
Analytic approach to the ground-state energy of charged anyon gases

B. Abdullaev,1 U. Rössler,2 and M. Musakhanov1

1Department of Theoretical Physics, Institute of Applied Physics, Uzbekistan National University, Tashkent 100174, Uzbekistan
2Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany

�Received 11 January 2007; revised manuscript received 20 May 2007; published 3 August 2007�

We derive an approximate analytic formula for the ground-state energy of the charged anyon gas. Our
approach is based on the harmonically confined two-dimensional �2D� Coulomb anyon gas and a regularization
procedure for vanishing confinement. To take into account the fractional statistics and Coulomb interaction we
introduce a function, which depends on both the statistics and density parameters �� and rs, respectively�. We
determine this function by fitting to the ground-state energies of the classical electron crystal at very large rs

�the 2D Wigner crystal�, and to the Hartree-Fock �HF� energy of the spin-polarized 2D electron gas, and the
dense 2D Coulomb Bose gas at very small rs. The latter is calculated by use of the Bogoliubov approximation.
Applied to the boson system ��=0� our results are very close to recent results from Monte Carlo �MC�
calculations. For spin-polarized electron systems ��=1� our comparison leads to a critical judgment concerning
the density range, to which the HF approximation and MC simulations apply. In dependence on �, our analytic
formula yields ground-state energies, which monotonously increase from the bosonic to the fermionic side if
rs�1. For rs�1 it shows a nonmonotonous behavior indicating a breakdown of the assumed continuous
transformation of bosons into fermions by variation of the parameter �.
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I. INTRODUCTION

The jellium model,1 consisting of a homogeneous electron
�or fermion� gas charge-neutralized by a uniform positive
background, is serving as a realistic model to describe ge-
neric properties of metallic systems, which extend in two
�2D� or three �3D� spatial dimensions.2 Especially, the ex-
change and correlation contributions to the ground-state en-
ergy per particle in dependence on the particle density �quan-
tified by the Wigner-Seitz radius rs� and the degree of spin
polarization are required in applications of the density func-
tional theory �in its local density approximation� to inhomo-
geneous fermion systems �e.g., nuclei, molecules, solids�.3
Analytic formulas of these contributions for 2D and 3D sys-
tems are available from interpolations between known data
from numerical or analytical calculations for special values
of the system parameters.4–6 Although frequently in use,
such formulas are not free of shortcomings and may lead to
misleading results.7 Here, the special topology of 2D systems
provides a unique opportunity to derive an approximate ana-
lytic formula for the ground-state energy, which has not been
exploited so far.

The 2D topology allows for fractional exchange
statistics,8 characterized by a continuous parameter �, that
may attain values between 0 �for bosons� and 1 �for fermi-
ons�. Particles with 0���1 are generically called
anyons.9,10 The quasiparticle excitations in the fractional
quantum Hall regime11–13 and in certain quantum magnets14

can be described using the anyon concept.
2D electron systems are realized in semiconductor hetero-

structures and layered metallic systems such as cuprate su-
perconductors. Their ground-state properties are subjects of
fundamental studies �see Ref. 15, and references therein�. To
obtain accurate estimates of the ground-state energy, numeri-
cal simulations have been employed,4,5 which are restricted,
however, to special values of the particle density �expressed

by the interparticle distance rs� or the degree of spin polar-
ization. An analytic expression in terms of rs exists for the
2D Wigner crystal �rs�1�,16 which represents a classical
system. All these investigations refer to 2D electron systems
and are, as such, based on the fermion character of the par-
ticles. It is interesting to note that bosonic Coulomb systems
have found so far only little attention,17 which may be due to
lacking realization. This seems to be even more the case for
the anyon aspects of the 2D Coulomb gases, while for the 3D
Coulomb Bose gas a closed-form expression for the ground-
state energy as a function of rs was derived by use of the
Bogoliubov approximation.18 The aim of this paper is, by
making use of the anyon concept, to establish a link between
the analytic results, which exist for the ground-state energies
of the 2D Coulomb Bose gas �derived here in close analogy
to Ref. 18�, of the Wigner crystal,16 and of the high-density
2D spin-polarized electron gas.

