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Electronic states in a magnetic quantum-dot molecule: Instabilities and spontaneous
symmetry breaking
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We show that a double quantum-dot system made of diluted magnetic semiconductor behaves unlike the
usual molecules. In a semiconductor double quantum dot or in a diatomic molecule, the ground state of a single
carrier is described by a symmetric orbital. In a magnetic material molecule, new ground states with broken
symmetry can appear due the competition between the tunneling and magnetic polaron energy. With decreasing
temperature, the ground state changes from the normal symmetric state to a state with spontaneously broken
symmetry. Interestingly, the symmetry of a magnetic molecule is recovered at very low temperatures. A
magnetic double quantum dot with broken-symmetry phases can be used as a voltage-controlled nanoscale

memory cell.
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In diluted magnetic semiconductors, the spins of static
impurities interact through mobile carriers and can form a
ferromagnetic state.!? Since the carrier density in semicon-
ductors is a voltage-tunable parameter, the ferromagnetic
state also becomes controlled by the voltage.> For technol-
ogy, this may give an important advantage compared to the
conventional memories based on ferromagnetic metals and
controlled by the magnetic field. When a single confined
carrier interacts with magnetic impurities, it forms a new
stable state, called a magnetic polaron.* One important class
of confined nanostructures is the quantum dots (QDs) where
the number of trapped carries can be easily changed by the
voltage applied to the top gate.’ Information in a single QD
made of magnetic semiconductor can be stored in the form
of spin polarization and therefore such a QD can be viewed
as a nanoscale magnetic memory element. Magnetic QDs as
memory elements have some properties, that look very at-
tractive for the technology: (1) small sizes, (2) small number
of carriers, and (3) voltage control of the number of carriers.
Currently, the physics of electronic states in magnetic QDs is
an active field of research.®~'% Here we make a logical step
from a single magnetic nanocrystals toward QD molecules
and show that a magnetic QD pair has unique physical prop-
erties that may also be useful for device applications.

In this paper, we consider a magnetic double QD with one
hole. Using the mean field theory, we calculate the physical
properties of magnetic polarons formed due to the Mn-hole
exchange interaction. We find that this system undergoes two
transitions (Fig. 1). At high temperatures, the Kinetic tunnel-
ing energy of the hole is larger than the magnetic polaron
binding energy and a symmetric state (with equal hole prob-
abilities for both dots) is realized. With decreasing tempera-
ture (7), the local magnetic energy becomes large enough to
trap the hole in one of the dots. This self-trapped process
spontaneously breaks the symmetry of the system. At very
low temperature, the local Mn-spin polarization can become
so strong that the symmetry is recovered. Our broken-
symmetry polaron has several unique properties: it appears
in the confined geometry, is voltage controllable, and may
vanish at very low 7. The above transitions occur also with
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changing the energy barrier between the dots. Since a double
QD can be controlled by the gate voltage, the above phases
can be prepared and read using electrical means.
Model. The Hamiltonian of the system composed of two
magnetic QDs and one hole has a form
p2
Hyy =+ UR) - £7..5,, (1)
thh 3

where R=(r,z), r and z are the in-plane vector and the ver-
tical coordinate, respectively; fz is the z component of the
hole spin and j,=+3/2; the operator 3‘Z=Ei§i15(R—Ri) is the
spin operator associated with the Mn subsystem; S;Z and R;
are the single-impurity spin and position, respectively; i is
the Mn-impurity index. In this study, we will model the

in-plane hole motion by a parabolic potential and the
vertical motion with a square double well,!! ie., Uy(R)
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FIG. 1. (Color online) (a) The potential u(z). (b) Schematics of
the magnetic QD molecule and three magnetic-polaron phases with
a single hole.
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=u(z)+mhhw%r2/2, where u(z) is a double well potential in
the z direction [Fig. 1(a)] and w, is the in-plane frequency,
my,=m" is the mass of heavy holes. In our model describing
disklike self-assembled QDs, the light-hole states are as-
sumed to be split from the lowest heavy-hole states. In the
absence of Mn impurities, the hole wave function can be
written as  ;=¢i(2)@, , (r), where J=(j,n..ny), ny,
=0,1,2,..., and j:(s,a,'kz) label the discrete (s and a) and
continuous states (k) related to the z motion. For the QD
parameters chosen in this paper, there are only two bound
states, symmetric (s) and antisymmetric (a). The single-
particle wave functions were calculated numerically and the
size of a hole wave function is comparable with the size of
the QD pair. The exchange interaction between the hole and
Mn impurities may lead to additional localization in one of
the dots (i.e., to the broken-symmetry phase).
Within the mean field theory, the Hamiltonian becomes

