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The electronic and optical properties of self-assembled InN/GaN quantum dots �QDs� are investigated by
means of a tight-binding model combined with configuration-interaction calculations. Tight-binding single-
particle wave functions are used as a basis for computing Coulomb and dipole matrix elements. Within this
framework, we analyze multiexciton emission spectra for two different sizes of a lens-shaped InN/GaN QD
with wurtzite crystal structure. The impact of the symmetry of the involved electron and hole one-particle
states on the optical spectra is discussed in detail. Furthermore we show how the characteristic features of the
spectra can be interpreted using a simplified Hamiltonian which provides analytical results for the interacting
multiexciton complexes. We predict a vanishing exciton and biexciton ground-state emission for small lens-
shaped InN/GaN QDs. For larger systems we report a bright ground-state emission but with drastically
reduced oscillator strengths caused by the quantum confined Stark effect.
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I. INTRODUCTION

The great topical interest in semiconductor nanostructures
is not only based on the realization of some of the paradigm
of elementary quantum mechanics,1,2 but also by the wide
range of possible applications, ranging from new3–5 and ex-
tremely efficient light sources6 to building blocks for quan-
tum information technology.7–9 Further motivation is pro-
vided by the possibility to study the effect of reduced
dimensions on carrier transport10 and optical properties.11–13

The confinement of the carriers in all three dimensions on
a nanometer scale is achieved, for example, by embedding
regions of a material with a smaller band gap in a matrix of
a wider band-gap material. A widespread method of creating
such quantum dots �QDs� is the Stranski-Krastanow growth
mode.14–16

In this fast evolving research field, nanostructures based
on conventional group-III nitrides like AlN, GaN, and InN
gained more interest in recent years. Compared to group-III
arsenide semiconductor materials, nitride-based nanostruc-
tures have the advantage that it is possible to span a much
larger spectral range, presently from amber to ultraviolet, by
properly alloying together the three building blocks and
thereby engineering the direct band gap of these materials.17

Nevertheless and despite the intense research on nitride
QDs over the last decade the understanding of this material
system is—compared to other III-V materials—-still in its
infancy.

From the theoretical point of view, one challenge is the
proper inclusion of effects that stem from the altered atom-
istic structure of the underlying wurtzite lattice. While most
of the nitrides can crystallize both in the zinc-blende and the
wurtzite phase, the latter is by far more stable.18 Addition-
ally, the strong built-in field needs to be considered for the
mostly applied growth along the c axis. In contrast to many
other III-V semiconductors, the spin-orbit coupling in the
nitrides is rather weak17 so that the calculation of the elec-
tronic states requires the inclusion of the strong valence-band

mixing effects. Therefore, especially for small nanostruc-
tures, a microscopic description of the single-particle states
based on, for example, a tight-binding model or a pseudopo-
tential calculation is necessary.

In the past many experimental and theoretical investiga-
tions addressed the optical properties of III-V and II-VI QD
structures based on, e.g., InGaAs/GaAs or CdSe/ZnSe. One
important aspect concerned the analysis of absorption and
emission spectra of QDs as a function of the excitation
density.1,11,13,19–25 A common result is that the optical pro-
cesses mainly but not exclusively26 involve diagonal transi-
tions that are connecting, for example, s-shell electrons with
s-shell holes or p-shell electrons with p-shell holes. In
envelope-function approximation this is traced back to dipole
matrix elements calculated from the Bloch functions, and
interband transition amplitudes determined by the product of
dipole matrix elements and the overlap of the electron and
hole envelope functions. This picture has been proven to be
very fruitful for conventional III-V materials and is often
carried over to the nitride system where emission spectra are
then calculated using these diagonal excitons.27–32 Our analy-
sis shows, however, that for nitride QDs deviations from this
picture are possible. We identify situations in which the
emission is dominated by recombination of skew excitons,
that are excitons consisting of s-shell electrons and p-shell
holes or vice versa. This led to the prediction of dark exciton
and biexciton ground-state emission.33 Such a modified se-
lection rule requires the inclusion of band-mixing effects in a
way that properly accounts for the symmetry of the underly-
ing atomic lattice. In addition to the important changes of the
optical properties involving one and two excitons, the tran-
sitions that occur in systems with a higher population of
excitons differ strongly from those known from the
InGaAs/GaAs system. While for smaller nitride QDs the
“dark” excitons are predicted, we find that in large nitride
QDs the energetic order of the s-shell and p-shell for holes is
interchanged, with the p-shell being lowest in energy. This
leads to optically active exciton transitions.34 However, as a
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result of the quantum confined Stark effect �QCSE�, with
increasing height of the QDs the corresponding dipole matrix
elements decrease drastically29,34,35 due to the separation of
the electron and hole wave functions in the strong internal
electric field. In combination with the dark exciton state in
small nitride QDs, this makes the application of nitride QDs
more challenging.

In this work we study the multiexciton emission spectra in
nitride QDs and discuss the resulting complicated peak struc-
ture in detail. Restricting ourselves to the two lowest shells
allows even a semianalytic description of the problem. The
single-particle states for a InN/GaN QD in the wurtzite
phase are deduced from an atomistic tight-binding model as
briefly outlined in Sec. II. Even without a detailed calcula-
tion of the single-particle states, the symmetry considerations
of Sec. III can be used to draw conclusions regarding the
dipole-matrix elements and the multiexciton spectra. In Sec.
IV the Hamiltonian of the interacting charge carrier system
and the configuration-interaction �CI� scheme are presented.
Results for an initial filling with up to six excitons are pro-
vided in Sec. V B and major trends are discussed in Sec. V C
in terms of an approximate Hamiltonian. Further details of
the multiexciton spectra are analyzed in Sec. VI. In the sub-
sequent Sec. VII the influence of the strong built-in field is
investigated. Finally, the spectra for a larger nitride QD are
presented in Sec. VIII and compared to those found for the
smaller structure.

II. ELECTRONIC STRUCTURE

For a proper treatment of the single-particle states a multi-
band approach is required. In order to resolve the atomistic
structure of the underlying lattice, we choose a microscopic
TB model. General aspects of such an approach, the calcu-
lation of dipole and Coulomb matrix elements, as well as the
parameters used, are discussed in detail in Ref. 34. In the
following Sec. II A, we briefly summarize the main ingredi-
ents of the subsequently used TB model, while Secs. II B and
II C are devoted to details of the calculation of single-
particle states and interaction matrix elements.

