq2l�i� − q2e−q2l�i�

ik2eik2l�i�+2i�2 − ik2e−ik2l�i�−2i�2 − q2h2eq2l�i� q2e−q2l�i�/h2

 , �14�

S�Z=l�i��
* =�

eik1l�i� e−ik1l�i� eq1l�i� e−q1l�i�

eik1l�i�+2i�1 e−ik1l�i�−2i�1 − h1eq1l�i� e−q1l�i�/h1

ik1eik1l�i� − ik1e−ik1l�i� q1eq1l�i� − q1e−q1l�i�

ik1eik1l�i�+2i�1 − ik1e−ik1l�i�−2i�1 − q1h1eq1l�i� q1e−q1l�i�/h1

 . �15�

Then the angular dependence of a transmission probability
for a bilayer graphene superlattice can be calculated as in the
case of a monolayer graphene structure.

After transmission coefficients are obtained, the conduc-
tivity for the above systems can be calculated by means of
the Buttiker formula,19
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G = G0�
−
/2


/2

T�E,�2E sin ��cos �d� , �16�

where G0=e2mvFw /�2. Combining Eqs. �16�, �5�, and �12�,
the various conductivities for two kinds of graphene super-
lattices can be obtained easily by the numerical calculations.

III. NUMERICAL RESULTS AND DISCUSSION

We first calculate the transmission probabilities of charge
carriers through graphene structures with double barriers and
a single well; the results are plotted in Figs. 2 and 3. Figure
2�a� presents the comparison of transmission probabilities of
normally incident electrons between the monolayer and bi-
layer graphene structures as a function of the Fermi energy E
of the incident electrons at various well widths. The solid
line, dashed line, and dotted line correspond to the bilayer
structure with L=20, 50, and 100 nm, respectively, and the
dot-dashed line to the monolayer structure. It is seen from
the figure that different features appear for two kinds of
structures. For the monolayer graphene structure with the
limit of high barriers �V0�� �E� under the condition of normal
incidence ��=0�, Eq. �4� can be simplified to T= �t�2 with t
=e−2iD�kx+qx�. This means that the structure remains always
perfectly transparent for normal incidence, which is indepen-
dent on the well widths. The dot-dashed line in Fig. 2�a�
exhibits the same feature. In fact, this transmission is not
related to the thickness of barriers, either. Figure 2�b� dis-
plays the corresponding results at different barrier thick-
nesses with L=50 nm. The dot-dashed line represents the
result of the monolayer graphene structure with various bar-
rier thicknesses. Perfect transmission with T=1 is observed
again. It is the feature unique to massless Dirac fermions and
directly related to the Klein paradox.

However, the situation is completely different for the bi-
layer structure. With the change of the Fermi energy E of
incident electrons, the resonant peaks appear �solid lines,
dashed lines, and dotted lines in Fig. 2�. The positions and
numbers of resonant peaks change with the increase of well
width. In contrast, they do not depend on thicknesses of the
barriers because charge carriers in the bilayer graphene have
a parabolic energy spectrum, which can be regarded as gap-
less semiconductors. In this case, scattering at the barrier is
the same as for electrons described by the Schrödinger equa-
tion. It is well-known that the resonant tunneling can happen
when electrons transport through the double-barrier structure
of the semiconductor quantum well, where the resonant
peaks are determined by quantum states in the well and in-
dependent of the barrier widths, so do present results for the
bilayer graphene structure.

