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The quantum rate equation approach is applied to studying the angle-dependent electronic current I���
through a quantum dot coupled to two magnetic leads with noncollinear magnetizations and subject to a
perpendicular magnetic field. The analytic expressions for I��� are obtained in free and Coulomb blockade
regimes. It is found that the current exhibits different angle dependence in both the regimes and deviates
significantly from I����sin2 � /2. The perpendicular magnetic field applied on the quantum dot plays a spin-flip
effect in electronic transport and promotes greatly the electronic current at �=�.
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I. INTRODUCTION

Spin-dependent electronic transport in quantum-dot �QD�
systems has attracted great interest since the 1990s,1–3 as it
opened up new application prospects for microelectronics
and spintronics. Strong Coulomb interactions have important
consequences for electronic transport on the nanometer
length scale in low-dimensional systems, such as quantum
dots, nanojunctions, and other artificial nanoscale
devices,1,4–9 due to the smallness of such systems. Coulomb
blockade of the single-electron tunneling is a fundamental
physical phenomenon of the QD system at low
temperatures.4,10,11 The spin degree of freedom plays an im-
portant role in the transport if the source and drain leads
attached to the QD are magnetic because the electronic cur-
rent will be spin polarized. Magnetization configurations of
the two leads are very important, since they affect the polar-
ization of the electronic current and so the magnitude of
current. Many experimental and theoretical works have been
devoted to studying parallel and antiparallel magnetization
configurations.4,12–18 Up to now, only a few works have been
made to study the transport properties of the QD coupled to
noncollinear magnetic leads.19–24 Fransson21 found that the
current of the system in the strongly coupled regime is a
nonmonotonic function of the angle between the magnetiza-
tion directions in the two leads, which was attributed to the
spin-dependent energy shift of the QD state. The transport
through QDs coupled to leads with noncollinear magnetiza-
tions in the sequential tunneling regime was seriously ana-
lyzed by Braun et al.,24 while transport in the Coulomb
blockade regime was considered by Weymann and Barnas 22

Recently, Gorelik et al.4 studied the spin-polarized elec-
tronic transport through a magnetic single-electron transistor
with a central QD subject to an external magnetic field per-
pendicular to the magnetizations in two leads. They proposed
a new phenomenon of Coulomb promotion of spin-
dependent tunneling, which arises from combined effects of
spin-flip processes induced by the magnetic field and Cou-
lomb correlations on the QD. However, only the collinear
magnetization case was taken into account there. The study
of the angle-dependent electronic current in the noncollinear
magnetization case is highly desirable, in which new phe-
nomena may emerge due to the combined effects of noncol-
linearly oriented magnetic leads and the magnetic field ap-

plied to the QD. The physical picture of the present QD
system compared to multilayers is significantly different. Be-
cause of the smallness of the QD, its conductive states are
zero-dimensionally confined. The QD can accommodate
only a few electrons so that the Coulomb interaction plays a
blockade role, leading to single-electron tunneling behavior.

Transport problems in mesocopic systems can be investi-
gated by many methods, such as the quasiclassical Boltz-
mann equation approach,25–28 the Kubo formula,25,26 the
density-matrix �rate equation� approach,4,29–32 and the
Green’s function approach.27,33,34 In this paper we shall ex-
tend the density-matrix approach4 to the case of the QD
coupled to noncollinearly oriented magnetic leads and sub-
ject to a perpendicular magnetic field �see Fig. 1�. Angle-
dependent electronic currents I��� exhibit different behaviors
in the free regime, where two electrons can exist in the QD
energy level, and in the Coulomb blockade regime, where at
most one electron exists in the QD energy level. In the ab-
sence of an external magnetic field, IF��� in the free regime
varies monotonically from �=0 to �, similar to the normal
spin-valve effect in magnetic multilayers,35–37 while ICB���
in the Coulomb blockade regime has a nonmonotonic varia-
tion as a result of the competition of the spin-valve effect and
spin splitting of the QD state energies. In the presence of an
external magnetic field, the spin flip of electrons through the
QD significantly promotes electronic tunneling in the anti-
parallel magnetization configuration, no matter whether the
dot is in the free or Coulomb blockade regime. We also com-
pare the present theoretical results with those obtained earlier
in the literature. In special cases of collinear magnetization
orientations ��=0 or ��, our analytic formula for the angle-

