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Electron transmission through nanosystems is blocked if there are no states connecting the left and the right
reservoir. Electron-electron scattering can lift this blockade, and we show that this feature can be conveniently
implemented by considering a transport model based on many-particle states. We discuss typical signatures of
this phenomenon, such as the presence of a current signal for a finite bias window.
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I. INTRODUCTION

Quantum dots constitute an excellent test bed for transport
through general nanosystems, where the local density of
states is dominated by discrete localized levels. The key
points are conduction quantization1 due to the discreteness of
levels, Coulomb blockade due to electron repulsion,2 and the
interplay between resonant tunneling and charging in double-
dot structures.3 In this work, we consider a further issue, the
transport by electron-electron scattering.

Electron-electron scattering is not included in standard
transmission models,4 where the Coulomb interaction is
taken into account by a mean-field approach frequently in-
cluding exchange-correlation interactions as well. Within
such models, electron transport strongly depends on the pres-
ence of states in the system connecting both leads.5 Here, we
show that electron-electron scattering allows for additional
transport channels and that it can be consistently imple-
mented using a many-particle basis following the concepts
developed in Refs. 6–11.

While in double-dot structures, each dot has direct access
to a reservoir with a continuous level density, the situation is
essentially different in triple-dot structures,12 where the
states in the central dot only couple to discrete states in the
neighboring dots. Thus, the properties of these states are far
more sensitive to scattering events, which may essentially
determine the transport through the structure. This is pre-
cisely the situation depicted in Fig. 1: Here, the upper level 4
of the middle dot can be filled from the left lead by resonant
tunneling via level 1, while its lower level can be emptied
into the right lead by resonant tunneling via level 6. Thus,
the current is very sensitive to scattering between level 4 and
level 3. In this work, we restrict to electron-electron scatter-
ing, which is appropriate if the phonon energies do not match
the transition energy.

II. MODEL

A. System

The system depicted in Fig. 1 is described by the Hamil-

tonian Ĥ= Ĥdots+ Ĥleads:

Ĥdots = �
i=1

6

Eiai
†ai − �

ij

�ijai
†aj + Ĥee �1�

refers to the dot region where ai
† �ai� is the creation �annihi-

lation� operator for the ith state. Assuming that the states in

the individual dots are strongly localized, only states in dots
next to each other couple and we restrict to those couplings

�ij depicted in Fig. 1. For the Coulomb part Ĥee, we neglect
interactions between the leads and the dots as well as inter-
actions between next-nearest neighboring dots. Then, we ob-
tain

Ĥee = U�a1
†a2

†a2a1 + a3
†a4

†a4a3 + a5
†a6

†a6a5�

+ Un�a1
†a1 + a2

†a2 + a5
†a5 + a6

†a6��a3
†a3 + a4

†a4�

+ �Usca3
†a2

†a1a4 + Usca5
†a4

†a3a6 + H.c.� . �2�

Here, U and Un are the matrix elements of the standard Cou-
lomb repulsion between states located in the same and neigh-
boring dots, respectively. Usc describes Coulomb scattering
between different states, which is the central issue of this
work.13

Finally, the Hamiltonian of the leads and their coupling to
the dots reads

Ĥleads = �
k�

Ek�ck�
† ck� − �

ik�

�tik�ai
†ck� + tik�

* ck�
† ai� . �3�

Here, �=L ,R denotes the left and right leads, respectively.
The energies Ek� in lead � provide a continuum of states
�labeled by k�. We assume that the corresponding density of
states has the constant value g� in the energy range −W
�E�W and is zero otherwise. Disregarding the k depen-
dence of the tunneling matrix elements tik�, we set t1kL

= t2kL=��L / �2�gL� and t5kR= t6kR=��R / �2�gR�. These are
the transitions sketched in Fig. 1. All other tunneling matrix
elements are neglected in Eq. �3�. Throughout this work, we
restrict to a single spin direction for simplicity.

