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Coupled spin-charge drift-diffusion equations are derived for a biased two-dimensional electron gas with
weak Rashba spin-orbit interaction. The basic equations formally agree with recent results obtained for spin-
orbit coupled small polarons. It is shown that effects of an in-plane electric field on a homogeneous spin system
can completely be described by an associated in-plane magnetic field. Exploiting this analogy, we study among
other things the electric-field equivalent of the Hanle effect.
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I. INTRODUCTION

The prospects of a new generation of electronic devices
stimulate a renewed theoretical and experimental interest in
the study of spin effects in semiconductors. A prerequisite for
the design of semiconductor structures, whose function is
based on electron spin, is a due understanding of spin dy-
namics and spin-polarized transport. In this field, the spin-
orbit interaction �SOI� received particular interest since it
allows purely electric manipulation of the electron spin.
Many studies refer to a two-dimensional electron gas
�2DEG�, in which the Rashba SOI arises because of the
quantum well asymmetry in the perpendicular direction. The
SOI leads to a coupling between spin and charge degrees of
freedom, which offers the possibility of controlling the spin
polarization by an electric field.

The theoretical description of spin phenomena in semi-
conductors under the influence of SOI is based on appropri-
ate transport equations. There are numerous approaches1–6

that rely on a separation of drift-diffusion processes for spin
and charge densities. Strictly speaking, such an approach is
inappropriate when the SOI has to be accounted for. Spin-
charge coupled drift-diffusion transport equations have been
derived from firm microscopic models for extended states of
a 2DEG7–11 and for the hopping transport of small
polarons.12 Especially, the approach by Mishchenko et al.7,8

for a 2DEG with Rashba SOI initiated many interesting
studies.13–16 Unfortunately, variants of these calculations suf-
fer from an inconsistency because SOI contributions from
the collision integral have been disregarded. The corrections
lead to a cancellation of contributions that have been used
in a previous work13 to erroneously predict propagating
coupled spin-charge waves.

The aim of the present paper is to derive spin-charge
coupled drift-diffusion equations for a 2DEG with Rashba
SOI that correct deficiencies of previous approaches and that
describe the influence of an external in-plane electric field on
spin polarization. With the help of universal macroscopic
drift-diffusion equations, the spatial and temporal evolutions
of coupled spin-charge disturbances as well as associated

charge accumulation and magnetization are studied in semi-
conductor heterostructures with Rashba SOI. Our basic equa-
tions, which are derived for weak SOI, completely agree
with results obtained for the hopping transport of small
polarons.12 The field-induced homogeneous spin accumula-
tion as well as the charge-Hall current are treated. Further-
more, it is shown that for a homogeneous system, the effect
of the electric field on spin polarization can be completely
captured by a fictitious magnetic field. This analogy between
the real applied electric field and an auxiliary magnetic field
is used to predict a number of interesting electric-field effects
on spin. We mention the decay of a spin polarization by a
transverse electric field. Using this electric-field-driven
Hanle effect by exchanging the in-plane magnetic field by an
electric field in the measurement set up for the ordinary
Hanle effect, it is possible to determine electron and spin
lifetimes under steady-state conditions by varying the
electric-field strength. Another application refers to the
pseudo-charge-Hall effect,17 which is induced by circular po-
larized light via the creation of a permanent spin magnetiza-
tion.

II. KINETIC EQUATIONS

The effect of an in-plane electric field E on coupled spin-
charge excitations of semiconducting electrons in an asym-
metric quantum well can be described by a single-particle
Hamiltonian

H0 = �
k,�

ak�
† ��k − �F�ak� − �

k,�,��

���k · �����ak�
† ak��

− ieE��
k,�

��ak−��/2��
† ak+��/2���

�=0

+ u�
k,k�

�
�

ak�
† ak��,

�1�

which includes both the Rashba SOI and the short-range
spin-independent elastic scattering on impurities. The Hamil-
tonian is expressed by creation �ak�

† � and annihilation �ak��
operators that depend on the vector k= �kx ,ky ,0� and the spin
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index �. We introduced the Fermi energy �F, the vector of
Pauli matrices �, and the strength u of the short-range elastic
impurity scattering, which is characterized by the momentum
relaxation time �. The energy �k of free electrons in the
2DEG and the coupling term of the Rashba SOI are given by