FIG. 1. Sketch of the nanomagnetic tunnel junction of a QD
coupled to two leads with magnetizations ML and MR at an angle of
�. V is the bias voltage applied to the junction.
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dependent electronic current is reduced to those obtained re-
cently by Gorelik et al.4 In the Coulomb blockade regime, it
is found that the ICB��� peak appears at a certain angle �
between 0 and � rather than just at �=0, whether the QD is
subject to a magnetic field or not. In the absence of an ex-
ternal magnetic field, this phenomenon can be explained by
the reason mentioned above: i. e., the competition of the
spin-valve effect and spin-dependent shift of the QD state
energies. In the presence of a perpendicular magnetic field,
although the ICB��� behavior is qualitatively unchanged,
ICB��� is promoted near �=� and reduced near �=0 due to
the magnetic-field-induced spin flip of electrons through the
QD.

II. THEORY AND ANALYTICAL RESULTS

Consider a magnetic single-electron-transistor device
shown in Fig. 1, in which a QD, subject to an external mag-
netic field hx along the x direction, is located between two
spin-polarized leads with magnetizations at an angle of � in
the z−y plane. For the dot of nanometer size, only one elec-
tron energy level needs to be considered on the dot. This
electron level may be doubly occupied by electrons with
different spins in the free regime, but can accommodate one
electron at most in the Coulomb blockade regime. The main
effect of the external magnetic field perpendicular to the
magnetizations in the leads is to induce coherent spin-flip
dynamics on the dot so as to significantly affect the transport
of electrons through the device. Assuming hx is small
enough, we neglect its effect on lead magnetization and the
Zeeman splitting of the energy level on the dot.4 By choosing
the spin quantization axis along the z axis, the system Hamil-
tonian can be written as H=HL+HR+Hd+HT with4,20,21,34

HL = �
�s

�L�saL�s
† aL�s,

HR = �
�s

�R�saR�s
† aR�s,

Hd = �
s

�as
†as − Ua↑

†a↓
†a↑a↓ + �

s,s�

�hxas
†	x

ss�as�,

HT = �
�s

tLas
†aL�s + �

�s

tRas
†�aR�s cos

�

2
− iaR�s̄ sin

�

2
� + H.c.

�1�

Here HL �HR� is the noninteracting electron Hamiltonian in
the left �right� lead, and aL�s

† and aL�s �aR�s
† and aR�s� are the

corresponding creation and annihilation operators for elec-
trons. In the light of the Stoner theory, the electronic energy
in the ferromagnetic lead is given by �L�s=�L�−sML��R�s

=�R�−sMR� with � ��� denoting the level in the left �right�
leads, s=1 �−1� for the spin-up �down� electron, s̄=−s, and
ML �MR� representing the magnetization of the left �right�
lead. Hd is the QD Hamiltonian in which as

† �as� is the the
creation �annihilation� operator on the QD with energy � and

spin s, U is the Coulomb energy, and 	x
ss� is the Pauli matrix.

HT stands for the tunneling of electrons between the dot and
leads with hopping coefficients tL and tR.

Following Gurvitz and Prager,29 the evolution of the
whole system in the free regime can be described by the
many-body wave function