FIG. 1. The triple-dot system considered. The thick lines repre-
sent the simplified system.
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B. Parameters

For specific calculations, we use the parameters of Table I
unless stated otherwise. They relate to an InAs/ InP modu-
lated nanowire structure similar to the structures of Refs. 14
and 15. We assume three InAs wells with a thickness of
40 nm, which are separated by 3 nm thick InP barriers. The
outer barriers are assumed to be 1.5 nm thick. As we are only
interested in order of magnitude estimates, we choose the
simple one-band envelope function model, with Dirichlet
boundary condition on the outside of the wire. In addition,
we assume that the wire is cylindrical with radius R
=20 nm, which enables us to reduce the problem to a one
dimensional problem by using cylindrical coordinates, i.e.,
the single-particle Hamiltonian is given by

H = �−
�

�z

�2

2meff

�

�z
+

�2jln
2

2meffR
2 + Vc�z�� , �4�

where jln is the nth zero of the Bessel function Jl, meff is the
effective mass function, and Veff is the conduction band edge
function �they are stepwise constant�. In the previous section,
we assumed that states in individual dots are strongly local-
ized. One way of achieving that is to use Wannier states
�i�z� for individual dots, assuming a periodic repetition of
the structure. Using the masses mInAs=0.026me and mInP
=0.08me, where me is the free electron mass, and a conduc-
tion band offset of 0.6 eV,14 we get an energy difference
between the ground state and the first excited state of E2
−E1=21 meV for a given l and n. The excitation energy for
the radial modes, �2

2meffR
2 �j11

2 − j01
2 �=29 meV, is larger and thus

these radial modes can be neglected. �In addition, the cou-
pling between states of different radial symmetries should be
small.� The couplings �ij are evaluated following Sec. II C
of Ref. 16 for a bias drop of 20 meV per period.

For the coupling to the leads, we use the estimate17

�iL/R 	
2dTi

2

��2�Ei − Er�/mIn As

, �5�

where Ti is the coupling element between Wannier state i in
neighboring dots for a barrier width of 1.5 nm �the outer
barrier� and Er is the sum of the conduction band edge of
InAs and the radial confinement energy.

In general, the Coulomb interaction is described by

Ĥee =
1

2�
ijkl

Uijklai
†aj

†akal, �6�

with

Uijkl =
 d3r
 d3r�
e2�i

*�r��l�r�� j
*�r���k�r��

4�	r	0�r − r��
. �7�

Commonly, one focuses on the direct interaction of two
states, where i= l and j=k. Taking into account the normal-
ization of the wave functions, we can estimate

Uijji 	
e2

4�	r	0d
, �8�

where d is the average distance between the particle densi-
ties. Using d	10 nm, if the states i and j are within the
same dot, and d	40 nm, if the states i and j are within
adjacent dots, we obtain the values for U and Un given in
Table I, respectively, for 	r	13.

The key scattering element Usc corresponds to U3214. As
the states �3

*�r� and �4�r� �as well as �2
*�r� and �1�r�
 are

orthogonal, one cannot approximate the 1/ �r−r�� potential
by a constant value as in the case of the direct interaction
discussed above. Instead, a dipole expansion is possible and
provides

U3214 	 −
e2

4�	r	0

2z21z34

d3 , �9�

where d	43 nm is the distance between the centers of
neighboring quantum dots. The z-matrix elements zij
=�dz�i

*�z�z� j�z� are evaluated for the Wannier functions,
yielding z12=z34=−8 nm, which gives the value in Table I.
As Usc
U ,Un, it is usually neglected. However, here we
show that it can have a crucial impact on the transport.

C. Transport approach

For our calculations, we use a basis of many-particle
states �a� , �b� , . . ., which diagonalize the dot Hamiltonian
Hdots including the Coulomb interaction. Using the approach
of Ref. 10 but only including first-order transition processes
between the leads and the dot region, the following rate
equations �first-order von Neumann approach, see also Ref.
18� can be derived for the reduced density matrix of the dot
wbb�=Tr��b��̂�b���, where the trace is taken over all lead
states �k��:

i�
d

dt
wbb� = �Eb − Eb��wbb�

+ �
a,k�

�Tba�k���b�a
* �k�� − �ba�k��Tb�a

* �k��


+ �
c,k�

�Tcb
* �k���cb��k�� − �cb

* �k��Tcb��k��
 ,

�10�

with Tba�k��=�itik��b�ai
†�a� and

TABLE I. Parameters used if not stated otherwise. They refer to
the modulated nanowire discussed in Sec. II B but have been
rounded off for an easier recognition of scales in the plots. All
energies are in meV. In the simplified system, we neglect level 5
and set �13=�24=�23=�46=U=Un=0.

E1=40 E2=60 E3=20 E4=40 E5=0 E6=20

�14=�36=�23=�45=0.1 �13=�35=0.05

�L=�R=0.1 
L=50 
R=10 �24=�46=−0.2

Usc=−0.2 U=10 Un=3 kBT=2 W=400
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�cb�k�� = �
b�

Tcb��k��f��Ek�

Ek − Ec + Eb + i0+wb�b

− �
c�

Tc�b�k���1 − f��Ek�


Ek − Ec + Eb + i0+ wcc�. �11�

Here, f��E�= �1+e�E−
��/kbT�−1 is the Fermi distribution for
the lead � with electrochemical potential 
�. The current
from lead � into the sample is given by J�=�cbJ��cb�, where

J��cb� = − e
2

�
I��

k

Tcb
* �k���cb�k��� �12�

is the part of the current associated with transitions between
states b and c within the dot.10,18 We disregard the sign of the
electron charge e, so that the sign of the electrical current
equals the sign of the particle current.