�k =
�2k2

2m
, �k =

�

m
�K � k�, K =

m�

�2 ez, �2�

where m denotes the effective mass and � the strength of the
SOI. The central quantity of our approach is the spin-density

matrix f̂ , the components of which

f��
� �k,k��t� = �ak�

† ak���	t, �3�

satisfy kinetic equations, which are derived for the corre-

sponding physical elements f =Tr f̂ and f=Tr � f̂ . The four
components of the spin-density matrix depend on two wave
vectors �k+k�� /2→k and �k−k��→�, which allow the de-
scription of inhomogeneous charge and spin distributions.
Relying on the Born approximation for the treatment of elas-
tic impurity scattering and restricting to lowest-order correc-
tions of the SOI to the collision integral, we obtain the fol-
lowing Laplace-transformed kinetic equations:18

sf −
i�

m
�� · k�f −

i�

m
K�f � �� +

eE

�
�kf =

1

�
� f̄ − f� + f0,

�4�

sf + 2��k � f� −
i�

m
�� · k�f +

i�

m
�K � ��f +

eE

�
�kf =

1

�
�f̄ − f�

+
1

�

�

��k
f��k −

��k

�

�

��k
f̄ + f0, �5�

with the initial charge and spin distribution f0 and f0, respec-
tively. An integration over the polar angle 	 of the vector k is
indicated by a cross line over respective quantities, and s
denotes the Laplace variable that refers to the time t. The
second and third terms on the right-hand side of Eq. �5� stem
from spin contributions of the collision integral, which have
to be taken into account to guarantee that the spin system
correctly approaches the state of thermodynamic equilib-
rium. The solution of the coupled integrodifferential equa-
tions �4� and �5� is searched for in the long-wavelength and
low-frequency regime.

To illustrate our approach, let us first treat the evolution of
charge-density disturbances at zero SOI. As the inelastic
scattering time �� is usually much larger than �, the quasi-
momenta thermalize already at the time scale ��
 t
� �s�
�1�. During this period, the density matrix �f , f� approaches

its mean value � f̄ , f̄� with respect to the angle 	. In the fol-
lowing stage of the evolution t
��, which lasts until a char-
acteristic diffusion time �d, the carrier density locally ap-
proaches the equilibrium distribution. Consequently, the
behavior of particles in this time interval can be described by
the Fermi function n��k� with a Fermi energy that depends
on spatial coordinates r and time t: f��k ,r � t�=n��k

−�F�r , t��. In this evolution period, the energy is already

thermalized although both the charge and spin densities still
remain inhomogeneous. For weak perturbations �F�r , t�=�F

+��F�r , t�, we obtain for the density fluctuation f��k ,r � t�
=−��F�r , t�dn��k−�F� /d�k. This result brings us to the sepa-
ration ansatz

f̄��,��s� = − F���s�
n����

dn/d�F
�6�

for the new unknown function F�� �s�, where n
=
d�����n��� with ���� being the density of states of the
2DEG. For brevity, we write � instead of �k and use a prime
to indicate a derivative with respect to �. It is in line with this
discussion and Eq. �6� to replace the drift term accordingly

e

�
Ex

�

�kx
f → eEx

�k

m

n�

n�
cos�	� f̄ . �7�

Adopting these approximations, which express the basic un-
derstanding of the drift-diffusion approach, Eq. �4� is easily
solved under the condition of vanishing SOI �K=0�. A spec-
tral drift-diffusion equation is obtained by expanding the so-
lution of Eq. �4� with respect to � and by integrating over the
angle 	

�s + D�k��2 + i��
n�

n�
E · �� f̄��,��s� = f0, �8�

where the diffusion coefficient and the mobility are given by
D�k�= ��k�2� / �2m2� and �=e� /m, respectively. The final in-
tegration over the energy � leads to the well-known drift-
diffusion equation

�s + D�2 − i�E · �� f̄���s� = f0, �9�

for the charge density f̄�� �s�=
d����� f̄�� ,� �s�. The rela-
tionship between the diffusion coefficient D and the mobility
� is given by the Einstein relation �= �eD /n�dn /d�F, which
is applicable both for Fermi and Boltzmann statistics.

