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We study the electron transport through a magnetic molecular transistor in the Kondo limit using the slave
boson technique. We include the electron-phonon coupling and analyze the cases where the spin of the
molecule is either S=1/2 or S=1. We use the Schrieffer-Wolff transformation to write down a low energy
Hamiltonian for the system. In the presence of electron-phonon coupling and for S=1, the resulting Kondo
Hamiltonian has two active channels. At low temperature, these two channels interfere destructively, leading to
a zero conductance.
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I. INTRODUCTION

The technological advances of the last decades triggered a
systematic study of electronic transport in nanoscale systems
weakly connected to external electrodes. Confinement of
electrons at the nanoscale leads naturally to energy level
quantization and charging effects. In small quantum dots,
Coulomb blockade becomes a dominant effect, as shown in
conductance experiments.1,2 This effect together with the en-
hancement of the low-temperature conductance in the valley
between Coulomb blockade peaks—a signature of the well
known Kondo effect3,4—makes evident that electron-electron
correlations play a central role in these systems. Since the
early experiments in quantum dots,5,6 the Kondo effect has
also been observed in a variety of molecules. The conduc-
tance of molecular systems such as C60 molecules, Co and
Cu complexes connected to metallic leads, or carbon nano-
tubes shows the signature of Kondo-like behavior.7–10 In
these molecular junctions, the molecule is coupled to the
source and drain leads, providing a path for charge transport
�Fig. 1�. In some cases, a third gate electrode is used to
create an external potential that modifies the energy of the
molecular orbitals. The use of normal, ferromagnetic, and
superconducting electrodes gives rise to a rich behavior and
opens new alternatives for the study of the interplay between
Kondo screening and electronic correlations in the leads. In
addition, transport through highly structured molecules such
as the Mn12, a single molecular magnet, has been reported11

and the Kondo effect has been predicted to occur in this type
of systems for both half-integer12 and integer values of the
molecular spin.13

Despite of the substantial theoretical and experimental ac-
tivity devoted to the study of molecular transistors, there are
still many open questions. While the theoretical frame for the
study of the Kondo effect in semiconducting quantum dots
and molecular systems is basically the same, there are some
fundamental differences between them. Namely, vibrational
modes can play a central role in the single electron transfer
through molecules. In fact, molecules distort upon the addi-
tion or the removal of electrons, leading to a large electron-
phonon interaction. As the Coulomb charging energies in
these systems can be considerably reduced by screening due

to the electrodes,14 electronic and vibrational energies can
become of the same order of magnitude generating scenarios
where novel effects may emerge.15–32

The effect of the coupling between electronic excitations
and vibronic states in molecular transistors depends on the
symmetry and frequency of the vibrating mode and on the
strength of the coupling. Symmetric modes with a Holstein
coupling between quantized vibrations and electronic levels
may strongly renormalize the molecular parameters reducing
charging energies15 and producing anomalous behavior of
the Kondo temperature versus applied gate voltages.27 Asym-
metric modes coupled to the tunnel-barrier parameters, such
as the center of mass motion mode, can dynamically open
new channels for electron transport.27 Due to the large vari-
ety of magnetic molecules that could be incorporated in mo-
lecular circuits with different chemical environments, it is
important to characterize and understand the behavior of mo-
lecular transistors with different vibronic and electronic
structures.

In this work, we discuss the electronic transport through a
magnetic molecule with spin S=1/2 and S=1 in the Kondo
limit. We use slave boson techniques and include the
electron-phonon interaction with different coupling con-
stants. We show that in the presence of vibrational modes,
the low temperature behavior of the S=1 case corresponds to
a two-channel Kondo problem. In particular, the zero tem-
perature conductance goes to zero.