It should be noted that we obtain the Pauli master
equation19 if we neglect the off-diagonal elements of the den-
sity matrix. However, this approximation is only reasonable
as long as the spacing between the many-particle energies is
large compared to the contact couplings �.18 This is not the
case for the systems considered here, so the full set of equa-
tions is needed.

III. RESULTS FOR THE SIMPLIFIED SYSTEM

At first, we study a simplified system where we neglect
state 5 and all interdot tunneling processes except for �23
and �36 which are in resonance. This corresponds to the
thick lines and arrows in Fig. 1. In order to avoid complica-
tions due to Coulomb charging, we set Un=U=0, thus focus-
ing on the scattering via Usc.

In Fig. 2, we show the current as a function of the left
Fermi level 
L. There is no current until the left Fermi level
comes within the vicinity of the ground state of the first dot
�E1=40 meV�. At this point, electrons start to flow from the
left lead into this state and further into the excited state of the
second dot. If both states 1 and 4 are occupied, the Coulomb
scattering via Usc is possible. This process transfers one elec-

tron from level 1 to level 2 and a second electron from level
4 to level 3, which can subsequently reach the right lead via
level 6. Thus Coulomb scattering establishes a transport path
through the nanosystem. However, when the left Fermi level
comes into the vicinity of the excited state of the first dot
�E2=60 meV�, electrons will start to occupy this state. This
causes a decrease in the current �see Fig. 2� as Pauli blocking
hinders the scattering process addressed above. Likewise, the
temperature dependence essentially follows the probability

F = fL�E1�fL�E4��1 − fL�E2�
�1 − fR�E3�
 �13�

to find states 1 and 4 occupied while states 2 and 3 are
empty. The relevance of level E2 for the transport is further
demonstrated in the inset of Fig. 2, showing that current only
flows through the triple-dot structure if E2−E1	E4−E3,
where the Coulomb scattering is energetically allowed.

This presence of current enhancement in a finite bias win-
dow �
L matching the energy transfer �E by the scattering
process is the characteristic signal of electron transport by
Coulomb scattering. This Pauli blocking of the scattering
from level 4 to level 3 by occupation of the further level 2
does not appear for other inelastic scattering mechanisms
such as phonon scattering.

IV. DESCRIPTION BY SCATTERING

The description based on scattering given above becomes
quantitative if the Coulomb scattering is the limiting process
for transport through the device, i.e., if Usc is significantly
smaller than �14 and �36. For this reason, we have per-
formed calculations for the increased values �14=�36
=1 meV, see Fig. 3. The strong coupling between the states
3 and 6 yields a bonding and an antibonding state, with en-
ergies 20�1 meV. Therefore, the resonance condition for
Coulomb scattering is now satisfied at E2=59 meV and E2
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FIG. 2. �Color online� Currents as a function of 
L and E2

�inset�. Other parameters are from Table I �simplified system�.
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FIG. 3. �Color online� Current as a function of Usc with �14

=�36=1 meV and E2=59 meV. The two insets show the current
for Usc=0.01 meV as a function of 
L and E2, respectively. Other
parameters from Table I �simplified system�. The solid lines are
calculated by the first-order von Neumann approach and the dots
depict JL=eRtr, where Rtr is the transition rate, Eq. �14�, for the
electron-electron scattering process.
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=61 meV �not shown�, as displayed in the right inset of Fig.
3.

Fermi’s golden rule provides us with the transition rate by
Coulomb scattering into the antibonding state between 3 and
6:

Rtr =
Usc

2

2�

�eff

�E2 + E3 + �36 − E1 − E4�2 + �eff
2 /4

F . �14�

Here, we have replaced the energy-conserving � function by
a Lorentzian, representing lifetime broadening due to the
coupling to leads. �eff=2�L+�R /2 is the sum of broadenings
for the individual states: �L for levels 1 and 2 and �R /2 for
the antibonding combination of 3 and 6. Figure 3 shows that
Fermi’s golden rule provides a full quantitative description
for small Usc. However, for larger values of Usc, this simple
reasoning, based on single-particle states, fails. In particular,
the width of the current peak becomes much broader than the
simple lifetime broadening �eff �see inset of Fig. 2�, which
makes it easier to observe the effect in a real system with
imprecise control over the level energies.