�
�t�� = �b0 + �
�ss�

b�s�	s
as
†aL�s�

+ �
����ss�

b���ss�as
†as̄

†aL�saL��s�

+ �
��ss�

b��s��s�aR�s
† aL�s�

+ �
����,�ss�s�s�

b����s�s��s��	s
as
†aR�s�

† aL�s�aL��s�

+ ¯ ��0� . �2�

Here the “vacuum state” �0� denotes that all the levels in the
two leads are initially filled with electrons up to the Fermi
energy, and b�t� are the time-dependent probability ampli-
tudes for finding the system in the corresponding states de-
scribed above with the initial condition b0�0�=1 and all the
other b�0�=0. For brevity, we generally write b�t� as b, and
subscripts s, �s�, and 	s
 of b stand for the electron spin in the
left lead, right lead, and QD, respectively. If the QD is oc-
cupied by two electrons, the QD spin subscripts of b must be
	ss̄
 so as to be omitted. Substituting Eqs. �1� and �2� into the
Schrödinger equation i d

dt �
�t��=H�
�t�� results in an infinite
set of coupled differential equations for b�t�. Using the
Laplace transform

b̃�E� = �
0

�

eiEtb�t�dt , �3�

together with the initial conditions, we get an infinite set of

algebraic equations for b̃�E�,29,31,32

�E + iL/2�b̃0 = i ,

E + �L�s − � + �hi	i
ss + iL

s̄ /2 + �iR
s cos2 �

2

+ iR
s̄ sin2 �

2
�� 2�b̃�s	s
 + �hi	i

ss̄b̃�s	s̄
 − tLb̃0 = 0,

E + �L�s̄ − � + �hi	i
ss + iL

s̄ /2 + �iR
s cos2 �

2

+ iR
s̄ sin2 �

2
�� 2�b̃�s̄	s
 + �hi	i

ss̄b̃�s̄	s̄
 = 0,

	E + �L�s + �L��s − 2� − U + iR/2
b̃���ss − tLb̃�s	s̄
 = 0,
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	E + �L�s + �L��s̄ − 2� − U + iR/2
b̃���ss̄ − tLb̃�s	s
 = 0.

�4�

Here b̃�E� has been simply written as b̃, and L
s =2��Ls�tL�2

�R
s =2��Rs�tR�2� is the line width function due to coupling

between the dot and the left �right� lead with �Ls ��Rs� the
density of states in the left �right� lead. In addition, we have
defined L=L

↑ +L
↓, R=R

↑ +R
↓ , ↑=L

↑ +R
↑ , ↓=L

↓ +R
↓ ,

and =L+R=↑+↓. In this work we have assumed that
both kBT �temperature� and  are much smaller than bias
voltage V and �V−U�, and the level position of the quantum
dot is just at the Fermi level.4

Next we introduce the density matrix of the system. The
dynamics of the system can be described by the time evolu-
tion of the total density matrix, which contains a number of
degrees of freedom in the dot and the leads. Since the leads
are treated as reservoirs of noninteracting electrons, it is the
dynamics of the dot degrees of freedom that determines the
transport behavior. By integrating out the degrees of freedom
of the leads we can get a reduced density matrix for the dot
degrees of freedom only. As the QD consists of only one
energy level, in the Hilbert space, the density matrix can be
defined as

�d =�
�0 0 0 0

0 �↑ �↑↓ 0

0 �↓↑ �↓ 0

0 0 0 �2

� , �5�

where the diagonal elements �0, �↑, �↓, and �2 are the prob-
abilities of the dot level being empty, occupied by a spin-up
and spin-down electron, and by two electrons, respectively,
and the complex off-diagonal elements �↑↓ and �↓↑ are re-
sponsible for coherent quantum effects in the electron
transport.29 Owing to the conservation of probability, there
exists the completeness relation

tr��d� = �0 + �↑ + �↓ + �2 = 1. �6�

The matrix elements of the density matrix of the system can
be written as

�i = �i
�0� + �i

�1� + ¯ ,

with subscript i=0, ↑, ↓, and 2, where

�0
�0� = �b0�2, �0

�1� = �
��ss�

�b��s��s��2, . . . ,

�s
�0� = �

�s�

�b�s�	s
�2, �s
�1� = �

����,�s�s�s�

�b����s�s��s��	s
�2, . . . ,

�2
�0� = �

����ss�

�b���ss��
2, �2

�1�

= �
��������ss�s�s�

�b������s�s�s��s��2, . . . ,

and

�ss̄ = �ss̄
�0� + �ss̄

�1� + ¯ ,

where

�ss̄
�0� = �

�s�

b�s�	s

* b�s�	s̄
,

�ss̄
�1� = �

����,�s�s�s�

b
����s�s��s��	s

*

b
����s�s��s��	s̄

* , . . . .