The paper is organized as follows. In Sec. II, we introduce
a model Hamiltonian for the system and use the Schieffer-
Wolff transformation to obtain the low energy Hamiltonian
of the molecular system for both S=1/2 and S=1. In Sec. III,
we use slave boson techniques to find the ground state prop-
erties of the system in both cases and calculate the conduc-
tance. We summarize in Sec. IV.
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FIG. 1. �Color online� Scheme of a molecular device.
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II. MODEL

We first present the case of a spin S=1/2 molecule de-
scribed by the Holstein-Anderson model. The Hamiltonian
reads H=H0+He-ph+Hhyb, where H0 describes the molecular
degrees of freedom and the electronic excitations of the two
leads,

H0 = �
�

�Md�
†d� + Ud↑

†d↑d↓
†d↓ + �

�,k,�
�kc�k�

† c�k� + ��0a†a ,

�1�

where d�
† creates an electron in a molecular orbital with en-

ergy �M, U is the intramolecular Coulomb repulsion, and
c�k�

† creates an electron in the k mode of the � lead, where
�=L ,R stands for the left and right leads, respectively. The
last term in Eq. �1� describes the molecular vibronic mode of
frequency �0. The term He-ph in the Hamiltonian describes
the Holstein coupling between the electrons in the molecular
orbital and the molecular vibrations,

He-ph = − ��a† + a���
�

d�
†d� − 1� . �2�

Finally, the lead-molecule hybridization term is

Hhyb =
1

�N
�

�,k,�
V̂��d�

†c�k� + c�k�
† d��

=
1

�N
�

�,k,�
V��1 + g��a† + a���d�

†c�k� + c�k�
† d�� ,

�3�

where N is the number of band states. For some special re-
lations between the parameters of the Hamiltonian, the
model reduces to known and, in some cases, well studied
models.

�i� VR=VL, ��0, and gR=gL=0 corresponds to a mol-
ecule with a Holstein mode in a symmetric environ-
ment.15,19,24

�ii� VR=VL, ��0 with gR=gL�0 is a generalized
Anderson-Holstein model in which vibrations modify the
molecular energies and the tunneling barriers.33

�iii� VR=VL, gR=−gL, and �=0 corresponds to a molecule
with inversion symmetry and a center of mass motion.25,27

�iv� VR=VL and gR=−gL with ��0 describes a molecule
with no inversion symmetry and a center of mass mode.25,28

In the Kondo regime �−Ũ��̃M �0�, when the number of
electrons in the molecule is well defined, the charge excita-
tions can be integrated out by means of a Schrieffer-Wolff
transformation.34 The resulting Hamiltonian is

H = �
k,�

�k	�k
† 	�k + HK, �4�

with

HK = �
�,
=R,L

J�


1

N �
k,k�

S ·
1

2
	�k

† �	
k�. �5�

Here, 	�k
† = �c�k↑

† ,c�k↓
† � is a spinor corresponding to the �

lead, S is the spin operator associated with the molecular

orbital, and � are the Pauli matrices. The coupling constants
are

J�� = − 2V�
2	�

n=0

�
��0n + g��1n�2

�̃M − ��0n
+ �

n=0

�
��0n − g��1n�2

− Ũ − �̃M − ��0n


�6�

and

JRL = − 2VLVR�
n=0

�
��0n + gR�1n���0n + gL�1n�

�̃M − ��0n

− 2VLVR�
n=0

�
��0n − gL�1n���0n − gR�1n�

− Ũ − �̃M − ��0n
, �7�

where �0n= �1/�n!��� /��0�ne−�� / ��0�2/2, �1n=�0n�n
− �� /��0�2���0 /�, �̃M =�M +�2 /��0, Ũ=U−2�2 /��0, and
JLR=JRL. The electron-phonon interaction renormalizes the
molecular parameters �M and U: the renormalized energy �̃M

increases with �, while the intramolecular interaction Ũ de-
creases. This naturally leads to an increase of the Kondo
temperature, while it reduces the range of gate voltages
where the charge state with one electron is stable.19 For large

enough �, Ũ becomes negative, which corresponds to an
electron-phonon induced attractive interaction. In what fol-

lows, we consider the case Ũ0. In this work, we neglect
the potential scattering term generated by the Schrieffer-
Wolff transformation.