V. DESCRIPTION BY MANY-PARTICLE STATES

Now, we want to sketch how this scattering-induced trans-
port emerges within a basis of many-particle states, which
takes into account the entire Coulomb interaction. For the
parameters of Table I, the antisymmetrized two-particle
product states �1, 4�, �2, 3�, and �2, 6� all have the same sum
of single-particle energies Ei+Ej =80 meV. They couple to
each other due to the matrix elements Usc and �36, resulting
in the three many-particle states depicted in Fig. 4. For E2
	60 meV, the three states are highly entangled and we focus
in the following on one of these entangled states, denoted by
�c�. This state contributes to a circle of transitions between
different many-particle states depicted in Fig. 5: The state �c�
can be reached by tunneling of an electron from the left lead
into the state �b� �process from upper left to upper right�.
Here, �b� is the binding one-particle state combining levels 1
and 4. By removing an electron toward the left lead �at a
higher energy than before�, the state �c� decays to the one-
particle state �b��, the binding state combining levels 3 and 6.
Then, the original state �b� is restored by one electron tun-
neling from the state �b�� to the right lead and one electron
tunneling into the state �b� from the left lead, which can
happen in two different sequential orders. The key issue for

the existence of this circle is the presence of the entangled
state �c�, which enables the transition between �b� and �b��
via two single-electron tunneling processes. Therefore, the
current drops if the product states �1, 4� and ��2,3�
+ �2,6�� /�2 are detuned by varying E2.

The currents JL/R�cb� in Fig. 5 denote the contribution of
the transitions b↔c between the corresponding many-
particle states to the current from the left or right lead into
the system, respectively, as given in Eq. �12�. The magnitude
of these currents corresponds to the transition rate between
the states. Figure 5 shows that the ingoing and outgoing rates
partially balance for all states depicted. Nevertheless, there
are plenty of further transitions, which make the full picture
far more involved. In total, this circle provides JL=1.71 nA
and JR=−1.46 nA, which constitute only a part of the total
current JL=−JR=5.9 nA. The remaining part is carried by
similar circles involving the other many-particle states as
well as more complicated transitions which cannot be sepa-
rated into circles that easily.

Finally, note that the electrons enter the structure with E
	E1 from the left contact and leave the structure with E
	E5 to the right contact as well as with E	E2 to the left
contact. Thus, there is no single transmission channel at a
given energy as typical for the frequently used transmission
models.

VI. RESULTS FOR THE FULL SYSTEM

In Fig. 6, we present results for the full system, i.e., using
all parameters given in Table I. Like in Fig. 2, we observe a
current signal in a finite region of 
L, which is a key feature
of the current induced by electron-electron scattering �the
current is below 0.006 nA if Usc=0 is used�. However, con-
trary to the simplified system in Fig. 2, the peak current
increases with temperature for the full system and is much
weaker. This is due to the presence of an electron in state 5,
which breaks the alignment between levels 3 and 6 by Cou-
lomb repulsion. With increasing temperature, the probability
for state 5 to be empty increases and so does the current. In
the inset of Fig. 6, we show results for a case where the
single-particle energies have been modified to compensate
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FIG. 4. �a� Energies of selected two-particle states as a function
of E2. �b� Coefficients of state �c�. Other parameters are from Table
I �simplified system�.

FIG. 5. Diagrammatic representation of a circle of transport pro-
cesses involving the many-particle states �b�, �c�, �b��, �a�, and �c�.
The two sets of double lines are the bonding and antibonding com-
binations of the states 1, 4 and 3, 6, respectively.
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for charging effects, which provides results similar to Fig. 2.
In both cases, we observe enhanced current in �multiple�
finite bias windows �
L matching the energy transfer �E,
which are, however, smeared out by temperature. This shows

that the essential features of transport by electron-electron
scattering are robust with respect to other electron-electron
interaction mechanisms.

VII. CONCLUSION

We have shown that Coulomb scattering provides a cur-
rent channel for transport through a triple-dot system. The
mechanism holds for general nanosystems exhibiting two
pairs of states with a similar level spacing �E. An example is
the conduction through a macromolecule, where an appropri-
ate chemical group appears twice. A typical signature is a
current signal for a finite bias window, matching the energy
transfer �E. If the Coulomb scattering is the slowest transfer
process involved, a simple description based on Fermi’s
golden rule is valid. Otherwise, a systematic implementation
is possible within a basis of many-particle states, which re-
flects the total Coulomb interaction for the nanosystem.
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