Previously, we have derived an approximate analytic ex-
pression for the ground-state energy of N charged anyons
confined in a 2D harmonic potential.19 This was achieved by
using the bosonic representation of anyons and a gauge vec-
tor potential to account for the fractional statistics, which
allowed us to work with the product ansatz for the N-body
wave function. A variational principle has been applied by
constructing this wave function from single-particle Gauss-
ians of variable shape. As in many other perturbative treat-
ments of anyons in an oscillator potential �see Ref. 19, and
references therein� our expression for the ground-state en-
ergy had a logarithmic divergence connected with a cutoff
parameter for the interparticle distance. Making use of the
physical argument �see Ref. 12� that for ��0 this distance
has to have some finite value, we have regularized the for-
mula obtained for the ground-state energy by an appropriate
procedure that takes into account the numerical results for
electrons in quantum dots in the case with Coulomb interac-
tion.
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The ground state of anyons in a harmonic potential has
been studied by Chitra and Sen,20 especially for the limit of
an infinite number of particles, yet without Coulomb interac-
tion. In the present paper, we make use of previous work for
the harmonically confined 2D anyons19,20 to derive an ap-
proximate analytic expression for the ground-state energy of
the homogeneous 2D anyon gas. This is done �for all values
of the statistic parameter �� by flattening out the confining
potential with a simultaneous increase of the particle number
N, but fixed areal density, to obtain the infinite size system,
i.e., the thermodynamic limit. It is achieved by redefining the
strength �0 of the harmonic potential such that it vanishes
with increasing N as 1/N1/2. With respect to the dependence
on the statistic parameter we have to distinguish between the
cases without and with Coulomb interaction. In the former
case, we introduce a function of �, which is fitted to known
analytic expressions at the fermion or boson end. For the
case with Coulomb interaction, one has to warrant also
charge neutrality. This is achieved by introducing the inter-
action with a positively charged background disk, which
slightly modifies the interaction term in the formula for the
ground-state energy. For this case, as the dependence on �
may now be mixed with that on the density parameter rs, we
assume a function, which depends on both parameters. This
function is fitted to the analytic expressions for the ground-
state energies of the classical Wigner crystal �for large rs and
independent of �� and of the 2D Coulomb Bose gas �for
small rs and �=0�. For the fermion case ��=1�, we fit this
function to the analytic expression for the HF energy, which
is a high-density limit �rs→0�.

In Sec. II we introduce the principal approach for deriving
an analytic formula for the ground-state energy and demon-
strate the regularization to obtain the thermodynamic limit.
In Sec. III we derive an analytic expression for the ground-
state energy of the 2D Coulomb Bose gas using the Bogo-
liubov approximation. In Secs. IV and V the derivation of the
approximate analytic formula for the ground-state energy of
the 2D Coulomb anyon gas is completed and the results will
be discussed by comparing with numerical results from the
literature. We summarize and conclude with Sec. VI.

II. PRINCIPAL APPROACH AND HARMONIC POTENTIAL
REGULARIZATION

Let us start by considering N noninteracting spinless
anyons of mass M confined in a 2D parabolic potential de-
scribed by the Hamiltonian

Ĥ0 =
1

2M
�
i=1

N

��p� i + A� ��r�i��2 + M2�0
2�r�i�2� . �1�

Here r�i and p� i are the position and momentum, respectively,
of the ith anyon in 2D and

A� ��r�i� = ���
j�i

N
e�z � r�ij

�r�ij�2
�2�

is the anyon gauge vector potential21,22 with r�ij =r�i−r� j, and e�z
the unit vector normal to the 2D plane. The parameter �

accounts for the fractional statistics of the anyon: it varies
between �=0 for bosons and �=1 for fermions. When later
on considering the anyons as charged particles, we add their
mutual interaction to define the Coulomb anyon problem.