It is convenient to make a rotation in the �L ,R� space to
eliminate cross terms. We then define the even �e� and odd
�o� operators,

cek� = ucRk� + vcLk�,

cok� = vcRk� − ucLk�, �8�

with u2= �1+�1−F� /2, v2= �1−�1−F� /2, and F
=4JRL

2 / ��JRR−JLL�2+4JRL
2 �. In terms of these operators, the

Hamiltonian reads

HK = �
�=e,o

J�

1

N �
k,k�

S ·
1

2
	�k

† �	�k�, �9�

where

J� =
1

2
�JRR + JLL ± ��JRR − JLL�2 + 4JRL

2 � , �10�

with the � and � signs corresponding to the e channel and o
channel, respectively. The Hamiltonian �Eq. �9�� corresponds
to a two-channel Kondo model. In our case, the two-channel
character is a consequence of the dynamical nature of the
hybridization operator and the lack of right-left symmetry: if
gR=gL, then JRL

2 =JRRJLL and Jo=0. For gR�gL, the system
has always two channels coupled to the molecule’s spin.
However, as in general JeJo, the resulting low temperature
behavior is dominated by the e channel. In the next section,
we discuss this behavior in some detail.
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More interesting is the case of an S=1 molecule. Such a
case can be described by including an additional spin S0
=1/2 that couples ferromagnetically to the spin of the elec-
trons in the hybridized molecular orbital described by the
first terms in Eq. �1�. Then, the Hamiltonian includes a term
−JHS0 ·S. The total spin of the molecule is either zero or 1
and for large values of the Hund-like coupling JH, the singlet
state can be neglected. Projecting the system onto the total
spin S=1 state, the Schrieffer-Wolff transformation gives
again the Hamiltonian of Eq. �9�, where now the molecular
spin operator corresponds to S=1 and the coupling constants
are half the expressions obtained in the previous case with
�M replaced with �M −3JH /4.

In the context of semiconducting quantum dots, it has
been shown that the zero temperature conductance for an S
=1 dot coupled with two channels is G=G0 sin2��1−�2�,
where �1 and �2 are the scattering phase shifts at the Fermi
energy for the two channels.35 Then, we expect molecules
with S=1/2 and S=1 to behave quite differently if phonons
open the o channel. Below, we present a slave boson mean-
field approach to describe this situation.

Before finishing this section, we would like to emphasize
that in our model there is only one hybridized orbital so that
the two-channel character arises only from the coupling to
the phonons. This is different from the case described in Ref.
35, where the authors considered two different orbitals
coupled to the leads. Our model then corresponds to the sim-
plest scenario that allows us to discuss the effect of the
electron-phonon coupling. In general, when more than one
molecular orbital is coupled to the leads, there would be
more than two channels involved, which presumably will
lead to a more complex behavior.

III. SLAVE BOSON MEAN FIELD THEORY

For the sake of completeness, we start with a brief discus-
sion of the spin S=1/2 case. We review the slave boson
mean field theory and calculate the conductance. Although
the results for this case are well known, they are presented as
a guide to the more interesting case of a spin S=1 molecule.

A. S=1/2 case

Following standard procedures, we use a fermionic repre-
sentation for the molecular spin,

Sz =
1

2
�f↑

†f↑ − f↓
†f↓�, S+ = f↑

†f↓, S− = f↓
†f↑. �11�

In terms of these operator, the Kondo Hamiltonian reads

HK =
1

N
�

�=e,o
J��

k,k�

1

4
�f↑

†f↑ − f↓
†f↓��c�k↑

† c�k�↑ − c�k↓
† c�k�↓�

+
1

2
�f↑

†f↓c�k↓
† c�k�↑ + f↓

†f↑c�k↑
† c�k�↓� . �12�

In the mean field approach one defines bosonic fields ���

=1/�N�kc�k�
† f� and evaluates the physical quantities at the

mean field level in these fields. The resulting mean field
Hamiltonian can be put as36