Although transmission probability for monolayer
graphene at normal incidence is not related to the widths of
the well and barrier, the angular dependence of transmission
probability is. Figure 3 shows examples of such a transmis-
sion. Here, the concentrations of charge carriers are chosen
as 0.5�1012 and 1�1013 cm−2 outside and inside the bar-
rier, respectively, for all cases �such concentrations are most
typical in experiments with graphene�.13 This corresponds to
the Fermi energy E of incident electrons approach 80 and
17 meV for the monolayer and the bilayer graphene, respec-
tively, and wavelength ��50 nm. The band effective mass
�m� for the corresponding bilayer graphene is taken as
0.035me and me is the bare electron mass. Figure 3�a� shows
the angular dependence of transmission probability at differ-
ent well widths for the monolayer graphene structure; �b�
represents corresponding results for the bilayer graphene sys-
tem. When well width is zero, the present structures degen-
erate into single barrier cases, in which the results �solid
lines in Figs. 3�a� and 3�b�� are identical with those in Ref.
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FIG. 2. Transmission probability T for nor-
mally incident electrons through double barriers
and single well structure with monolayer and bi-
layer graphene as a function of Fermi energy E of
the incident electrons. �a� For different well width
L with the barrier heights V0=50 meV and the
barrier width D=20 nm and �b� for various bar-
rier width D with V0=50 meV and L=50 nm.
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FIG. 3. Transmission probability T of elec-
trons through double barriers and single well
structures as a function of the incident angle for
monolayer graphene with V0=200 meV �a� and
bilayer graphene with V0=50 meV �b�. Here
��50 nm for �a� and �b�, and the potential
widths D are taken as 50 nm �a� and 40 nm �b�.
The Fermi energy E of incident electrons is taken
as 80 and 17 meV for �a� and �b�, respectively.

CHUNXU BAI AND XIANGDONG ZHANG PHYSICAL REVIEW B 76, 075430 �2007�

075430-4



13. With increasing L, the changes of angular dependence of
transmission probability are very remarkable for two kinds
of structure. This indicates that quantum tunneling in these
materials becomes highly anisotropic due to the chiral nature
of their quasiparticles, which is qualitatively different from
the case of normal nonrelativistic electrons.

In contrast to the strictly normal incidence case ��=0�,
the angular dependence of transmission probability also de-
pends on the number of wells. Figures 4�a� and 4�b� show
such a transmission probability for the monolayer graphene
superlattices with 5 and 10 wells, respectively. �c� and �d�
represent the corresponding results for the bilayer graphene
structure. Comparing them with the case of a single well
�Fig. 3�, we find that more peaks appear with the increase of
well number. This indicates that the number of wells plays an
important role in anisotropic transmission even for the
monolayer graphene superlattice.

The property of the transmission probability directly leads
to the fact that angularly averaged conductivities are related
to the structure parameters of graphene systems. In Figs. 5�a�
and 5�b�, we plot the angularly averaged conductivities of
graphene structures with double barriers and single well as a

function of well width for monolayer and bilayer graphene,
respectively. Solid lines, dashed lines, and dotted lines cor-
respond to the cases with various thicknesses of the barrier.
We can clearly see that they all exhibit oscillatory behaviors
with increased well width. It is interesting that the conduc-
tivities of the double-barrier structure in bilayer graphene can
be driven to a very small value �near zero� by increasing well
width. This can be understood from the angular dependence
of transmission probability in Fig. 3�b�. For example, the
value of conductivity for a double-barrier structure of bilayer
graphene at L=30 nm and D=40 nm �a point on the solid
line in Fig. 5�b�� is a result of the integral for the dashed line
in Fig. 3�b� through Eq. �16�. Due to the change feature of
the dashed line, the value of the integral for it is very small.
In contrast, we can obtain a large value of integral for the
dotted line in Fig. 3�b�, which corresponds to the third peak
of the dashed line in Fig. 5�b�. This means that various an-
gular dependences of transmission probability at different
well widths are the origin of oscillatory conductivity with the
change of well width.

At the same time, we find that the magnitude and period
of oscillation also depend sensitively on thickness of barrier.
With increase in barrier thickness, the oscillation becomes
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FIG. 4. Transmission probability T of elec-
trons through five well structures ��a� and �c�� and
ten well structures ��b� and �d�� as a function of
the incident angle for monolayer graphene with
V0=200 meV ��a� and �b�� and bilayer graphene
with V0=50 meV ��c� and �d��. D=100 nm and
L=30 nm for the monolayer graphene structure;
D=10 nm and L=5 nm for the bilayer graphene
structure. The other parameters are taken the
same as in Fig. 3.
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The other parameters are taken the same as in
Fig. 3.
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stronger for the monolayer graphene structure. For the bi-
layer graphene structure, the change is much more complex.
At the thin barrier, the oscillation becomes stronger with in-
creasing D. However, it decreases at the thick barrier, which
exhibits the same features as in the resonant tunneling struc-
ture of the semiconductor with double barriers again. Fur-
thermore, the feature of oscillation is also related to the
height of barrier. This can be seen clearly from Fig. 6.