A. Tight-binding model and built-in field

For the calculation of the single-particle states we use a
TB model with an sp3 basis ���R, that contains one s state
��=s� and three p states ��= px , py , pz� per spin direction at
each atomic site R of the wurtzite lattice. We include nondi-
agonal elements of the TB-Hamiltonian matrix up to nearest
neighbors and use the two-center approximation of Slater
and Koster36 which yields nine independent TB parameters.
These parameters are empirically determined in such a way
that band gap and the energetic positions of other bands of
the wurtzite bulk band structure17,37,38 at the � point are re-
produced. Regarding the band gap of InN, several different
values have been reported in the past. As recommended by
Vurgaftman et al.17 we choose a value of 0.79 eV. In this
reference the authors present a detailed discussion of the
band-gap problem in InN.

With these TB parameters, the QD is modeled on an ato-
mistic level where the parameters for each site are set ac-

cording to the occupying atoms. The ith, TB single-particle
wave function is given by

��i� = �
�,R

���Rc�
i �R�

with the expansion coefficients denoted by c�
i �R�. We as-

sume a lens-shaped InN QD, grown in the �0001� direction
on top of an InN wetting layer �WL�, that is embedded in a
GaN matrix. For the numerical evaluation, a finite wurtzite
lattice within a supercell with fixed boundary conditions is
chosen. We use a large supercell, which is essential to avoid
numerical artifacts for the localized QD states due to the
cubic symmetry of the boundaries. The small spin-orbit cou-
pling and crystal-field splitting are neglected.17 Furthermore,
we neglect the strain induced displacement of the atoms. For
the used QD geometry, a more realistic inclusion of strain
effects does not change the symmetry of the system and
henceforth the general statements discussed in this paper
should not be affected. In the following we consider two
different QD sizes with diameters d=4.5,5.7 nm and heights
h=1.6,2.3 nm, respectively. In both cases a WL thickness of
one lattice constant c is assumed.

In contrast to cubic III-V semiconductor heterostructures,
e.g., InAs or GaAs, the III-V wurtzite nitrides exhibit con-
siderably larger built-in fields,39 which can significantly
modify both the electronic and the optical properties. The
piezoelectric field is determined by solution of the Poisson
equation. The strain-dependent part of the polarization is ap-
proximated following Ref. 29, in which the lateral contribu-
tions to the field are neglected. For our chosen dot geometry,
even a more sophisticated inclusion of strain effects40 will
generate merely small lateral components to the piezoelectric
field.41 The resulting field enters via the electrostatic poten-
tial as a site-diagonal contribution Vp�R�=−e�p�R� to the
TB Hamiltonian.41,42 For further details see Ref. 34.

B. Single-particle states

The small QD �d=4.5 nm, h=1.6 nm� confines three
bound states for the electrons. The corresponding probability
densities of the first two bound shells for electrons and holes
are presented in Fig. 1. In the calculation, the influence of the
built-in field was included. The dominant contribution for the
electron single-particle states stems from the atomic s orbit-
als, while for the hole states a strong intermixing of the
atomic p orbitals is observed. This is indicative for the fact
that a suitable description of the one-particle states and the
resulting optical properties requires a multiband approach.

If one compares the single-particle states with and without
the inclusion of the built-in field,34 one finds that, in the
presence of the field, the electron states are squeezed into the
cap of the QD while the hole states are constrained to a few
atomic layers at the bottom near the WL. This effect is even
more pronounced for the larger QD �d=5.7 nm, h=2.3 nm�.
In this case a clear spatial separation of electron and hole
wave functions is observed, which lowers the direct spatial
overlap between the two and leads to strongly reduced dipole
matrix elements. Furthermore, as known from the QCSE, the
built-in field leads to an overall redshift in the single-particle
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transition energies. In addition, we find for the large QD that
the ordering of the energy levels is affected by the built-in
field. Specifically we obtain that in the presence of the
built-in field the level ordering for the holes is reversed so
that the ground state is formed by the twofold degenerate
states �2,3

h �p shell in Fig. 1� while the first excited state
�1

h �s shell in Fig. 1� is nondegenerate. This is in contrast to
the observed level ordering of the large QD in the absence of
the built-in field or of the small QD with and without the
field. In these cases, the ground state is nondegenerate ��1

h�
and the first two excited states are degenerate ��2,3

h �. Such a
behavior has been reported before for other QD systems and
a detailed discussion can be found in Ref. 34.

C. Evaluation of dipole and interaction matrix elements

Based on the TB single-particle wave functions one can
determine dipole and Coulomb matrix elements that are cru-
cial for the calculation of optical properties. As emphasized
above, a TB model represents an atomistic approach to de-
scribe the electronic structure of low-dimensional hetero-
structures. Explicit knowledge about a basis set of localized
�Wannier� states is not required for the calculation of one-
particle energies and wave functions, because the Hamil-
tonian matrix elements between the different orbitals are
treated as parameters within the TB model. What enters the
TB calculation are only the basic assumptions about the lo-
calized �atomic� orbitals: symmetry, spatial orientation,36 and
orthogonality.

For the calculation of interaction matrix elements one
needs—at least in principle—the localized basis states. For
the Coulomb matrix elements, however, the explicit knowl-
edge of the atomic orbitals is not required in practice, as
these matrix elements are dominated by long-range contribu-
tions in which the local orbitals act as point charges. The

structure of the localized orbitals is of significance only for
on-site and nearest-neighbor interactions, which in our cal-
culation contribute less than 5% to the total Coulomb matrix
elements. These findings are in agreement with Ref. 43.
Thus, the matrix elements are approximated by a sum over
the TB coefficients c�

i �R� at atom sites R ,R� with orbital
indices � ,�,

Vij,kl =� d3r� d3r��i
*�r�� j

*�r��V�r − r���k�r���l�r�

� �
RR�

�
��

c�
i*�R�c�

j*�R��c�
k �R��c�

l �R�V�R − R��

with

V�R − R�� =
e2

4��0�r�R − R��
for R � R�

and

V�0� =
1

vuc
2 �

uc

d3r d3r�
e2

4��0�r�r − r��
.

The labels i , j ,k , l refer either to electron or to hole states
in order to consider the repulsive electron-electron and hole-
hole interaction, as well as the attractive electron-hole inter-
action. The considerably smaller matrix elements of the
electron-hole exchange interaction are neglected. The calcu-
lation of the on-site integral V�0� involves the integration
over the volume of the unit cell vuc and can be done quasi-
analytically by expansion of the Coulomb interaction in
terms of spherical harmonics.44 The electronic charge and the
vacuum dielectric constant are denoted by e and �0, respec-
tively. We use the InN dielectric constant �r=8.4 according
to Ref. 45 since the wave functions are almost completely
confined inside the QD.