Within the framework of the drift-diffusion approach, a
similar approximation can be used for the spin components
of the density matrix when the Rashba SOI is weak ��
=�k��1, which is accessible by tuning the SOI coupling
constant � via the shape of the confinement potential�. In this
case, the spin-relaxation time �s is large so that we can focus
on the time hierarchy ������s��d. Under the condition t

�� but t /�s arbitrary, a nonequilibrium spin polarization
exists on the background of thermalized carrier energies.
Therefore, Eqs. �6� and �7� can be used also for the spin
contributions in the kinetic equations �4� and �5�. Exploiting
these approximations, the following set of linear equations is
obtained for the components of the spin-density matrix:

�f + i��qxfy − qyfx� = R −
2eE�

�k
�

n�

n�
cos�	� f̄ ,

�fx + 2� cos�	�fz − i�qyf = Rx +
2

�
�

n�

n�
sin�	� f̄

−
2eE�

�k
�

n�

n�
cos�	� f̄ x,
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�fy + 2� sin�	�fz + i�qxf = Ry −
2

�
�

n�

n�
cos�	� f̄

−
2eE�

�k
�

n�

n�
cos�	� f̄ y ,

�fz − 2��cos�	�fx + sin�	�fy� = Rz −
2eE�

�k
�

n�

n�
cos�	� f̄ z,

�10�

with qx,y =�x,y /k, �=k /K, and

� = �0 − i���qx cos 	 + qy sin 	�, �0 = s� + 1. �11�

It is assumed that the in-plane electric field E is oriented
along the x axis. Restricting to lowest-order contributions in
� and E, we obtain

Rx = f̄ x + �fx0 −
i�K�

m�0
2

��n���
n�

�y f̄ , R = f̄ + �f0,

Rz = f̄ z + �fz0, �12�

Ry = f̄ y + �fx0 +
i�K�

m�0
2

��n���
n�

�x f̄ −
�K�

m�0
eE

��n���
n�

f̄ . �13�

It is straightforward but cumbersome to solve the equations
for f , f, to expand the solution with respect to �, and to
calculate the final integral over the angle 	. What we obtain
by this procedure are spectral drift-diffusion equations for
coupled spin-charge excitations. After integrating over the
remaining energy �, we get our final result

� �

�t
− i�� · �E� + D�2�F −

i�

m
� · �K � F� +

2i��

e
�� · �K

� �E���K · F� = 0, �14�

� �

�t
− i�� · �E� + D�2 +

Â

�s
�F + 4D�K � �i� +

�

2D
E��

� F� + 2i��

e
�� · �K � �E��K

−
2��

e�s
�K � �i� +

�

2D
E���F = 0, �15�

with Axx=Ayy =1, Azz=2, and the spin-scattering time calcu-
lated from 1/�s=4DK2. In Eq. �15�, the electric field is
accounted for via the quasichemical potential �i�→ i�
+�E /2D�. These coupled spin-charge drift-diffusion equa-
tions are valid for weak SOI ���1 so that � /�s�1�. What is
interesting is that Eqs. �14� and �15� formally agree with
results which were recently derived by a different approach
for the hopping transport of small polarons.12 Spin effects in
the latter system exclusively occur in the weak SOI regime
as the lattice constant is much smaller than typical values of
K−1. Summarizing this observation, we point out that the
drift-diffusion equations have a universal character for the
Rashba model with weak SOI.

III. RESULTS AND DISCUSSION

The aforementioned analogy with the hopping transport
provides us a recipe to transfer results recently obtained for
small polarons12 in a straightforward manner to spin effects
of extended electronic states. We shall not consider all ex-
amples and not repeat all calculations already presented in
Ref. 12, but restrict ourselves to some additional conclu-
sions.