HK = − �
�=e,o

J�

�N
�
k,�

���−��f�
†c�k� + H.c., �13�

where �··� indicates the thermal average. The solution must
satisfy the condition �f↑

†f↑+ f↓
†f↓�=1 that is imposed by intro-

ducing a Lagrange multiplier. The procedure is well justified
only when the original model is extended for the spin vari-
able � to take N different values with N→�. However, it is
well known that the approximation captures essentially the
correct low temperature physics even for N=2. In the ab-
sence of an external magnetic field, we may take ���↑�
= ���↓���. The self-consistent solutions for the bosonic
fields are

�� = − J�����
−D

D

d�f���
�

�2 + �2 , �14�

where f��� is the Fermi function, �=1/2D is the lead density
of states per spin, and

�  �e + �o = ����Je�e�2 + �Jo�o�2� . �15�

For Je�Jo, these equations do not have a solution with non-
zero values for both �e and �o. At zero temperature, we have

�� =� 2

�

D

J�

e−D/J�, �−� = 0, �16�

where � �−�� corresponds to the largest �smaller� Kondo
coupling J�. This solution describes the situation in which
one channel completely decouples from the molecular spin.
In the renormalization group language, the ratio between the
largest and smaller couplings flows to infinity and the Kondo
screening is due only to the channel with the largest cou-
pling. Note that for the particular case Je=Jo, the overscreen-
ing of the S=1/2 spin requires a more elaborate
approximation.37

In what follows, we assume that JeJo. The temperature
dependence of the Kondo correlation energy, defined as EK
= �HK�=−4Je�e

2, is shown in Fig. 2. At a temperature TKe, the
correlation energy goes to zero in a singular way. This is
known to be an artifact of the approximation; TKe should be
interpreted as a crossover temperature between a high tem-
perature regime, where the spin is essentially unscreened,
and a low temperature Fermi liquid regime. According to Eq.
�14�, the Kondo temperature is given by the solution of the
following equation:

1 =
Je

2
��

−D

D

d�
1

�
tanh� �

2TKe
� . �17�

The linear conductance through the molecule is calculated
using a Landauer approach. At the mean field level described
by the Hamiltonian �Eq. �13��, the problem reduces to a
single resonant level centered at the Fermi energy. This
structure represents the Kondo resonance that leads to reso-
nant tunneling between the source and the drain contacts.

The transmission function is given by T���=�RGr�LGa

with �R=2u2�e and �L=2v2�e, where Gr and Ga are the
retarded and the advanced propagators of the f fermions,
respectively. In terms of T���, the conductance is then
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G =
2e2

h
� d�	−

�f���
��


T���

=
2e2

h
� d�	−

�f���
��


4u2v2 �e
2

�2 + �e
2 . �18�

The last expression was obtained by using the Green’s func-
tions corresponding to a resonant level of width �e. For a
system with inversion symmetry, we have VL=VR and
4u2v2=1. In this situation, the zero temperature conductance
is the quantum unit of conductance 2e2 /h. As the tempera-
ture increases, �e decreases and goes to zero at the Kondo
temperature TKe. The temperature dependence of the conduc-
tance is shown in Fig. 2. As already mentioned, the singular
behavior at TKe is to be interpreted as a crossover. In fact,
above the Kondo temperature, the conductance is small but
nonzero and can be calculated using perturbation theory.38

B. S=1 case

From the many possible representations of a spin 1 opera-
tor, we use a two spin 1/2 fermion representation that has
proved to give good results when treated at the mean field
level. Following Refs. 39 and 40, we define two states with
quantum numbers i=1,2 and �= ↑ ,↓. The operators f i�

† cre-
ate a fermion in these states. The physical Hilbert space cor-
responds to the subspace with ni=ni↑+ni↓=1, with ni�
= f i�

† f i�. The spins of the states 1 and 2 are coupled ferromag-
netically with an exchange constant JH. Within this subspace,
the three components of the spin 1 operator are given by