In Ref. 19 we have outlined a variational procedure for
the ground-state energy of interacting anyons confined in an
oscillator potential with characteristic energy ��0. Starting
from the bosonic end ��=0� we achieved, after regularization
of a logarithmic expression by means of a cutoff parameter
for the particle-particle interaction, approximate analytic for-
mulas in terms of N and �. For the noninteracting anyon
system we found

E0�N,�� = ��0NN1/2, �3�

while for the interacting anyon system it is given by

E0�N,�� =
��0N

2
	N

X0
2 + X0

2 +
2M
X0


 , �4�

with

X0 = �A + B�1/2 + �− �A + B� + 2�A2 − AB + B2�1/2�1/2, �5�

and

A = �M2/128 + ��N/12�3 + �M2/128�2�1/2�1/3,

B = �M2/128 − ��N/12�3 + �M2/128�2�1/2�1/3. �6�

In these expressions we use N=1+��N−1� and

M = �	

2
�1/2N − 1

2

L

aB
, �7�

where L= �� /M�0�1/2 is the oscillator unit length, and aB the
Bohr radius.

In order to obtain the corresponding expressions for the
homogeneous 2D anyon gas, we flatten out the parabolic
confining potential while increasing the number N of anyons,
but keeping the density 
=N /S=1/	r0

2 constant, i.e., we per-
form the thermodynamic limit while making the confining
potential disappear. Here 	r0

2 is the area of the jellium disk
carrying the positive countercharge corresponding to the
mean particle distance r0=aBrs expressed in units of the Bohr
radius by the dimensionless density parameter rs.

Without Coulomb interaction and in the case of fermions
��=1�, the ground-state energy of the homogeneous 2D elec-
tron system of density 
 is determined by the Pauli exclusion
principle. It is given by

E0�
� = 	�2
N/M , �8�

while from Eq. �3� we have �see also Ref. 20 for �=1 and
N→��

E0�N,� = 1� = ��0N3/2. �9�

In the thermodynamic limit both expressions have to become
identical and we obtain the relation

�0�N� = 	�
/�MN1/2� , �10�

which means that, in fact, the thermodynamic limit �N
→�� is obtained for the vanishing parabolic confining po-
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tential. We extend this consideration for the fermionic limit,
�=1, to the general anyon case, ��1, by assuming instead
of Eq. �8� the relation

E0�
,�� = 	�2
N����/M , �11�

where the function ���� is still to be determined under the
constraint ���=1�=1. This form is motivated by the fact that
close to the bosonic limit ��0� the ground-state energy of
the infinite anyon gas depends linearly on �.23–25 We replace
this particular dependence by ����. Consequently, we have
to change Eq. �10� into

�0�N,�� = 	�
f���/�MN1/2� �12�

with another unknown function f��� and the constraint f��
=1�=1. Thus we assume the vanishing of �0 according to
1/N1/2 also in the general anyon case ��1. As it turns out
���� is determined by f���. For the free �noninteracting�
anyon gas both unknown functions would be the same. How-
ever, in our generalization to the charged anyon gas this will
not be the case anymore.

In the thermodynamic limit, and including the Coulomb
interaction, the parabolic confinement �caused by geometry
and electrostatics of the compensating charges� has to be
replaced by the jellium contribution, which for a disk of
radius R0 �containing N countercharges� gives a potential en-
ergy contribution26

V�r�k� = − 
�
S

e2d2r

�r�k − r��
. �13�

Here S=	R0
2 is the area of the jellium disk for N charges and

we have R0=N1/2r0. For �=1, we may now identify the char-
acteristic length L of the oscillator with the mean particle
distance to obtain L= �� /M�0�1/2=N1/4r0, and find for N
�1 the relation r0LR0. The generalization to the anyon
case, ��1, is possible by dividing those lengths by f1/2���.