For the calculation of dipole matrix elements dij
eh

� ��i
e�r�� j

h�, the explicit structure of the localized orbitals is
needed as the dipole operator is dominated by short-range
contributions. Though being not orthogonal at different sites,
standard Slater orbitals46 have been used in earlier
calculations47,48 within orthogonal TB models. While they
include the correct symmetry properties, the missing or-
thogonality limits their applicability. To overcome this prob-
lem, we use numerically orthogonalized Slater orbitals34 and
account for the slight nonlocality of the dipole operator49 and
the underlying anion-cation structure of the crystal by in-
cluding also contributions from up to second-nearest neigh-
bors.

III. SYMMETRY CONSIDERATIONS

The specific symmetry of the system under consideration
plays an important role in the prediction of energy degenera-
cies and optical selection rules. The overall symmetry of the
problem is determined by two factors: �i� the crystal symme-
try of the underlying lattice and �ii� the symmetry of the QD
geometry or, more generally, the geometry of the
heterostructure.50

electrons holes

Ee
1 = 1.7320eV Eh

1 = 0.6256eV

s-
sh

el
l

Ee
2,3 = 1.9621eV Eh

2,3 = 0.6158eV

p-
sh

el
l

FIG. 1. �Color online� Top view of the QD structure with the
first two bound shells for electrons �left-hand side� and holes �right-
hand side�. Depicted are isosurfaces of the probability density with
20% �blue� and 80% �red� of the maximum value shown. Only one
state is visualized for the twofold degenerate p shell, as the other
looks alike. The corresponding energies �E1,2,3

e,h � are measured rela-
tive to the valence band maximum of the bulk GaN.
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The interplay between the dot geometry and the underly-
ing lattice is well illustrated by the example of the lens-
shaped QD. The geometry of the QD has a C	v symmetry.51

In an effective-mass approximation or in a k ·p theory the
underlying atomic structure is not resolved, so that one ob-
tains degenerate energies for the lens-shaped QD.50,52,53

However, if one takes the crystal structure into account, as it
is done in a TB model34,54 or pseudopotential calculation,55

the symmetry will be reduced and degeneracies can be
lifted.50 For a lens-shaped QD grown on a wurtzite lattice
along the �0001� direction, the symmetry is reduced to C3v. If
a QD with the same geometry is grown in the zinc-blende
phase in the �001� direction, one is left with an even lower
C2v symmetry. As we will discuss in the next section, the
former group is still rich enough to predict degeneracies,
while the latter is too small to support degenerate eigen-
states.

A. Energy spectrum

The C3v group is generated by the rotation around the z
axis with an angle of 2� /3, denoted by C3z, together with a
mirror reflection at a plane perpendicular to the y axis, de-
noted by IC2y.

56 These operations commute with the Hamil-
tonian, but not among themselves. From this non-Abelian
character of the group one can immediately conclude that
there must exist energetically degenerate states. In the case
of the wurtzite QD under consideration, one example of such
degenerate states is the p-shell levels given in Fig. 1.

This degeneracy in the wurtzite structure is especially
worth mentioning in view of a recent paper50 in which it is
argued that a description at the atomic level in zinc-blende-
based QDs should remove the p-shell degeneracy. The argu-
ment is essentially the following: the fourfold rotation is part
of the zinc-blende point group only if followed by the inver-
sion, but many high symmetry �lens-shaped, pyramidal� QDs
forbid the inversion and with it the C4v symmetry. One is
therefore left with a C2v point group, which is Abelian and
therefore insufficient for p degeneracy.

This conclusion is correct, but it cannot be carried over to
the wurtzite QDs, because in wurtzite crystals the threefold
rotation holds without inversion. If the QD geometry is suf-
ficiently symmetric �lens-shaped, hexagonal pyramids� then
the problem retains the C3v symmetry, which leads to p de-
generacy. In papers predicting p-shell splitting for QDs in
wurtzite lattices and neglecting the spin-orbit coupling,40,57

either boundary conditions or discretization meshes spoil the
correct C3v symmetry of the problem. Therefore the small
p-shell splitting obtained there is a numerical artifact. On the
contrary the splitting induced by the inclusion of the spin-
orbit coupling,58 albeit quite small, is physically correct.

To summarize the discussion, for a lens-shaped QD and in
the absence of the spin-orbit coupling a degeneracy of the p
shell is expected in the wurtzite phase but not in a zinc-
blende structure.

B. Single-particle states

So far we discussed only the role of symmetry on the
energy spectrum. Turning now to the dipole selection rules,

one should consider the symmetry properties of the wave
functions. In the TB description the wave functions are ex-
panded in the atomic orbital basis according to

��� = �
R

�s�Ra�R� + �
R,j

�pj�Rbj�R� , �1�

where �s�R denotes the atomic s-orbital centered around the
site R with �r �s�R=
s�r−R�, and the corresponding p orbit-
als follow similarly from �pj�R with j=x ,y ,z. The expansion
coefficients are given by a�R� and bj�R�, respectively.

The action of a symmetry operation T on the wave func-
tion is defined via56,59

�T���r� = ��T −1r� . �2�

In the case of the TB wave function, Eq. �1�, this amounts to
a simultaneous transformation of the orbitals and of their
centers. Instead of the original orbitals px and py, it is more
convenient to work with the complex combinations p±
= �px± ipy� /	2 which are angular-momentum eigenstates.

For a wurtzite QD with C3v symmetry one must consider
the transformation properties of the orbitals under the dis-
crete 2� /3 rotation C3z around the z axis and the mirror
reflection IC2y, defined by �x ,y ,z�→ �x ,−y ,z�. While the
atomic s and pz orbitals do not change under these transfor-
mations, the remaining p± orbitals transform like

C3z�p+� = e−i�2�/3��p+�, IC2y�p+� = �p−� ,

C3z�p−� = e+i�2�/3��p−�, IC2y�p−� = �p+� . �3�

Using Eq. �2� these transformation properties of the local
orbitals under the group basic rotations are carried over to
the total wave function, given by Eq. �1�. This defines the
action of the group on the TB basis and allows the classifi-
cation of the eigenstates according to the irreducible repre-
sentations of the C3v group. States which are invariant under
the action of the group will be called s states and will be
denoted by ��s�. This terminology and notation are some-
what lax since according to it a pz orbital is also an s state.
Nevertheless we use them for the sake of simplicity and in
agreement with the literature. Similarly, the basis vectors of a
two-dimensional representation changing under the group
operations like in Eq. �3� will be called p± states and will be
denoted ��p±