�7�

Here superscript n in �i
�n� is the number of electrons in the

right lead. The current flowing through the system is I�t�
=edNR�t� /dt, where NR�t� is the number of electrons accu-
mulated in the right lead—i.e.,

I�t� = �
n

nd�0
�n��t�
dt

+
d�↑

�n��t�
dt

+
d�↓

�n��t�
dt

+
d�2

�n��t�
dt

� . �8�

By means of the inverse Laplace transform, from Eqs. �4�
and �7�, we get the time evolution of �i

�n� with i
=0, ↑ , ↓ ,2 , ↑ ↓ , ↓↑, and n=0,1 ,2 , . . ..29 After lengthy
algebra,29 from Eq. �8� we obtain the electronic current in the
free regime as

If�t�/e = R�2 + �R
↑�↑ + R

↓�↓�cos2 �

2
+ �R

↓�↑ + R
↑�↓�sin2 �

2
.

�9�

By summing d�i
�n� /dt over n, d�i /dt can be obtained as

d�0

dt
= − L�0 + �R

↑�↑ + R
↓�↓�cos2 �

2
+ �R

↓�↑ + R
↑�↓�sin2 �

2
,

d�↑
dt

= �L
↑ − L

↓ − R
↑ cos2 �

2
− R

↓ sin2 �

2
��↑ + �R

↑ sin2 �

2

+ R
↓ cos2 �

2
��2 + i�hx��↓↑ − �↑↓� ,

d�↓
dt

= �L
↓ − L

↑ − R
↓ cos2 �

2
− R

↑ sin2 �

2
��↓ + �R

↓ sin2 �

2

+ R
↑ cos2 �

2
��2 + i�hx��↑↓ − �↓↑� ,

d�2

dt
= R

↑�↓ + R
↓�↑ − R�2,

d�↑↓
dt

= i�hx��↓ − �↑� −


2
�↑↓,

d�↓↑
dt

= i�hx��↑ − �↓� −


2
�↓↑.

In the steady state with d�i /dt=0, the steady current given in
Eq. �9� in the free regime becomes
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If = e�L�0 + L
↑�↓ + L

↓�↑� , �10�

which provides a clear physical picture for the electron trans-
port through the system and can be understood by the fol-
lowing argument. For the empty level of the dot with prob-
ability �0, the tunneling current is given by eL�0. For the
dot level occupied by a spin-up �spin-down� electron with
probability �↑ ��↓�, only the spin-down �spin-up� electron
can enter the dot so that the tunneling current is given by
eL

↓�↑ �L
↑�↓�. If the dot level is doubly occupied by elec-

trons, no electron can enter the dot and so no term of �2
appears in Eq. �10�. As a result, the total tunneling current is
the sum of those in the empty- and single-occupied cases. We
wish to point out here that �0, �↑, and �↓ each are a function
of �, L

s , and R
s , which can be determined from the set of

differential equations above with d�i /dt=0. Substituting
their expressions into Eq. �10�, we finally obtain

If =
eLR


16�2hx

2 + 2 − PL
2L − PR

2R cos2 �

16�2hx
2 + 2 − �PLL + PRR cos ��2 � ,

�11�

where PL= �L
↑ −L

↓� /L and PR= �R
↑ −R

↓� /R are polariza-
tions of the left and right leads, respectively.