The strength of the particle interaction is characterized by
the density parameter rs �in 2D the radius of the Seitz circle�,
and we may generalize our analytic expression �11� for the
ground-state energy to the form

E0��,rs� = 	�2
N���,rs�/M . �14�

Thus we replace the unknown function ���� by ��� ,rs�,
which now depends on the two system parameters � and rs
and takes into account the Coulomb interaction and the sta-
tistics. In the high density limit �rs→0� it becomes the func-
tion ���� introduced for the noninteracting system. The non-
trivial case of rs→0 and �→0 will be considered in Sec. V.

In a similar way, we have to generalize f��� to f�� ,rs�.
Now these functions depend in a complicated way on each
other. Thus we have established the extension from the con-
fined to the homogeneous 2D anyon system. In Sec. V we
determine the function f�� ,rs�.

III. 2D COULOMB BOSE GAS AT HIGH DENSITIES

The 3D Coulomb Bose gas problem has been treated by
Foldy18 in the high density limit by applying the Bogoliubov

approximation.27 Originally, Bogoliubov considered a low-
density system of bosons interacting with short-range forces,
but it was shown in Ref. 18 that the Bogoliubov approxima-
tion can also be reliably used for bosons with long-range
Coulomb interactions in the high density limit. In this section
we use the same strategy for the 2D Coulomb Bose gas to
obtain an analytic expression for the ground-state energy.

According to Ref. 18, the Bogoliubov approximation is
valid if almost all particles are in the zero momentum state,
i.e., �N−N0� /N tends to zero when rs→0, where N0 is the
number of particles with zero momentum. Following Ref.
18, for the 2D Coulomb Bose gas, this ratio takes the form

�N − N0�
N

=
S

4	N
�

0

� �Ek + NVk

Ek
− 1�kdk , �15�

where Ek=�2k2 / �2M�, Vk=2	e2 / �Sk� is the Fourier trans-
form of the 1/r potential in 2D, and

Ek = ��Ek + NVk�2 − N2Vk
2�1/2 �16�

is the dispersion of collective excitations. By introducing the
variable

� = � �2k3S

2	MNe2�1/6

= �aB
3rs

2k3

2
�1/6

, �17�

Eq. �15� takes the form

�N − N0�
N

=
rs

2/3

21/3�
0

� 	 �6 + 2

��6 + 4�1/2 − �3
d� . �18�

After evaluation of the integral one obtains

�N − N0�
N

=
�� 1

3��� 7
6�

2�	
rs

2/3 = 0.701 091rs
2/3, �19�

which tends to zero for rs→0, thus showing the validity of
the Bogoliubov approximation also for the 2D Coulomb
Bose gas.

The 2D analog of the ground-state energy given in Ref. 18
is

E =
S

4	
�

0

�

�Ek − Ek − NVk�kdk , �20�

and can also be written in terms of the variable � �in Ry
=e2 / �2aB� units�

E

N
= 21/3rs

−2/3�
0

�

��3��6 + 4�1/2 − �6 − 2��d� , �21�

which after evaluation of the integral yields

E

N
= − cBGrs

−2/3, �22�

where cBG=
2��−4

3
���5

6
�

3�	
=1.293 55. The same result has been

obtained also in Ref. 28 by applying the hypernetted chain
approximation.

Thus we have an exact analytic expression for the ground-
state energy per particle for the 2D Coulomb Bose gas valid
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at high densities. It will be used in Sec. V together with the
known expression for the 2D Coulomb gas in the low density
limit �the 2D Wigner crystal� to derive a form for the un-
known function f�� ,rs� introduced in Sec. II. We note in
passing that the 2D �classical� Wigner crystal is independent
of particle statistics, thus its properties do not depend on �.