A. Expression for the spin current

To begin with, let us express our main result, namely, the
drift-diffusion equations �14� and �15� in spatial coordinates.
For the charge density, we obtain the continuity equation

�F�r,t�
�t

+ div j�r,t� = 0, �16�

with a particle current

j = ��E − D�r�F +
�

m
�K � F� −

2��2

e
K�K � E�Fz

�17�

that includes both charge and spin components. Besides the
charge-Hall current

jH = − 2��2K�K � E�Fz, �18�

which arises from a given out-of-plane spin polarization Fz,
there appears another spin-related term that is responsible for
the spin-galvanic effect. As the spin is not conserved, the
equation for the spin components F� of the density matrix
cannot be written in the form of a continuity equation.
Rather, we obtain from Eq. �15�

�F�

�t
+

A�

�s
F� + 2���K � E� � F�� −

��

�s

n�

n
�K � E��F +

�Ji�

�ri

= 0, �19�

where the spin current Ji� is given by

J� = ��E − D�r�F� + J�, �20�

with the spin components

J0 =
�

m
�K � F� −

2�K�

m
�K � �E�Fz,

Jz =
1

K�s
�F −

��

2Dm
�K � �E�F� ,

Jx = −
1

K�s
�Fzex +

�K2�

m
Fey�,

Jy =
1

K�s
��K2�

m
Fex − Fzey� . �21�

Studies of the spin current received a great deal of recent
interest in the literature.18–24 This interesting discussion is
confronted with a serious problem, namely, that the spin is
not conserved. As a consequence, different definitions of the
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spin current have been put forward in the literature. Accord-
ing to Eq. �21�, we obtain for the spin-Hall current Jy

z =
−2�K2�2EF /e, which is neither universal25 nor in line with
the result derived from a more physically motivated defini-
tion of the spin-Hall current.18,19 In addition, there is a com-
ponent of the spin current that is completely independent of
the electric field �Jy

x =−��K /m��� /�s�F�. This astonishing re-
sult is replaced in an alternative approach18 by a spin current
that is related to the initial variation of the spin accumulation
and that disappears when the latter reaches its steady-state
value. As the concept of the spin current is not well founded,
it seems to be expedient to avoid its introduction.

B. Electric-field-induced spin effects in a homogeneous electron
gas

As another application of the kinetic equations �14� and
�15�, we treat the field-induced homogeneous ��=0� spin
accumulation. From Eq. �15�, we obtain for the steady-state
field-mediated magnetic moment

f̄ = ���K � E�n�. �22�

This result expresses the well-known magnetoelectric effect
that was predicted by Edelstein26 many years ago. For its
derivation, it was essential to account for spin contributions
on the right-hand side of Eq. �5�, the origin of which is the
collision integral. If we would neglect these corrections, a

term of the form i�K�x f̄ /m remained uncompensated in Eq.
�15�, which was used in a recent paper13 to predict coupled
spin-charge waves. Introducing an electric field via the qua-
sichemical potential,18 this term would lead to a magnetic

moment f̄�1/K, in complete disagreement with well estab-
lished results.26

Furthermore, it is worth noting that the effect of an elec-
tric field on the spin polarization can completely be simu-
lated by an appropriate in-plane magnetic field of the form

Heff =
��

�B
�K � E� . �23�

Replacing the electric field by this equivalent magnetic field,
Eq. �19� is written as

�F

�t
+

Â

�s
F +

2�B

�
�Heff � F� −

1

�s

�Heff

�B
= 0 , �24�

with �=�B
2n� being the magnetic susceptibility. The term

�Heff is responsible for the spin accumulation, whereas the
vector product Heff�F leads to spin precession around the
effective magnetic field Heff. This close relationship between
spin polarization due to an electric field and its description
by an associated in-plane magnetic field can be used for the
derivation and interpretation of electric-field effects on spin.
As an example, we mention the rotation of an initial perpen-
dicular homogeneous spin polarization Fz�t=0�=Fz0 into the
plane of the 2DEG due to Larmor precession. For a constant
electric field oriented along the x axis, we obtain from
Eq. �24�

Fx�t� = −
2�BHeff

�

sin��st�
�s

exp�−
3t

2�s
�Fz0,

�s =��2�BHeff

�
�2

−
1

�2�s�2 , �25�

with Heff=��KE /�B. This solution demonstrates that suffi-
ciently high electric fields lead to an in-plane spin polariza-
tion that oscillates with the frequency �s�2�BHeff /�
=2�EK.