�.
As an example, it can be shown that an s-state wave func-

tion must have the form

��s� = �
R


�s�R��R� + �pz�R�z�R��

+ �
R


�p+�RZR
* ��R� + �p−�RZR�*�R�� , �4�

where the coefficients ��R�, �z�R�, and the real part of ��R�
are invariant under all rotations of C3v, while the imaginary
part of ��R� is invariant under the proper rotation C3z but
changes sign under the action of the improper rotation IC2y.
The quantity ZR is defined as XR+ iYR or in polar coordi-
nates 	XR

2 +YR
2 ei�R, where XR and YR denote the in-plane

Cartesian coordinates of the lattice site R and �R is the polar
angle of the point R in cylindrical coordinates. It is clear that
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with ��R�, �z�R� rotation invariant the first sum in Eq. �4� is
s-like. In the second sum one has a compensation between
the p behavior of the orbitals and that of the ZR coefficients
leading to a combination which is left invariant by the rota-
tions. The equivalent of this situation in a k ·p approach
would be expressed by the p character of the envelopes mul-
tiplying to the p±-type Bloch functions and compensating the
phase factor acquired under rotation in order to produce full
invariance. In this way, the coefficients of the expansion Eq.
�4� can be seen as discretized versions of the envelope func-
tion components.

For the electron and hole wave functions whose modulus
square is depicted in Fig. 1 the lowest-lying levels are indeed
invariant under the action of the elements of the discrete
group and therefore represent s states. As expected, the elec-
tron s state consists mainly of s atomic orbitals; i.e., the
dominant coefficient is ��R�, which is C3v invariant as stated
above. This state looks very similar to what would be ex-
pected for an s state in a one-component effective-mass ap-
proximation: it is symmetric under rotation, has a single
maximum at the center, and decays to the boundaries. In
contrast, the shape of the ground state of the holes does not
show the same behavior. It shows the �discrete� rotational
symmetry, but has a node at the center. This state is expected
to consist mainly of p atomic orbitals and, indeed, an inspec-
tion of its coefficients shows that the second sum in Eq. �4� is
dominant. Since Fig. 1 displays the sum of the modulus
square of the expansion coefficients, one obtains
2�ZR

* ��R��2=2�XR
2 +YR

2 ����R��2, which explains both the ro-
tational symmetry and the vanishing value at the origin. In
other words, the unexpected node at the origin stems from
the p character of the coefficients.

A similar analysis of the coefficients can be carried out for
the excited states �p shell�, and reveals that these states have
indeed the ��p±

� symmetry.

C. Dipole matrix elements

The numerical evaluation of the dipole matrix elements
shows that the nonzero values of the in-plane dipole matrix
elements edij

eh with e in the x-y plane are much larger than
those with e in the z direction. Therefore we consider here
only the in-plane matrix elements with e=1/	2�1,1 ,0� and
denote the corresponding dipole matrix elements by dij

eh. Fur-
thermore the matrix elements dpipj

eh , with i, j� �x ,y, are more
than one order of magnitude smaller than the other nonvan-
ishing matrix elements. As a consequence, these contribu-
tions can safely be neglected in the calculation of optical
spectra, in which the absolute value of the dipole matrix
elements enters even quadratically. As explained below, it
turns out that these results can be understood on symmetry
grounds.

To this end we consider the matrix elements �lz �x± iy � lz��,
from which all the in-plane dipole matrix elements can be
deduced by linear combinations and are characterized by
simple transformation properties. Here we denote the states
�lz� by the phase factor e−ilz� they pick up under a rotation
around the z axis of the angle �; that is, lz=0 for the s state
and lz= ±1 for the p± states. Using the transformation prop-

erties of the wave functions and those of x± iy under rotation,
one can rewrite the matrix elements as

�lz�x ± iy�lz�� = ei�lz−lz�1���lz�x ± iy�lz�� . �5�

In a C	v group the angle � is arbitrary and one would obtain
the familiar result that the dipole matrix elements dlz,lz�

eh can

only be nonzero for lz− lz�= ±1. In particular one has dss
eh=0

=dpi,pj

eh with i, j� �±1 and only ds,pi

eh and dpi,s
eh can be nonzero.

In the case of C3v symmetry the allowed values for the
angle � are only the integer multiples of 2� /3. Then one
finds the weaker result that the condition for nonzero dipole
matrix elements is lz− lz�= ±1 modulo 3. This means that the
discussed symmetry reduction opens additional decay chan-
nels. One still has dss

eh=dp+p+

eh =dp−p−

eh =0 but, in addition to
dp±,s

eh , ds,p±

eh , now also the matrix elements dp+p−

eh and dp−p+

eh can
be nonzero. Nevertheless, since the last two are vanishing in
the case of a continuous rotation symmetry, it is quite plau-
sible that they remain small even in the case of a threefold
axis. This behavior is found by the numerical evaluation of
the dipole matrix elements. In our example for the small QD
we find �dp+p−

eh �2=4.84�10−4 �eA�2, which is negligible in
comparison with �dsp±

eh �2=4.73 �eA�2.
As we will see in Sec. V these selection rules, and in

particular the vanishing dipole matrix element dss
eh, have very

important consequences for the optical properties of nitride
QDs.

D. Coulomb matrix elements

It is possible to use the same kind of symmetry arguments
for the calculation of the Coulomb matrix elements. Again
we find that a threefold symmetry axis allows for more non-
zero elements than a C	z axis. Nevertheless, these additional
matrix elements are rather small. If the entire system is ro-
tated by an angle �= 2�

3 , each single-particle wave function
acquires a phase factor, while the distance �r−r�� is not af-
fected by this rotation. Therefore, we find for the interaction
matrix elements,

Vijkl = ei�li
z+lj

z−lk
z−ll

z��Vijkl. �6�

From this one can deduce that Vijkl must be zero if li
z+ lj

z

− lk
z − ll

z�0 modulo 3. The z projection of the angular mo-
mentum is conserved only modulo 3, and not exactly, as it
would be in the case for a continuous rotation axis C	z.

60

This gives rise to additional nonzero matrix elements Vijkl.
Examples for the electron-electron Vijkl are given in Table I,
using here the �s , p+ , p−� representation. Clearly these addi-
tional matrix elements are rather small. This is in accordance
with our expectation about matrix elements that would alto-
gether vanish in a system with a higher symmetry.