It is interesting to note that the spectrum of collective
excitations of the 2D Coulomb Bose gas, Eq. �16�, can be
cast in the form

Ek = ��22	e2
k/M + ��2k2/�2M��2�1/2, �23�

which for small k represents the 2D plasmon dispersion29

and approaches for large k the free particle dispersion. In
contrast to the 3D system this spectrum has no gap at k=0.

IV. ANALYTIC EXPRESSION FOR THE GROUND-STATE
ENERGY IN THE THERMODYNAMIC LIMIT

With the considerations of the previous sections we may
now derive the wanted analytic expression for the ground-
state energy of the charged anyon gas. The system Hamil-
tonian is given by

Ĥ = �
i=1

N 	 1

2M
�p� i + A� ��r�i��2 +

1

2��j�i

e2

�r�i − r� j�
+ V�r�i��
 ,

�24�

where �for N→�� V�r�i�, the interaction energy of the ith
electron with the jellium background, plays the role of the
confining potential considered in Ref. 19.

From our calculation for parabolically confined interact-
ing anyons we know the contributions of the individual terms
of Eq. �24� to the expectation value of the ground-state en-
ergy except for the potential energy V�r�i�. As will be dem-
onstrated in this section, V�r�i� modifies the expectation value
originating from the Coulomb interaction in the case of N
→�. Namely, we will show that, differing from Eq. �7�, M
will now be proportional to N1/2. This allows us to obtain in
Sec. V the thermodynamic limit of the ground-state energy,
Eq. �4�, as a complicated function of the system parameters �
and rs introduced by M and its dependence on f�� ,rs�.

Before this is done, we have to calculate the mentioned
modification of the contribution of the Coulomb interaction
to the ground-state energy by V�r�i�. For this we adopt the
approach of Fisher et al.30 who used the Ewald method. They
started dividing the plane into square cells, each cell contain-
ing the same number of pointlike charges �electrons� and the
corresponding jellium background. We use their expression
for the interaction potential �Eq. �A2� of Ref. 30�

��r�� =
2	

L2 �
S��0

erfc�St�eiS� ·r�

S
+ �

R�

erfc��r� − R� �/2t�

�r� − R� �
−

4	1/2t

L2 .

�25�

Here, R� =L�lx , ly�, and S� =2	�lx , ly� /L �with lx , ly

=0, ±1, ±2, . . .� are the direct and reciprocal lattice vectors,
respectively, with lattice constant L; erfc�x�=1−erf�x� is the

complementary error function, and t the Ewald parameter for
optimal convergence of the lattice sums.

The interaction energy of the 2D Coulomb gas is given by

V�r�1, . . . ,r�N� =
1

2 �
i,j=1

N 	��r�i − r� j� − �ij
e2

�r�i − r� j�

 , �26�

where the self-interaction is explicitly subtracted. Using the
Gaussian variational wave function of Ref. 19 to compute
the expectation value of the interaction energy, we need to
evaluate

�
i,j�i

� d2rid
2rje

−�r�i
2
e−�r�j

2
��r�i − r� j� . �27�

Consider now the individual contributions to ��r�i−r� j� in
Eq. �25�. Typically, the Ewald parameter is taken to be t
�L. For simplicity we assume t=L. Then St=2	�lx

2+ ly
2�1/2,

�r�−R� �=L�r� /L− �lx , ly��, and �r�−R� � / �2t�= �r� /L− �lx , ly�� /2 and
we rewrite the expression for ��r��, Eq. �25�, in the form

��r�� =
erfc�r/2L�

r
+

1

L
A�r�� , �28�

where

A�r�� = �
lx,ly�0

	 erfc�2	�lx
2 + ly

2�1/2�eiS� ·r�

�lx
2 + ly

2�1/2

+
erfc��r�/L − �lx,ly��/2�

�r�/L − �lx,ly��

 − 4	1/2. �29�

The length of the vector r� is in the interval 0�r�L. We
identify L�L=N1/4r0, which implies r0�r�N1/4r0, and es-
timate the contributions to ��r�� in the limits rL and r