In the Coulomb blockade regime, in which double occu-
pation of electrons on the dot level is prohibited, the same
calculated procedure as above can be performed provided
�2=0 is taken into account. The tunneling current in the Cou-
lomb blockade regime can also be obtained as

ICB = eLR 16�2hx
2 + �1 − PR

2 cos2 ��R
2

16�2hx
2�L + � + 2�1 − PLPR cos ��LR

2 + �1 − PR
2 cos2 ��R

3 � . �12�

This current can be also written as ICB=eL�0
c where �0

c is the
probability of the empty dot level in the Coulomb blockade
regime. It stems from the fact that in this case the electron
can pass through the dot only when the dot level is empty. �0

c

in the Coulomb blockade regime must be different from �0 in
the free regime. It can be shown that, if one takes �=0 or �,
Eqs. �11� and �12� reduce to the expressions for IF and ICB
obtained by Gorelik et al.,4 the latter being just the special
result of the former in collinear magnetization configura-
tions.

III. RESULTS AND DISCUSSIONS

Equations �11� and �12� are the main results in this work.
In what follows we make some discussions of the analytical
results and give their graphical presentation. We wish to
show the angle dependence of the tunneling conductance and
the effect of the external magnetic field on the tunnel mag-
netoresistance �TMR�. The left and right leads are assumed
to have the same polarization—i.e., PL= PR= P. The asym-
metry of the linewidth functions is described by �= �L

−R� / and the magnitude of the magnetic field applied to
the QD described by �=2�hx /. The angle-dependent TMR
ratio is defined as

TMR � 	I� − I���
/I� , �13�

where I��� and I� are the tunneling currents with the lead
magnetizations at angle � and parallel to each other ��=0�,
respectively.

A. Free regime

In the free regime, where U is smaller than the bias volt-
age applied to the junction, the QD energy level may be
occupied by two electrons. In this case the Coulomb interac-

tion plays little role in the tunneling current. The � depen-
dences of the tunneling current and TMR ratio exhibit a nor-
mal spin-valve effect, as shown in Figs. 2�a� and 2�b�. The
current arrives at its maximum and minimum, respectively,
in the parallel and antiparallel magnetization configurations,
exhibiting a monotonic change in between. If the two ferro-
magnetic leads are made of the identical half metal �P=1�
and there is no external magnetic field �hx=0�, from Eq. �11�,
we have IF��=��=0 and IF��=0�=eLR /, so that the
TMR ratio is equal to 1 for �=�, as shown by the solid line
in Figs. 2�a� and 2�b�. It is interesting to see that the � de-
pendence of the TMR ratio greatly deviates from the ideal
shape of sin2 � /2. Such a deviation comes from the appear-
ance of cos � in the denominator in Eq. �11�. Physically, it
stems from the fact that in the quantum-dot spin-valve sys-
tem there exist spin accumulation on the QD and an ex-
change field effect, making the TMR effect less pronounced
compared with a single magnetic tunnel junction.24 As a re-
sult, the calculated results shown in Fig. 2 are consistent with
those obtained by Braun et al.24 and by Wetzels et al.38

We next discuss the effect of the magnetic field applied to
the QD on IF��� and TMR ratio. Figure 3 shows the � de-
pendence of IF for different magnetic fields �. It is found that
IF��=�� increases with �, even though the qualitative be-
havior of IF��� remains unchanged. It is the spin-flip effect
induced by the external magnetic field that promotes the cur-
rent through the device with antiparallel magnetization. For
PL= PP=1, Eq. �11� is reduced to IF��=0�=eLR / and
IF��=��= �eLR /��2 / ��2+LR /�. In this case, IF���
increases rapidly with magnetic field while IF�0� is indepen-
dent of �.

B. Coulomb blockade regime

In the Coulomb blockade regime, where U is greater than
the bias voltage, the QD energy level can be occupied by
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one electron at most. In this case the Coulomb interaction
plays an important role in the electronic current through
the QD. Figure 4 shows the � dependence of ICB for P=1
�solid line�, 0.95 �dot-dashed line�, P=0.5 �dashed line�,
and P=0 �dotted line� in the absence of hx. It is found that
ICB� = ICB��=0� is no longer maximal and ICB��� is greater
than ICB� in a wide range of �, exhibiting a maximum at a
certain value of �. In reality, in the absence of hx, Eq. �12� is
reduced to