A

_ P? B R
Hhh=_*+ UO(R)__'XMHN Z.SZ’ (2)
2m 3

where xy, is the reduced Mn concentration, N, is the number

of cations per unit volume, and §Z(R) is the local average Mn
spin

B/3j.(R)S
LadiaCr A S , (3)

S{R)= SBS{ ks(T+Ty)

where S=5/2, By is the Brillouin function, T, describes the
effect of antiferromagnetic interaction between Mn impuri-
ties, 7,(R)=((R")|j.8(R-R’)|#(R’)), where ¢ is the hole
wave function.

In the spirit of mean field theory, the effective spin-
dependent potential for a hole is

U=Uy+ 68U, OSUR)=- ?an(R)NQ;Z S, (@)

The corresponding ground state wave function has the
form ¢=i;| 1), where |1) is the hole state with j,=+3/2.
The spatial wave function ¢; should be now determined. To
the lowest order perturbation theory (PT),!3 the ground-state
wave function can be written as z/x%: b6(2) @oo(r), with

¢G:a¢s+\/1_a2¢u’ (5)

where ¢, and ¢, are the bound states in the double well.
Then, the real parameter a should be determined by the
variational method. From Egs. (3), (4), and L(R):%WZG(R)
we can obtain the polaron binding energy and the total en-
ergy

B/SL(R)SH

T == s J d3R{”’?") 235( k(T +To)
B

El(a)=a’E,+ (1 - d®)E, + E,,. (6)

To solve the problem at nonzero temperatures, we should
minimize the free energy functional'*
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FIG. 2. The total energy of magnetic polaron as a function of the
wave function parameter a at different 7°. The arrows show the
ground states of the system.
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where the appropriate exchange contribution
Fo(u)=In{sinh[(2S+1)u/28]/(2S+1)sinh(u/2S)}/u, u

= B%(R)S/ 2kg(T+T,); the function Fg(u) can be expressed
through the Brillouin function B(u) =d[uFg(u)]/du.'*'> The
general variational wave function can be written as
Y= dc(2) @oo(r)+2 a4, where the second term will be
considered as perturbation. The zero-order degenerate PT
provides us with two orthogonal wave functions llf% and
w%.m The corresponding first-order PT contribution to the
free energy is given by Eq. (7). Then, the second-order cor-
rection to the free energy becomes

1 a6V(42) 2
5VG,F(¢%)+§<—MFG .

where 6V, y=—5xuuNoS | RI(Ys415)Fs(w)]). {A.B}={T'.G},
r'={y.n.n}, vy=(G,E.k), n.n={0,1,2,...}, T
#{G,0,0},{E,0,0}; here ElG and w% describe the ground
state calculated within the lowest-order PT and k, labels the
delocalized states for the z motion.

The approach to solve the nonlinear Schrédinger equation
(2) at finite temperature is to minimize the free-energy func-
tional F(a). At low temperatures (T<T,), we also can try
energy functional E,(a). In our approach, F(a)# E(a)
even at 7—0. Therefore, the energy functional will give
lower ground-state at 7=0 (or at T< T). In the following,
we use F(a) for arbitrary T and E,(a) for low T< T,

Transition as a function of temperature. To find the varia-
tional ground state, we calculate the total free energy
Fi(a)=F. (a) as a function of a at various temperatures
(Fig. 2). The quantity a is the hole amplitude related to the
symmetric state. The material parameters are the following:
BNy=—1.8¢eV, Ny=23nm=>, [y=\h/m w,=2.5nm, b
=4 nm, w=3 nm, Uy=90 meV, m=0.38m, x,,=0.005, and
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FIG. 3. (Color online) The wave function factor a® as a function
of the effective temperature; the function a*(T") shows the appear-
ance of broken-symmetry phase (a*><1). Inset: The effective order
parameter (degree of asymmetry) as a function of T".