→L. For r /L1 one has eiS� ·r��1 and one can neglect r� /L in
the second term of A�r�� to obtain the leading terms of an

expansion ��r���1/r+A /L. When r→L and with S� ·r�
=2	�lx

2+ ly
2�1/2 cos �, we find that the first term of A�r�� de-

pends only on lx , ly and the angle between S� and r�. Likewise,
it is seen that the second term of A�r�� neither depends on r
nor on L. Hence we conclude with the relation

��r → r0�
��r → L�

� N1/4, �30�

showing that in the thermodynamic limit �N→�� the small r
contributions to the interaction energy become essential.

Thus, assuming ��r���1/r, and taking into account that
the original cell contains 	L2 / �4	r0

2�=N1/2 /4 particles, we
obtain �after integration� for the expectation value of the in-
teraction energy per particle

E�I�

N
=

aN1/2e2�1/2

L
. �31�

Rewriting the result for E�I� in �2 / �ML2� units, substituting
into the expression for the expectation value of the total en-
ergy, and minimizing with respect to � as in Ref. 19 yields
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the expression for the ground-state energy, Eq. �4�, with
��0=�2 / �ML2� and

M =
aN1/2L

aB
. �32�

Following Ref. 19 we assume N=1+��N−1�. The constant
a is fixed by fitting our ground-state energy to the exact
numerical value of the 2D Wigner crystal ground-state en-
ergy and we find a=−cWC.

V. GROUND-STATE ENERGY OF 2D COULOMB ANYON
GAS

For sufficiently large N and by taking into account that
L=N1/4r0, we may use M=−cWCN3/4rs / f1/2�� ,rs� and N
=�N �in this section the boson limit, �=0, is understood as
the limit �→0 under the condition ��1/N� to write, starting
from Eq. �4�, the expression for the ground-state energy per
particle �in Ry units� in the form

E0��,rs� �
2f��,rs�

rs
2 	 �

2KX
2 +

KX
2

2
−

K

KX

 . �33�

Here

KX = �KA + KB�1/2 + �− �KA + KB� + 2�KA
2 − KAKB + KB

2�1/2�1/2,

�34�

and

KA = �K2/128 + ���/12�3 + �K2/128�2�1/2�1/3,

KB = �K2/128 − ���/12�3 + �K2/128�2�1/2�1/3, �35�

with K=cWCrs / f1/2�� ,rs�, are obtained from Eqs. �5� and �6�
for X0 and A and B, respectively, after substitution of M and
N by the expressions given above. Note that we have scaled
the lengths by f1/2�� ,rs� �see Sec. II� and replaced �0 accord-
ing to Eq. �12�. Finally, we determine the function f�� ,rs� by
fitting Eq. �33� to the known analytic expressions for the
ground-state energy of spin-polarized electrons and of the 2D
Coulomb Bose gas, as derived in Sec. III.

For the Bose gas ��=0� we obtain from Eq. �33�

E0�0,rs� = −
cWC

2/3 f2/3�0,rs�
rs

4/3 �36�

and find with Eq. �22� for small rs f�0,rs��cBG
3/2rs /cWC. For

large rs, the ground-state energy does not depend on statistics
and equals the energy of the classical 2D Wigner crystal,16

EWC=−2.2122/rs. This matches with Eq. �36� if at low den-
sities f�0,rs��rs

1/2 with cWC
2/3 =2.2122. For arbitrary rs, we

connect these asymptotics by

f�0,rs� �
cBG

3/2rs/cWC

1 + cBG
3/2rs

1/2/cWC

+
0.2rs

2 ln�rs�
1 + rs

2 . �37�

For ��0 and small rs the asymptotics of the ground-state
energy, Eq. �33�, has the form

E0��,rs → 0� =
2f��,rs�

rs
2 ��1/2 −

cWCrs

�1/4f1/2��,rs�
� , �38�

the first term of which �for f�� ,rs�=1� corresponds to the
thermodynamic limit of the ground-state energy of anyons in
2D harmonic potential without Coulomb interaction.19,20 For
large rs we obtain

E0��,rs → �� =
cWC

2/3 f2/3��,rs�
rs

4/3 �− 1 +
7�f2/3��,rs�

3cWC
4/3 rs

4/3 � .