Sz = n1↑n2↑ − n1↓n2↓,

S+ = n1S2
+ + S1

+n2,

S− = S1
−n2 + n1S2

−. �19�

Here, Si
± are the �raising/lowering� spin operators of state i,

which are defined as in Eq. �11�.
As mentioned above, the effective Hamiltonian HK for

this case is described again by Eq. �9�, but the definition of
the coupling constant J� is obtained by replacing �M →�M
−3JH /4 in Eqs. �6� and �7� and dividing Eq. �10� by 2. De-
fining bosonic fields as

���
i =

1
�N

�
k

c�k�
† f i�, �20�

we can write the transverse part of the spin product as

1

N
�
k,k�

�S+c�k↓
† c�k�↑ + S−c�k↑

† c�k�↓� = − �
i�

��−�
i ���

i† nī,

�21�

with ī= �i+1,mod 2�. As in the S=1/2 case, we treat this
term in the mean field approximation. This gives

− �
i�

���̄
i ���

i† nī � − �
i�

����̄
i ����

i† � + ����̄
i ����

i† ��nī� + ����̄
i �

�����
i† �nī − 2����̄

i �����
i† ��nī� , �22�

where �̄=−�. In the absence of external magnetic fields,
these quantities ����

i � are spin independent.
The Kondo Hamiltonian is then given by

HK = �
�=e,o

−
J�

�N
�
i,k,�

����̄
i† �c�k�

† f i� + H.c., �23�

where we have taken �ni�=1. The total Hamiltonian also in-
cludes a term of the form �i�i�ni−1�+C, where �i is a
Lagrange multiplier introduced to preserve the number of f
fermions and C is a constant. The quantities ����

i† � are calcu-
lated self-consistently. The symmetry of the Hamiltonian in
the quantum number i may suggest that they are i indepen-
dent. However, the most general solution is

����
1+ � = ��, ����

2+ � = ��ei��, �24�

with �� a real number. For the one-channel case, the phase
�e can be eliminated by a gauge transformation. However, as
shown below, in the two-channel case the phase difference
��=�e−�o plays an important role. With the notation defined
above, the Hamiltonian �Eq. �23�� reads

HK = − Je�e� 2

N�
k,�

cek�
† fe� + H.c.

− Jo�o� 2

N�
k,�

cos���

2
�c̃ok�

† fe�

+ i sin���

2
�c̃ok�

† fo� + H.c., �25�

where fe�= �f1�+ei�ef2�� /�2, fo�= �f1�−ei�ef2�� /�2, and
c̃ok�

† =e−i��/2cok�
† . For ��=0, the two channels are mixed with

the same fermion. Then, as in the S=1/2 case, one channel

FIG. 2. Temperature dependence of the correlation energy �top�
and the conductance �bottom� in the S=1/2 case. Parameters: D
=2, �J=0.22, and VL=VR.
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decouples and does not contribute to the energy. For ��=�,
the mean field problem reduces to the case of two channels,
each one coupled with a resonant state and both contributing
to lower the energy. It can be shown that for the general case
with Je�Jo, self-consistent solutions exist only for ��=0 or
±�. Without any loss of generality, we can take �e=0. Then,
for ��= ±�, we have

HK = �
�=e,o

− J���� 2

N�
k,�

c�k�
† f�� + H.c., �26�

where the self-consistent parameters �� are given by

1 = − J���
−D

D

d�f���
�

�2 + ��
2 , �27�

with ��=��q�
2 and q�=J���

�2. Accordingly, the zero tem-
perature correlation energy is EK=−4Je�e

2−4Jo�o
2. As the

two coupling constants are different, there are two character-
istic energy scales given by the two Kondo temperatures TKe
and TKo. The correlation energy as a function of temperature
is shown in Fig. 3.