Ryvn=15.0 nm. This parameter set represents a InAs/GaAs
QD doped with Mn impurities. One can clearly see three
different phases. For high 7, the ground state corresponds to
a*=1, i.e., the ground state is symmetric. With decreasing 7,
the ground changes from a?=1 to almost a>=0.5. It is a state
of hole staying mostly in one dot. Thus, the symmetry of the
system becomes broken. For very low 7, the symmetry is
recovered.

The probability a® (Fig. 3) as a function of the effective
temperature T =T+T, clearly shows the existence of three
phases. We may consider the difference of hole probabilities
of being inside the dots 8=|P per— Plower| =2a/(1-a?) as an
order parameter (as shown in the inset of Fig. 3). The order
parameter o is nonzero for the broken-symmetry phase at
intermediate 7" and is zero for the symmetric state at high
and low T".

Basically, the physical picture is the following: the inter-
action between the hole and Mn impurities leads to the fer-
romagnetic ordering of Mn-spins inside the double QD. The
resulting polaron state tends to be as localized as possible
because the magnetic binding energy increases with decreas-
ing the localization strength of hole. The latter can be seen
from Eq. (6): the Brillouin function strongly increases with
increasing the hole wave function amplitude ¢?. Therefore,
in our system there is a competition between the kinetic en-
ergy (tunnel splitting) and the magnetic energy. At high T,
due to the thermal fluctuations, the interaction between the
hole and Mn impurities is weak and the kinetic energy wins.
In this case, a symmetric ground state is realized. With de-
creasing 7, the Mn-hole interaction becomes stronger and,
below some critical temperature 7.,, the magnetic localiza-
tion effect overcomes the tunneling. The hole is now trapped
in one of the dots since such a spatial configuration lowers
the total energy. However, for very low 7, the hole is able to
polarize the Mn spins inside the QD pair much stronger and
the magnetic potential U becomes almost flat. Therefore,
the symmetric orbital state is recovered. There is an
obvious condition for the existence of the low-T phase:
T.,>Ty(T,,>0). In other words, for the existence of the
low-T phase, the Mn-hole interaction must be strong enough
to overcome the antiferromagnetic interaction. Figure 1(b)
shows schematically the three phases.
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FIG. 4. (Color online) Temperatures sz and le as functions of
the Mn concentration. The temperature T:l was calculated by two
methods [F(a)=min and E(a)=min].

We should point out that the symmetric polaron at low T
has a much stronger Mn spin polarization than the symmetric
state at high 7. The temperature T; corresponds to a smooth,
type-1I phase transition, while the low-T transition is sharp
and can be classified as a type-I phase transition. The low-T
transition occurs_as a jump between the broken-symmetry
phase (a=~ +1/v2) and the symmetric state (ja|=1).

The temperature T:z can be found analytically by expand-
ing the total energy in the vicinity of the type-II phase tran-

sition
. BNpS(S+1)

3 20 4
sl E — k) dean(3¢s¢a—¢s)~ ©)

Figure 4 shows numerically calculated T:z(an) (dots) and
the data obtained from Eq. (9) (line). Our numerical and
analytical results agree well. The temperature Tj.ZOCan. This
linear dependence may be understood qualitatively. For a
higher Mn concentration, stronger thermal fluctuations
(higher T) are needed to destroy the broken-symmetry po-
laron phase. In contrast to T;, the temperature T; decreases
with xyp, (approximately as 1/xy,) (Fig. 4). Qualitatively,
such a dependence can be explained as follows. The low-T'
symmetric phase appears when the Mn spins are strongly
polarized. Therefore, a lower T, is needed to polarize a
larger number of Mn spins. Figure 4 shows the results for
both methods [E,,(a)=min and F(a)=min]. The results ob-
tained from both methods are not very different. However,
T., obtained from the equation E(a)=min is somewhat
higher. It may be that the energy minimum principle at low T
gives a better approximation (since this method does not
involve the nonlinear Schrédinger equation). Simultaneously,
the results obtained from E,(a)=min are only valid in the
low-T limit (T<<T" or T< T). .

As discussed above, the transition temperature T, de-
pends on the competition between the kinetic and magnetic
energies and qualitatively corresponds to the condition
|E,~E,| ~ 8U. T., depends on a material. In Fig. 3 we show
the results for a CdMnTe QD. For the parameters, we use
BNy=-1.3 eV, Ny=15 nm=>, lp=4 nm, b=8 nm, w=35 nm,
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Uy=150 meV, m=0.1my, xy,=0.005, and Rp,=15.0 nm.
The effective transition temperature is 14 K and larger than
the typical antiferromagnetic ~CdMnTe temperature
Ty=3.6 K.