�39�

The function f�� ,rs� has to fulfill the following constraints:
f��=1,rs=0�=1 for the dense ideal Fermi gas, f�� ,rs=0�
=�1/2 for the ideal anyon gas close to the bosonic limit, and
f�0,rs� given by Eq. �37� for the 2D Coulomb Bose gas. The
interpolating functional form

f��,rs� � �1/2c0�rs�e−5rs +
cBG

3/2rs/cWC

1 + c1�rs�cBG
3/2rs

1/2/cWC

+
0.2c1�rs�rs

2 ln�rs�
1 + rs

2 �40�

with c0�rs�=1+6.9943rs+22.4717rs
2 and c1�rs�=1−e−rs satis-

fies these constraints and, in addition, yields in the fermion
case ��=1� for the ground-state energy per particle the HF
result.31 Moreover, for intermediate rs the logarithmic term
in Eq. �40� gives ground-state energies of the Bose gas lower
than those of the spin-polarized electron system, as indicated
in Ref. 17.

In Fig. 1 we show results for the ground-state energy per
particle on the large scale 1.0�rs�15.0. The upper four
curves refer in descending order to the fermion case ��=1�:
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FIG. 1. Ground-state energies per particle vs density parameter
rs for range 1.0�rs�15.0 from top to bottom: for fermions ��
=1� HF approximation �Eq. �41� and Ref. 31, open triangles�, MC
interpolation data �from Ref. 5, crosses�, and present results from
Eq. �39� �closed circles� and Eq. �33� �plus signs�, and for bosons
��=0� present results from Eq. �36� �open squares� and MC data
from Ref. 17 �closed triangles�. MC data of Ref. 4 for some par-
ticular values of rs are indicated by star symbols.
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HF energies for spin-polarized electrons from Ref. 31 �open
triangles�, interpolated by Padè approximant MC data from
Ref. 5 �on the given scale identical with those of Ref. 6� for
spin-polarized electrons �crosses�, and our results from Eq.
�33� �on the given scale identical with those of Eq. �39�� for
spin-polarized electrons �closed circles�. The lower two
curves are for charged bosons ��=0� and result from MC
calculations of Ref. 17 �closed triangles� and from our Eq.
�36� �open squares�. By star symbols we indicated the MC
data4 �without interpolation� obtained for some particular rs
values. In Fig. 2 the corresponding results are depicted for
0.2�rs�1.5 and a larger energy scale. Here the difference
in the data from Eqs. �33� and �39� �plus signs and closed
circles, respectively� is clearly resolved for the smallest rs
values.

Let us first discuss the curves for the interacting Bose gas.
As can be seen from Figs. 1 and 2, our analytic formula �36�
for the ground-state energy yields results in close agreement
with the MC data of Ref. 17, which are obtained numerically
with much effort and represent upper bounds to the ground-
state. In this respect it is noteworthy that for rs�2.0 the
energies of Eq. �36� are lower than those of Ref. 17.

For the spin-polarized electron system we recognize, that
the results of our analytic formula �Eq. �33�� are lower than
the HF data for all rs with larger deviations for small rs,
while the MC data �which are close to the HF results� cor-
rectly approach the Wigner crystal limit �as our results�. The
curves obtained from our low-density expansion, Eq. �39�,
are very close to those of Eq. �33� except for the lowest rs
values, thus indicating to breakdown of this approximation
�Fig. 2�. The deviation from the HF and MC data for smaller
rs can be made explicit by looking at the minima of these
curves. By minimizing Eq. �39� with respect to f2/3�� ,rs� /rs

4/3

we obtain E0,min=−3cWC
2 / �28�� for ��0. For the electron

system ��=1� this gives with cWC=3.2903 the energy mini-
mum E0,min=−1.159. With f��=1,rs� from Eq. �40� its posi-
tion at rs�0.7 is in close agreement with the result obtained
from Eq. �33� �as shown in Fig. 2�. In contrast, the HF
energy31 for the spin-polarized electron gas

EHF =
2

rs
2 −

16

3	rs
�41�

takes its minimum value EHF,min=−0.360 for rs�2.36 com-
pared with MC data of EMC,min=−0.393 at rs�2.3.