Symmetry is also responsible for some Coulomb matrix
elements having equal values. Such cases are grouped in
Table I.
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IV. MANY-BODY PROBLEM

A. Hamiltonian

So far we discussed only the single-particle properties.
However, the investigation of optical properties is an inher-
ent many-particle problem. The Hamiltonian H that de-
scribes the system of interacting electrons and holes in a QD
consists of two parts,

H0 = �
i�

�i
eei�

† ei� + �
i�

�i
hhi�

† hi�,

HCoul =
1

2 �
ijkl

���

Vij,kl
ee ei�

† ej��
† ek��el� +

1

2 �
ijkl

���

Vij,kl
hh hi�

† hj��
† hk��hl�

− �
ijkl

���

Vij,kl
he hi�

† ej��
† ek��hl�. �7�

The free part H0 contains information about the single-
particle spectrum �i

�e,h� and describes a system of noninter-
acting charge carriers. Here ei� �ei�

† � are annihilation �cre-
ation� operators of electrons with spin � in the one-particle
states �i� of energy �i

e. The corresponding operators and
single-particle energies for holes are hi� �hi�

† � and �i
h, respec-

tively. The electron-electron, hole-hole, and electron-hole
Coulomb interaction between the charged carriers is included
in HCoul. The Coulomb matrix elements Vij,kl are determined
from the TB single-particle wave functions, as described in
Sec. II C.

B. Configuration interaction

In a semiconductor QD the finite height of the confine-
ment potential leads to a finite number of localized states as
well as to a continuum of energetically higher delocalized
states. If one considers only the energetically lowest single-
particle states, the eigenvalue problem for a given number of

electrons and holes has a finite �albeit large� dimension and
can be solved without further approximations.

As the Hamiltonian H conserves the total number of elec-
trons Ne and holes Nh, the Hamiltonian matrix falls into sub-
blocks with basis states corresponding to uncorrelated many-
particle states of the form

��� = �
i

�ei
†�ni

e�
j

�hj
†�nj

h
�0� , �8�

with the occupancy numbers ni
e,h=0,1 and �ini

e=Ne, � jnj
h

=Nh. In order to find the eigenvalues and eigenfunctions of
the interacting problem, the Hamiltonian H, Eq. �7�, is ex-
pressed in terms of the uncorrelated basis states ���, Eq. �8�.
The resulting Hamiltonian matrix is then diagonalized nu-
merically. In this way one finds an expansion of the interact-
ing eigenstates for a given number of electrons and holes in
terms of the uncorrelated basis states of the system. These
states can be used to calculate, for example, the interband
emission spectra between the interacting Coulomb correlated
eigenstates of the QD system using Fermi’s golden rule,

I��� =
2�

�
�

f

��� f�Hd��i��2��Ei − Ef − ��� . �9�

Here ��i� denotes the correlated initial state with energy Ei,
and �� f� and Ef are the corresponding quantities of the final
states. A similar equation holds for the absorption spectrum.
The Hamiltonian Hd describes the light matter interaction in
the dipole approximation,

Hd = − e�E��
n,m

�n�rep�m�hn,�
† em,−�

† + h.c., �10�

with E being the electric field at the position of the QD, ep is
the polarization vector, and e is the elementary charge. Fur-
thermore the states �n� and �m� denote hole and electron
single-particle states, respectively. Fermi’s golden rule, Eq.
�9�, implies that the optical field always creates or destroys
electron-hole pairs. Hence the initial and final states differ by
exactly one electron-hole pair. For the following discussion it
is convenient to express the dipole Hamiltonian in terms
of the interband polarization operator P according to
Hd=−e �E � �P+P†�.

If the analysis is restricted to s and p shells, and the small
dipole matrix elements dp−p+

eh and dp+p−

eh are neglected, one can
split P into Plow and Phigh according to

Phigh = �
�

�dps
ehep+,�hs,−� + dps

eh*ep−,�hs,−�� ,

Plow = �
�

�dsp
ehes,�hp+,−� + dsp

eh*es,�hp−,−�� . �11�

This is motivated by the fact that the single-particle energy
separation for the electrons is larger than for the holes.

V. OPTICAL PROPERTIES

To be able to distinguish between effects stemming from
the symmetry group of the QD and those additionally intro-

TABLE I. All nonzero electron-electron Coulomb matrix ele-
ments determined numerically from the TB-wave functions. The
index 0 denotes the s-state ��s� and � denotes the states ��p±

�. The
matrix elements in the last two rows would be zero in the case of a
C	v symmetry. Explicit values are given for the small QD but with-
out the inclusion of the internal electrostatic field.

�i , j ,k , l� Vijkl
ee �meV�

�0,0,0,0� 93.8459

�0,�,�,0�, �0,�,�,0�, ��,0,0,��, ��,0,0,�� 81.6389

��,�,�,��, ��,�,�,��, ��,�,�,��, ��,�,�,�� 75.8542

�0,0,�,��, �0,0,�,��, ��,�,0,0�, ��,�,0,0� 17.0949

�0,�,0,��, ��,0,�,0�, �0,�,0,��, ��,0,�,0� 17.0949

��,�,�,��, ��,�,�,�� 9.3997

��,0,�,��, ��,�,0,��, ��,0,�,��, ��,�,0,�� −0.1972

�0,�,�,��, ��,�,�,0�, �0,�,�,��, ��,�,�,0� −0.1972
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duced by the internal electric field, we will first present the
results where the built-in field is artificially switched off. In a
second step, we will discuss the influence of this field on the
multiexciton spectra.

A. Excitonic and biexcitonic properties

The considered small QD confines only three bound elec-
tron states �s and p shells� for each spin polarization. These
states enter the CI approach, together with the hole s and p
shells, which are energetically well separated from the other
localized states. The corresponding excitonic absorption
spectrum shows the two lines depicted in Fig. 2. Here we
denote an electron-hole pair, in which the electron has
mainly � and the hole mainly � character, as an �� exciton
with �, �� �s , p. We found in Sec. III C that in the nitride
case the transitions do not originate from diagonal ss and pp
excitons, as one may expect, but from sp and ps excitons.
Because of the large energy splitting between the s and the p
shell of the electrons, the ps-excitonic transition is well sepa-
rated from the sp transition. Without Coulomb interaction,
these transitions can be found at the sum of the single-
particle energies �p

e +�s
h and �s

e+�p
h, respectively. For the ab-

sorption spectrum the unusual selection rules described in
Sec. III C and the resulting “skew” excitons lead only to
quantitative changes. Even if the optical spectra could be
described in terms of diagonal excitons, one would still ob-
tain two lines in the absorption spectrum,22 one from the
s-shell and one involving the p-shell carriers. However, for
the emission spectrum the changes are quite important. Most
importantly the exciton and biexciton ground states for small
InN/GaN QDs remain dark.33 This is the case because the
excitonic and biexcitonic ground states are dominated by
those configurations where all the carriers are in their ener-
getically lowest shell together with the fact that the dipole
matrix element dss

eh involving these states vanishes.