Figures 6�a� and 6�b� show the conductivities as a func-
tion of barrier height V0 with different well widths at D
=50 nm for the monolayer and bilayer graphene structures,
respectively. The conductivities are also an oscillating func-
tion of V0, although the transmission probability of normally
incident electrons is always 1 for monolayer graphene. This
is because the angular dependences of transmission prob-
abilities for the above systems are related to the wave vector
qx. For example, in the limit of high barriers �V0 � � �E�,
T���=cos2 � / �1−cos2�qxD�sin2 �� for the monolayer junc-
tion with a single barrier.13 This relation yields resonance
conditions qxD=n
. That is to say, T��� is an oscillating
function of qx and qx is determined by V0. This leads to that
T��� and conductivities are also the oscillating function of
V0. Their periodicities of oscillation are determined by reso-
nance conditions. From Fig. 6�a�, we can also find that the
oscillation magnitudes of conductivities are sensitive to the
modulation of well width for the monolayer graphene struc-
ture even to the existence of the Klein tunneling. For ex-
ample, the ratio of maximum to minimum of magnitude is
2.6:1 for such a structure at V0=0.35 eV and L=30 nm. In

contrast, for the bilayer graphene structure, the resonant tun-
neling feature is found again with the modulation of well
width, which is similar to the semiconductor structure with
double barriers. This means that we can modulate conduc-
tivities by changing the structure parameters for two kinds of
graphene systems.

The above results of the conductivities are only applicable
to a structure with double barriers and a single well. If the
number of wells is increased, the results will become more
interesting. Figure 7 shows conductivity as a function of the
Fermi energy E of incident electrons for the monolayer
graphene superlattice with various numbers of wells. The
solid line, dashed line, dotted line, and dot-dashed line cor-
respond to the cases with 1, 2, 5, and 10 wells, respectively.
Although the oscillation period does not change, the magni-
tudes of oscillation are tuned largely with the increase of
well number. For example, the ratio of maximum to mini-
mum of magnitude can reach 12:1 at the present structure
with 10 wells. As for the bilayer graphene structure, the mag-
nitude and period all can be changed largely with the in-
crease of well number. The corresponding results are plotted
in Fig. 8. It exhibits similar features to those in the semicon-
ductor superlattice with multiple quantum wells.

IV. SUMMARY

Based on the transfer-matrix method, we have investi-
gated the transport properties of charge carriers through
graphene superlattices consisting of monolayer and bilayer
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FIG. 6. Conductivity as a function of the bar-
rier height V0 for double barriers and single
well structures with different well widths at
D=50 nm for monolayer �a� and D=40 nm for
bilayer �b�. The other parameters are taken the
same as in Fig. 3.
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FIG. 7. Conductivity as a function of the Fermi energy E of
incident electrons for the monolayer graphene superlattice with dif-
ferent numbers of wells. Solid line, dashed line, dotted line, and
dot-dashed line correspond to 1, 2, 5, and 10 well structures, respec-
tively. The other parameters are taken the same as in Fig. 4.
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FIG. 8. Conductivity as a function of the Fermi energy E of the
incident electrons for the bilayer graphene superlattice with differ-
ent numbers of wells. Solid line, dashed line, dotted line, and dot-
dashed line correspond to 1, 2, 5, and 10 well structures, respec-
tively. The other parameters are taken the same as in Fig. 4.
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graphene. The normal incidence and angularly dependent
transmission probabilities for two kinds of graphene struc-
ture have been calculated. It is shown that the angular depen-
dence of the transmission probability is directly related to
structure parameters, even if the Klein tunneling exists in the
monolayer graphene structure. In contrast to the monolayer
graphene structure, the transmission of the bilayer graphene
system exhibits similar properties to those in the semicon-
ductor superlattice. Various angular dependences of trans-
mission probability have angularly averaged conductivities
that depend sensitively on the thickness and height of the
barrier as well as the width and number of wells. This means
that the angularly averaged conductivities in monolayer and

bilayer graphene superlattices can be controlled by changing
the structure parameters though the Klein tunneling exists.
We hope that our theoretical results can provide an important
reference to the design of electron devices based on graphene
materials.
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