The conductance can be easily evaluated within the mean
field approximation following the same line as in the S
=1/2 case. The transmission function in this case is given by
T���=Tr��LGa�RGr�, where the �’s and the propagators are
2�2 matrices since we now have two active channels
coupled to the S=1 spin. In the even and odd base, we have

�R = 2���u2qeqe uvqeqo

uvqoqe v2qoqo
�,

�L = 2��� v2qeqe − uvqeqo

− uvqoqe u2qoqo
� . �28�

Finally, the conductance can be put as

G =
2e2

h
� d�	−

�f���
��


4u2v2� �e

� + i�e
−

�o

� + i�o
�2

.

�29�

Here, ��=��q�
2 . The conductance as a function of tempera-

ture is shown in Fig. 3. Initially, the conductance increases as
T decreases as in the usual one-channel case but it starts
decreasing toward a zero value as T becomes smaller than
TKo. This interference effect between the two channels is
clearly seen as a dip at �=0 in the transmission function
�Fig. 4�.

Interference effects in the context of “single impurity”
Kondo physics have been extensively discussed in the
literature.25,41–44 In our case, the origin of the effect is clear,
as discussed in detail by Pustilnik and Glazman.35 In the low
temperature Fermi liquid regime, the mean field approach
presented here allows for a simple interpretation of the inter-
ference phenomena: the Hamiltonian �Eq. �25�� with ��=�
and nonzero �e and �o is equivalent to a two lead junction
connected by two different paths. In this effective model, the
phase difference of the two paths is �, leading to destructive
interference and zero conductance at T=0.

IV. SUMMARY

We have analyzed the Kondo Hamiltonians for magnetic
molecules with vibronic states in molecules with spin S
=1/2 and S=1 within the slave boson mean field theory. We
showed that in systems with no L-R symmetry in the
electron-phonon coupling, there are two channels coupled to
the molecular spin. For the case of S=1/2 molecules, the
weakest coupled channel plays no role; at the mean field
level, it is simply decoupled. For the S=1 case, the two chan-
nels screen the molecular spin at different energy scales. To
fix ideas, we summarize the behavior of two simple cases
with identical VL and VR.

�a� A Holstein-like mode with ��0 and gR=gL. The
Kondo Hamiltonian includes a single channel and for the S

FIG. 3. Temperature dependence of the correlation energy �top�
and the conductance �bottom� in the S=1 case. Parameters: D=2,
�Je=0.22, and �Jo=0.13.

FIG. 4. Transmission function T��� as a function of � for an
S=1 molecule. For TKo�T�TKe, the system shows the usual one-
channel Kondo resonance �solid line�, while for T�TKo the odd
channel becomes active and a zero-transmission dip appears at �
=0 �dashed line�.
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=1/2 case, the slave boson mean field approximation repro-
duces the known results. The electron-phonon coupling
renormalizes the coupling constants. At TK, the conductance
increases to reach the unitary limit at zero temperature. In
this case, it has been shown that for large electron-phonon
coupling �, the Kondo temperature is weakly dependent on
gate voltages due to the anomalous dependence of coupling
constants J�� with the molecular orbital energy �M.27 For the
S=1 case, a single channel can screen only half of the mo-
lecular spin. The zero temperature conductance also reaches
the quantum of conductance value 2e2 /h, although strictly
speaking the system is not a Fermi liquid since there is an
unscreened spin 1/2 at the molecular junction.

�b� A molecule with inversion symmetry and a center of
mass mode, �=0 and gR=−gL. The resulting Kondo Hamil-
tonian includes two channels with different coupling con-
stants. For the S=1/2 case, the usual behavior is reproduced

as one channel decouples. In this simple model, electron-
phonon coupling is just due to the modulation of the tunnel-

ing barriers or hybridizations V̂�; in the lowest order, the
molecular energies and Coulomb repulsion are not renormal-
ized. For the S=1 case, the spin is screened by the two active
channels with two characteristic energy scales TKe and TKo.
For TKo�T�TKe, the conductance approaches the unitary
limit and decreases for T�TKo being zero at zero tempera-
ture. In the most general case with ��0 and gR�gL, the
conductance is reduced by the prefactor 4u2v2.
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