B. CI results for multiexciton emission spectra

Only for more than two excitons the CI calculation pro-
vides significant population of the electron and hole p shells.
Then emission processes involving the skew excitons can
take place. As mentioned above the low- and high-energy
side of the spectrum can be attributed to processes where an

s electron or a p electron is dominantly involved in the re-
combination process, respectively. A schematic representa-
tion of the level structure and electron-hole pairs typically
involved in high- and low-energy transitions is depicted in
Fig. 3.

An inspection of the emission spectra reveals a blueshift
as the number of excitons is increased. This is in strong
contrast to the results known from the InGaAs system13,60,61

but can be explained in terms of the diagonal Hamiltonian,
discussed in the next section, and the fact that the envelopes
for the electrons and holes differ strongly. Also it can be seen
that, with the exception of the 5X→4X transition, all spectra
are rather similar if one compares the line structure of the
low- and high-energy sides. On the other hand, the oscillator
strengths of the peaks on the high-energy side are systemati-
cally weaker than the corresponding ones at the low-energy
side. These aspects will be addressed in the following in
detail.

C. Diagonal approximation

As discussed in Ref. 60, an approximate description using
a Hamiltonian that is diagonal in the free states can be mo-
tivated by inspecting the relative importance of the various
Coulomb matrix elements. The eigenvalues of this approxi-
mate Hamiltonian are then the non-self-consistent Hartree-
Fock energies. This approximation has successfully been
used to describe the dominant trends in multiexciton spectra
in III-V systems.55,61–64

In a ground-state emission spectrum, without Coulomb
interaction, one would observe one line at the high-energy
side at �p

e +�s
h and one at �s

e+�p
h on the low-energy side for an

initial filling from three to six excitons. With Coulomb inter-
action, one observes, instead of single lines, clusters of peaks
as shown in Fig. 4. These clusters blueshift as the number of
excitons is increased. The approximate position of the clus-
ters can already be explained by considering only the diago-
nal elements of the Hamiltonian matrix; see Fig. 5. Note that
nonidentical envelopes lead to additional interaction terms in
comparison to Refs. 22, 60, and 61. The transition energy
�EA→B

diag from a many-particle configuration �A� to a configu-
ration �B� is given to a first approximation by60
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FIG. 2. Absorption spectrum of the initially empty nitride QD.
The high-energy side stems from a transition in which mainly the s
shell of the hole and the p shell for the electrons is involved. For the
low-energy side the s shell of the electrons and the p shell of the
holes yield the main contribution.

s

s

p

p

FIG. 3. �Color online� For the example of a three exciton state,
the light �red� and dark �blue� shaded areas connect the carriers that
will lead to an emission at the low- and high-energy sides of the
spectrum, respectively.
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�EA→B
diag = �ē

e + �
h
–
h

− D
ēh

–
eh

+ �
i�ē,h

–
�Dēi

eeni
e − Dēi

ehni
h − Xēi

eeni
e�

+ �
i�ē,h

–
�D

ih
–

hh
ni

h − D
ih
–

eh
ni

e − X
ih
–

hh
ni

h� . �12�

Here ē and h
–

denote the single-particle states of the electrons
and holes, respectively, that are depopulated in the emission

process. The index i involves all single-particle states except

ē and h̄. The quantity Dij
��� stands for the direct Coulomb

matrix elements Vijji
���, while the exchange matrix elements

Xij
��� are given by Vijij

���. Of course, these exchange terms

contribute only if the spin of ē or h
–

agrees with the electron
or hole state i. The first line of Eq. �12� contains the free
particle energies �ē

e and �
h
–
h

of the recombining carriers to-

gether with the attractive Coulomb interaction matrix ele-
ment −D

ēh
–

eh
. All terms that stem from the interaction of the

electron in state ē with all the other electrons and holes have
been grouped in the second line. Similarly, the third line

contains the interaction between the hole labeled with h
–

and
all the other carriers. Explicitly, one obtains for the high-
energy transition of the 3X configuration,

E3X→2X
diag = �p

e + �s
h − Dps

eh + 2Dsp
ee − Dps

eh − Dpp
eh − Xsp

ee + Dss
hh + Dsp

hh

− 2Dss
eh − Xsp

hh. �13�

Similarly, one finds from Eq. �12�, for the ground-state
transitions on the high-energy side, for more than three ex-
citons,

E4X→3X
diag = E3X→2X

diag + �EHartree − Xpp
ee − Xsp

hh,

E5X→4X
diag = E4X→3X

diag + �EHartree,

E6X→5X
diag = E5X→4X

diag + �EHartree. �14�

Note that the Hartree shift �EHartree, defined by �Dpp
ee −Dpp

eh�
+ �Dps

hh−Dps
eh�, would be zero for identical envelopes of elec-

trons and holes. The matrix element Xpp
ee is given by

Vp+ p− p+ p−

ee . The peaks obtained from the diagonal description
provide the approximate position of the clusters calculated
by the CI; see Fig. 5. In particular the smaller shift of the 4X
spectrum relative to the 3X spectrum as compared to the
shifts involving more excitons is well described in terms of
the exchange matrix elements present in the first line of Eq.
�14�. The corresponding transition energies of the low-
energy side can be found by changing e↔h in the equation
above.

While the central position of the clusters is well repro-
duced by the diagonal treatment, the different splitting within
each cluster is not explained. A detailed analysis of the states
involved in the different emission processes shows that a
semianalytic description of the spectrum is possible. Such a
description will be given in the following sections.

VI. SEMIANALYTIC DISCUSSION
OF THE MULTIEXCITON SPECTRA

In the past, optical multiexciton spectra for nitride QDs
have only been discussed with selection rules carried over
from the InGaAs system.28,30,32 Additionally, the diagonal
treatment, which is often suitable for the description of major
trends in the InGaAs system,55,61–64 can in the present case
reproduce only the overall position of the clusters, but is by
no means sufficient to explain the multiplets. Therefore we
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5X → 4X

6X → 5X
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FIG. 4. �Color online� Ground-state emission spectra for a QD
with different number of excitons. The high-energy side is shown in
blue �solid lines�, the low-energy side in red �dashed lines�. For the
studied system, almost no ground-state emission is observed for
exciton and biexciton. As initial states the ground states with Sz

tot

=0 are chosen and the internal electric field is switched off.

1X → 0X

2X → 1X

3X → 2X

4X → 3X

5X → 4X

6X → 5X
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FIG. 5. �Color online� Comparison of QD ground-state emission
spectra using the CI approach �solid lines� and the diagonal Hamil-
tonian �dashed lines� for various multiexciton transitions. In case of
six excitons the two results practically coincide. All data are calcu-
lated in the absence of the piezoelectric field.