ICB =
eLR

2L + R

1

1 − ���,P�
, �14�

with

���,P� =
2L

2L + R

P2 cos ��1 − cos ��
1 − P2 cos2 �

. �15�

It then follows that ��� , P�=0 at �=0, and so ICB��=0�
=eLR / �2L+R�, independent of P. Since ��� , P��0 for
0���� /2, we have ICB���� ICB� in this � range, which is
consistent with the numerical result shown in Fig. 4. From
Eqs. �14� and �15�, it is found that the maximal ICB��� ap-
pears at cos �c= �1−�1− P2� / P2 for 0� P�1. Here cos �c is
close to 1/2 for small P and equal to 1 at P=1, increasing
with P. As a result, in Fig. 4 the ICB��� maximum moves
towards the left �the direction of decreasing �� with increas-
ing P. For P=0, the leads are nonmagnetic and so ICB is �
independent. The situation of P=1 is somewhat special, in
which the maximal ICB appears just at �=0. Therefore there
is a jump of ICB at �=0 from ICB� =eLR / �2L+R� to its
maximum eLR / �L+R�, increased by half if L=R is
taken, as shown in Fig. 4. The behavior of ICB���� ICB� for
0���� /2 is quite different from that in the free regime
where IF� is always maximal. As a result, such an anomaly of
ICB��� must come from the Coulomb correlations on the QD.
For ferromagnetic leads, the levels in the QD experience a
spin split which may result in a decrease of the tunneling
current.12 The largest spin splitting of the QD levels is
caused by a parallel magnetic alignment of the leads,
whereas an antiparallel alignment gives the smallest spin
split. Such a competitive factor of ICB��� decreasing with �
increased from 0 to � may lead to a nonmonotonic behavior
of ICB��� shown in Fig. 4. The present results in the absence
of an external magnetic field are qualitatively consistent with
those obtained by Fransson.21

In the presence of a magnetic field applied to the QD,
there is a spin-flip effect, which makes the change of ICB���
become small, as shown in Fig. 5. For the half-metallic
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FIG. 2. Angle dependence of the electronic current �a� and TMR
ratio �b� in the free regime for �=0 and �=0 with lead polariza-
tions: P=1 �solid line�, 0.5 �dashed line�, and 0 �horizontal line�.
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FIG. 3. Angle dependence of the electronic current in the free
regime for P=1 and �=0 with external magnetic fields: �=0 �solid
line�, 0.1 �dashed line�, 0.2 �dot-dashed line�, and 0.5 �dotted line�.
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FIG. 4. Angle dependence of the electronic current in the Cou-
lomb blockade regime for �=0 and �=0 with lead polarizations
P=1 �solid line�, 0.95 �dot-dashed line�, 0.5 �dashed line�, and 0
�dotted line�.
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leads, owing to the spin flip on the QD, the electronic current
is no longer equal to 0 at �=�. Just like in the free regime,
the external magnetic field promotes the current near �=� in
the Coulomb blockade regime. Such a promotion of ICB��
=�� is even stronger than that of IF��=��. On the other
hand, ICB��� for ��� /2 decreases as � increases, indicating

that the spin flip induced by � is unfavorable to the spin-split
effect on the QD level.

In summary, based on the quantum rate equation, we have
studied the angle dependence of the electronic current
through a QD coupled to two magnetic leads with noncol-
linear magnetizations in the free and Coulomb blockade re-
gimes. In the absence of external magnetic field, the angle-
dependent electronic current in the free regime varies
monotonically from the parallel to antiparallel alignment,
while in the Coulomb blockade regime it varies nonmono-
tonically due to the competition of the spin-valve effect and
spin splitting of the QD-state energies. The external magnetic
field results in a spin flip of the electron on the QD so as to
significantly promote the electronic current at �=� in both
the free and Coulomb blockade regimes, even though its
angle dependence remains qualitatively unchanged. The
present calculated results indicate that there is a large depar-
ture of IF��� from sin2 � /2 behavior. In the collinear magne-
tization configuration, the present analytic expressions for IF
and ICB reduce to those obtained by Gorelik et al.4
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