Here we have to consider that the validity of the HF ap-
proximation is limited by the demand that the leading �ki-
netic energy� is larger than the second term �exchange con-
tribution�. For the spin-polarized electron system this is the
case for rs�1.2, i.e., the HF minimum energy per particle is
achieved in a density range, for which the HF approximation
does not apply. Likewise, we can discard the MC results for
this intermediate density range because they are obtained
with a method, which conceptually is close to the HF ap-
proximation.

Results for the � dependence of the ground-state energy
per particle, calculated for various fixed values of rs using
Eq. �33�, are presented in Fig. 3. It shows for rs�1 a mo-
notonous increase from the boson ��=0� to the fermion ��
=1� end. This follows analytically also by taking the deriva-
tive of Eq. �39�, valid for this range of rs. In contrast, for
rs�1, a minimum appears for an intermediate value �0, thus
the boson energies are not the lowest ones. This minimum
follows �for ��rs� with f�� ,rs→0���1/2b1 with b1=1
+2.441 472rs from Eq. �40� using the approximate Eq. �39�.
It is given by E0,min=−�4/5�b2

1/4cWCb1
1/2 /rs with b2=3/35,

and occurs at �0=b2
3/4cWCrs /b1

1/2. For rs=0.2 this gives
E0,min�−8.689 and �0�0.08, while from Eq. �33� we have
E0,min=−8.847 and �0=0.08. From this analysis we see that
for rs→0 the minimal energy decreases according to E0,min
�−1/rs much faster than the boson ground-state energy with
the asymptotics �−1/rs

2/3. Therefore close to rs=0 the con-
tinuous transformation of bosons into fermions by varying of
parameter � breaks down. This result is not surprising be-
cause for rs→0 we have no ideal boson gas.

Altogether the curves in Figs. 1–3 demonstrate the capa-
bility of our analytical formula to describe the ground-state
energy in a wide range of the density parameter rs and for the
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FIG. 2. The same as in Fig. 1, however, for range 0.2�rs

�1.5. FIG. 3. Ground-state energies per particle vs anyon parameter �
for various fixed values of rs.
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whole range of the anyon parameter �. The ground-state en-
ergies for Coulomb anyon systems would continuously
change between the curves from Eq. �36� and Eqs. �33� and
�39� if � would change from 0 to 1 �except the close region
to rs=0�.

VI. CONCLUSIONS

We have derived an approximate analytic formula for the
ground-state energy of the Coulomb anyon gas. Starting
from our previous results for the noninteracting 2D anyon
gas confined in a harmonic potential, we have flattened out
the confinement with simultaneous increasing of the particle
number to obtain the thermodynamic limit at fixed density.
We have generalized this result to describe the interacting 2D
Coulomb anyon gas by introducing a function of the anyon
parameters � and rs, that takes into account the Coulomb
interaction and fractional statistics. We have determined this

function by fitting to the analytic expressions for the ground-
state energy of the classical electron crystal at very large rs,
to that of the 2D Coulomb Bose gas at very small rs and to
the HF energy �at high density� for spin-polarized 2D elec-
trons. Our analytic formula applies to the full range of pa-
rameters � and rs and provides a convenient description of
the ground-state of 2D Coulomb anyon systems. By com-
parison with HF and MC results from the literature we find
significant deviations for intermediate densities, which indi-
cate shortcomings of these approaches
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