BAER et al. PHYSICAL REVIEW B 76, 075310 �2007�

075310-8



will discuss in the following the different multiexciton spec-
tra of Fig. 4 in detail.

The general idea is to identify first the main uncorrelated
configurations that contribute to the initial state, which we
chose here to be the ground state for a given number NX of
excitons. By removing one electron-hole pair according to
the selection rules discussed in Sec. III C from the different
uncorrelated states entering the ground state, one finds those
�NX−1� configurations that can be connected to the initial
state in the emission process. However, these uncorrelated
states are in general not eigenstates of the many-body Hamil-
tonian, but are mixed by Coulomb interaction with other un-
correlated states to form a correlated eigenstate. Exactly
these correlated states can be observed in an emission spec-
trum. Once the main contributions to the correlated state are
identified, the eigenstates within this smaller subspace can be
determined. This yields approximate energies of the full
problem and gives deeper insight into the internal structure
of the cluster of peaks found by the CI method. In particular
it reveals the physics behind the splittings and explains the
ratio of the heights of the different lines within one cluster.

A. 3X\2X emission spectrum

The ground-state emission spectrum with an initial filling
of three excitons is dominated by pairs of lines on the high-
and on the low-energy side; see Fig. 6. We will analyze only
the low-energy side, as the same line of arguments can be
carried out for the high-energy side.

Due to the spin symmetry we can restrict ourselves to one
of the two possible ground states, for which the dominant
configuration �according to the CI calculation� is shown in
Fig. 7. A linear combination of configurations �A� and �B�
enters the 3X ground state with the same amplitude but op-
posite sign. Nevertheless, one can restrict the discussion to
either �A� or �B�, because they individually produce the same
spectrum and possible interference terms in the expansion of
the coupling matrix elements appearing in Fermi’s golden
rule are zero.

In Fig. 8 configuration �A� is shown together with the 2X
configuration �in black� that can be reached via the action of
Plow. Note that the latter is not an eigenstate of the Hamil-
tonian. Instead it will be mixed with other states by Coulomb
interaction. The predominant contribution to this mixture is
shown in Fig. 8 in light gray. As these two states enter with

the same amplitude, they can either form a spin triplet state
for the electrons and a spin singlet for the holes �ts� or a
singlet-singlet �ss� state. These ss and ts states are split by
the exchange Coulomb matrix element 2Xsp

ee and can both be
observed in the spectrum. The oscillator strengths of the cor-
responding transitions are equal since both final states con-
tain the bright 2X exciton state with the same probability
amplitude. Along the same line one finds for the high-energy
side an approximate splitting of 2Xsp

hh which is, however, con-
siderably smaller. Both splittings are in good agreement with
the CI result and explain the dominant peak structure in Fig.
6. The ratio of the peak heights on the low- and the high-
energy side is given in terms of the dipole-matrix elements
by dsp

eh /dps
eh.

B. 4X\3X emission spectrum

The ground-state emission spectrum of 4X looks similar
to the 3X emission spectrum. The main difference to the
previous case is that energetic splitting within the cluster is
larger and that the oscillator strengths of the two lines of the
cluster differ from each other. By considering the involved
states, we find that the difference can be explained by the
fact that the final states are now doublet-doublet �dd� and
quadruplet-doublet �qd� states and no longer simple ss and ts
states as in the 3X emission spectrum. The corresponding
quadruplet-doublet splitting, which determines the energy
difference within the cluster, can be calculated analytically.
One finds that the corresponding value is larger than the
singlet-triplet splitting. Regarding the oscialltor strength, the
evaluation of the contribution of the three different Sz

tot=0
ground states to the spectrum yields an approximate ratio of
5 to 4 for the different oscillator strengths within the cluster.
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3X → 2X

FIG. 6. Ground-state emission spectrum for an initial filling of
three excitons. As initial states the ground states with Sz

tot=0 are
chosen.

|A〉 |B〉
FIG. 7. One of the two configurations dominating the three-

exciton ground states with Sz
tot=0.

|A〉

Plow−−→ ±

FIG. 8. One part of the dominant configuration of the 3X ground
state characterized by Sz

e= + 1
2 and Sz

h=− 1
2 , together with the 2X

configuration �in black� that is created by removing the sp exciton
via the action of Plow. Additionally the most important dark con-
figuration to which the bright 2X state couples via Coulomb inter-
action is shown in light gray. Note that both 2X configurations enter
with the same amplitude.
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This is in good agreement with the CI result.

C. 5X\4X emission spectrum

In contrast to the other multiexciton spectra, Fig. 9 shows
a clear asymmetry and additional lines at the high-energy
side of the spectrum. One of the 5X ground states is depicted
in Fig. 10. Taking this as the initial state, the main contribu-
tion to the final states for the high-energy side stem from the
6�6 block generated by the configurations schematically
represented in Fig. 11. These states have the lowest nonin-
teracting energy amongst those states that can be reached by
a removal of one ps exciton from the configurations shown
in Fig. 10. Their electronic configuration is given by
2es2ep1hs3hp. A similar block with configurations
1es3ep2hs2hp is found for the low-energy transitions. Due to
this symmetry, one would expect the same number of lines
on the high- and on the low-energy side of the spectrum.
This expectation is fulfilled for all but the 5X→4X transi-
tions.

By combining the first four states �
1,. . .,4� in Fig. 11 one
can form ss, st, ts, and tt spin states. The last two states �
5,6�
in Fig. 11 allow the formation of an st and an ss state. While
the electrons of the first four states always occupy both p+
and p−, they occupy only the p− state in the last two configu-
rations. Therefore one expects that the energy of the ss state
formed by the states 
1 to 
4 differs from the energy of the
eigenstate created by combining 
5 and 
6. By the same
token one expects two different energies for the two possible
st states. Therefore six different energies can be expected.
On the high-energy side of the spectrum, four lines are
clearly visible and another two may be identified on the left-

hand side of the cluster. For the low-energy side, however,
only two lines can be observed.

To obtain further insight, we construct the Hamiltonian
matrix generated from the states ��
i�i=1

6 , and block diago-
nalize it by transforming to spin eigenstates. This way one
obtains four diagonal sub-blocks,

Hts = −
3

2
, Hss =

1

2
�− 1 t

t 1
� , �15�

Hst = − 2t̃1= − Hss, Htt = − 2t̃ −
3

2
, �16�

where we introduced the dimensionless parameters t
=2	2Xpp

eh /Xpp
ee and t̃=Xpp

eh /Xpp
ee and measured all energies in

units of Xpp
ee relative to Ediag+ t̃+ 1

2 with Ediag being the energy
of the configurations in the diagonal approximation. The six
eigenvalues of these blocks are Ets=− 3

2 , Ess= ± 1
2
	1+ t2, Est

=−2t̃
1
2
	1+ t2, and Ett=−2t̃− 3

2 . From these expressions one
can read off that the st and tt spectrum is shifted by −2t̃
relative to the ss and ts spectrum, respectively.