To further exploit the analogy between electric and mag-
netic field effects, let us treat the optical generation and re-
combination of a steady-state spin polarization under the ad-
ditional influence of a real in-plane magnetic field H oriented
along the y axis. In this case, Eq. �24� takes the form

�F

�t
+

Â

�s
F +

2�B

�
�B � F� = G −

F

�0
, F = F −

�B

�B
,

�26�

where B=H+Heff. The vector G describes the optical out-of-
plane spin generation and �0 is the relaxation time of photo-
generated electrons. The steady-state solution of Eq. �26� is
easily obtained

Fz =
��Gz

1 + �c
2����

,
1

��

=
1

�s
+

1

�0
,

1

��

=
2

�s
+

1

�0
, �27�

with �c=2�BB /�. At zero electric field, the solution de-
scribes the depolarization of spin �and hence, the degree of
circular polarization of the luminescence� by a transverse
magnetic field, which is known as the Hanle effect.27 Com-
bining the measurement of the zero-field spin generation Gz
with the magnetic-field dependence in Eq. �27� �Hanle ef-
fect�, both the electron lifetime and the spin-relaxation time
�s can be determined.28–33 According to Eq. �27�, an effect of
the same kind exists also at zero magnetic field �H=0� due to
an in-plane electric field. To describe this effect, it is only
necessary to replace the Larmor frequency 2�BB /� by �c
=2�EK in Eq. �27�. This Hanle effect driven by a pure in-
plane electric field can likewise be used to measure lifetimes
of charge and spin excitations. A realistic estimate of the
electric-field-mediated effective magnetic field leads to the
value Hef f �1 kOe,34 the magnitude of which is large enough
to induce measurable changes in the Hanle curves.34 The
experimental results qualitatively agree with the theoretical
prediction of the effect.

Concerning the charge transport, we obtain the result that
a circular polarized light illumination induces a pseudo-Hall
effect17 in the absence of any external magnetic field. A
quantitative description of this Hall contribution is provided
by Eqs. �18� and �27�. Another application of the electric-
magnetic field correspondence refers to a modification of re-
cent experiments, in which the optically induced spin-
galvanic effect was measured.35 Instead of using an external
magnetic field to achieve an in-plane spin polarization nec-
essary for the occurrence of the effect, one can likewise ap-
ply an in-plane electric field.
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C. Field-induced spin waves

Finally, let us treat spin waves that exist in a stripe of a
2DEG oriented parallel to the electric field �and the x axis�.
Taking into account � /�s�1 and restricting ourselves to long
wavelengths �D�y

2�s�1�, we obtain the dispersion relation

�1,2 =
3

2�s
�i ±� �s

�E
− 1� + D�y

2�i ±
2

3��s/�E − 1
� ,

�28�

in which a rate 1 /�E= ��E�2 / �9D� appears, which is associ-
ated with the electric field. Field-induced damped oscilla-
tions arise at sufficiently high electric field strengths ��s /�E


1�. For typical parameters ��106 cm2/V s, �s�40 ps, �
=0.5 ps, and n=1011/cm2, we obtain the condition E

3.25 V/cm, which gives rise to an appreciable current
density in the 2DEG. A much stronger electric field ��s /�E

�1� drives spin-charge coupled oscillations with the con-
stant field-dependent frequency �= ��E� / �2�D�s�. In contrast
to the well-known space-charge waves of free and trapped
electrons, this massive mode with the frequency �=K�E is
independent of the propagation vector �.

IV. SUMMARY

Based on the density-matrix approach, spin-charge
coupled drift-diffusion equations were derived for extended
electronic states in a 2DEG with weak SOI. The final basic

equations agree with results that were recently obtained for
the hopping transport of spin-polarized polarons.12 Due to
this correspondence, results on spin transport obtained for
localized and extended states are mutually applicable to each
other. In the course of the derivation, it was found that a
consistent treatment of spin-charge coupling requires a care-
ful consideration of spin-orbit contributions to the collision
integral, which give rise to a tricky cancellation in transport
equations. Disregarding these corrections is the source of
fatal mistakes that plague former approaches.

Particular emphasis was put on the effect of an electric
field on the spin polarization of a homogeneous 2DEG. It
was shown that the electric field can be replaced by a ficti-
tious in-plane magnetic field in the drift-diffusion equations
for the spin components. This interpretation of the equations
reveals a number of interesting similarities between spin ef-
fects induced by electric or magnetic fields. From an experi-
mental point of view, most attractive seems to be the electric-
field equivalent of the Hanle effect, which provides another
possibility to measure lifetimes of spin and charge excita-
tions by manipulating exclusively an in-plane external elec-
tric field.
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