One may notice that the transition temperature 7., can be
very small (Fig. 4, inset). It may be impossible to observe the
third phase (7., <Ty), if some antiferromagnetic interactions
are present. However, due to to the tunability of QD systems,
we may design a system with a relatively high T:r Figure 5
shows the transitions in a designed system with 7%, ~2 K.
For the parameters, we took BNy=-2.5¢eV, Ny=10 nm=3,
lp=4 nm, B=6.8 nm, w=5nm, Uy=150 meV, m=0.1my,,
Xpp=0.005, and Ry;,=2.0 nm.

In recent experiments,'? self-assembled double QDs were
built into transistor structures with top and back contacts. By
using applied voltage in these structures one can change the
number of trapped carriers and also modify their wave func-
tions. Two stable magnetic states in our system [Fig. 1(b)]
can be considered as a bit of classical information. In these
states, the hole mostly resides either in the upper dot or in the
lower dot. Using the gate voltage, our system can be pre-
pared in the desired state. The following electrical readout of
the polaron state can be done, for example, using capacitance
spectroscopy.’ Note that this paper considers a QD pair with
a single carrier. We expect that a double QD with few holes
may also demonstrate some of the effects predicted here. In
particular, for a QD pair with few holes, there will be addi-
tional effects coming from the Coulomb interaction. In addi-
tion, in this study, there are only two bound states (s and a)
in a QD pair. For deeper QDs, there may be more bound
states. However, we expect the same behavior for the mag-
netic QD pair (transitions). Finally, we also should mention
about likely asymmetry of a QD pair in experiments. Indi-
vidual self-assembled dots in a QD pair are never the same.
However, the QD asymmetry parameter (| P ype;— Plower|) can
be tuned to zero using the voltage applied between the top
and back electrons.!? First, by adjusting the voltage, one can
tune the QD pair in the symmetric state (|Pypper— Plower| =0)
at T°> T;. Then, by lowering the temperature, one can reach
the predicted state with broken symmetry.

It is interesting to compare the transitions in our system

Vertical coordinate, z(nm)

with those described in Ref. 16 for the case of spatially non-
uniform magnetic medium. Spontaneous symmetry breaking
in Ref. 16 comes from shift of the particle wave function
from a nonmagnetic layer toward a magnetic barrier. In our
case, the magnetic medium is uniform and the transitions
originate from a competition between the tunneling and mag-
netic interaction. We also note that the paper'® does not de-
scribe the low-temperature transition (77.,). Another type of
bistability was predicted for an exciton in a multiwell
structure;!” this bistability may appear due to the competition
between the Coulomb interaction and nanostructure poten-
tial.

Quantum phase transition. We may look at the physics
from another point of view. The kinetic energy of the hole,
i.e., the hopping between the dots, is related to the width of
the barrier between QDs and thus can be tuned by appropri-
ate growth process. In Fig. 5, we show the ground-state wave
functions for various widths of the barrier. With increasing of
the width, the ground states become more asymmetric. It is
clear that there is a quantum phase transition with the in-
creasing of barrier width. The critical width is around 3 nm
(see inset of Fig. 5).

Second order corrections to energy. All the previous dis-
cussions are based on the perturbation theory applied to the
nonlinear Schrodinger equation. The second-order correction
to the energy can be calculated by Eq. (8). For the sets of
parameters used above, it is of a few percent of the first-order
result. We also found numerically that, in the vicinity of
transition temperatures 7., and T,,, the second-order correc-
tions are even smaller.'® This allows us to give the results for
T., and T, in a wider range of x, (see Fig. 4).

In conclusion, we have studied a magnetic QD molecule
with a single hole. With decreasing temperature, the mag-
netic polaron ground state undergoes two transitions. At a
higher temperature, the normal symmetric state turns into the
polaron state with broken symmetry. At lower temperatures,
a symmetric polaron state can be recovered. Our results sug-
gest that a magnetic QD molecule can be used as a nanoscale
magnetic memory cell controlled electrically.

This work was supported by the BNNT Initiative at Ohio
University.
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