In order to obtain the corresponding oscillator strengths of
the transitions, one must calculate the matrix elements
��4X , i�Phigh�5X ,gs��2, where �4X , i� denotes the ith eigenstate
of the four exciton problem and �5X ,gs� refers to the ground
states schematically shown in Fig. 10 of the five exciton
problem. Because the eigenstate within the one-dimensional
subspaces of the ts and tt states is not affected by a varied
parameter t, the oscillator strength does not depend on the
value of t. In contrast, the heights of the ss and st lines
depend strongly on t as the amplitude of the different states
in the linear combination varies with t. Denoting the eigen-
states of Hss with ��i ,�i�t the oscillator strength � of the ss
transition is given by

� = �dps
eh�2� �i

	2
+

�i

2
�2

. �17�

A similar analysis can be performed for the st transition.
In this case one finds
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FIG. 9. Ground-state emission spectrum for an initial filling of
five excitons. As initial states the ground states with Sz

tot=0 are
chosen.

−

FIG. 10. Dominant ground-state configuration for five excitons
with Sz

tot=0. By flipping all spins a second, degenerate ground state
is produced.

|ψ1,...,4〉 |ψ5,6〉
FIG. 11. �Color online� Main contribution to the final states of

the high-energy side of the 5X→4X transition with classification
Sz

tot=0 and, assuming full angular momentum conservation, lz
tot=0.

The arrow between electrons or holes indicates that additional states
can be derived from the displayed configuration by flipping the
spins of the connected carriers simultaneously. This way one can
create four different states from the first configuration and two from
the second one.
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� = �dps
eh�2��i

2
−

�i

	2
�2

�18�

for the oscillator strength. As Hss and Hst have the same
eigenvectors and if v= �� ,��t is an eigenvector, so is
v�= �−� ,��t, one finds for the st transitions the same depen-
dency of the oscillator strength as for the ss transition. For
the analysis of the low-energy cluster, only the labels e↔h
must be changed in all the derived equations.

The dependence of the transition energies and the oscilla-
tor strengths on the parameter t are depicted in Figs. 12 and
13, respectively. For the above discussed QD example, one
obtains t�−1.2 for the high-energy side and t�−2.8 for the
low-energy side. Therefore we expect from Fig. 13 that one
will only be able to observe in the spectrum one of the ss and

one of the st lines in addition to the ts and tt lines. This
explains the four clearly visible lines in Fig. 9 on the high-
energy side. In contrast, for the low-energy side only two
peaks are visible. This can be traced back to the fact that one
has in this case Xpp

eh �Xpp
ee or t�2	2. According to Fig. 12

this means that the ss and st as well as ts and tt have almost
identical transition energies. As a consequence of this degen-
eracy only two distinct lines can be observed on the low-
energy side of the spectrum.

D. 6X\5X emission spectrum

In the case of two shells for each type of carrier, the QD
is completely filled with six excitons and there is only one
ground state possible. By removing one sp exciton or one ps
exciton from this configuration, we find that the possible
final states are exactly those for the 0X→1X transitions, only
that the occupied sites in the 0X→1X problem are now the
unoccupied ones. Therefore the 6X→5X emission spectrum,
see Fig. 14, is very similar to the 0X→1X absorption spec-
trum shown in Fig. 2, with the main difference being that the
lines are shifted due to the interaction with the ‘‘back-
ground’’ carriers.

VII. INFLUENCE OF THE BUILT-IN FIELD

Nitride QDs grown along the c-axis are characterized by
the presence of a strong internal electrostatic field which has
a component stemming from the spontaneous polarization
and a part generated by strain. When this field is included in
the calculation of the single-particle properties, the electron
and hole wave functions are spatially separated from each
other which leads to a reduction of the oscillator
strength.29,34,35 Furthermore the single-particle gap and the
Coulomb matrix elements are altered. The resulting multiex-
citon spectra with and without the inclusion of the built-in
field are compared in Fig. 15. The reduced oscillator strength
and the overall redshift of the spectra due to the QCSE are
clearly visible. In addition to these results of the modified
single-particle properties, we find a stronger shift of the lines
with increasing number of excitons in the presence of the
internal field. This is another result of the strong separation
of the electron and hole wave functions which also intro-
duces Hartree shifts in the spectrum. Indeed, if the diagonal
approximation is applied as outlined in Sec. V C, one obtains
again the position of the cluster to a good approximation.
Another difference can be observed in the 5X→4X spec-
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FIG. 12. �Color online� Energies of the final states involved in
the high-energy transition measured in units of Xpp

ee relative to
Ediag+ t̃+ 1

2 as a function of the dimensionless parameter t
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FIG. 14. Ground-state emission spectrum for an initial filling of
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trum: The number of lines changes in the presence of the
intrinsic field. Since for all other excitonic populations the
spectra are only altered quantitatively this is a rather surpris-
ing result. But this is resolved by noting that the situation
without the intrinsic field is rather special as one had Xpp

eh

�Xpp
ee . Including the built-in field leads to a significant de-

viation of the two matrix elements and henceforth to a clear
splitting of the previously degenerate lines.

VIII. MULTIEXCITON EMISSION FOR A LARGER
QUANTUM DOT

In order to give a more representative overview, we addi-
tionally investigate a larger QD with diameter d=5.7 nm and
height h=2.3 nm. It turns out that in this case the energetic
order of the two energetically lowest hole levels is reversed
in the presence of the internal electrostatic field. A schematic
picture of this situation is shown in Fig. 16. In the absence of
the built-in field, one still has the usual order with the s shell
being lower in energy than the p shell. Hence, the spectrum
looks similar to those previously discussed and is here there-
fore omitted. However, in the presence of the built-in field
the twofold degenerate p-shell constitutes the hole ground
states and has, according to the symmetry considerations of
Sec. III, nonvanishing dipole matrix elements with the elec-
tron ground state. This is in agreement with recent k ·p
calculations65 and experimental results for CdSe QDs66

grown in the wurtzite phase. As an immediate consequence
the excitonic and biexcitonic ground state is bright. How-
ever, the corresponding dsp

eh dipole matrix elements are
strongly reduced in comparison with the smaller QD due to
the stronger separation of the electron and hole wave func-
tion in this larger structure.

The resulting multiexciton spectra are shown in Fig. 17.
In contrast to the intuitive picture in which first the states

with lowest single-particle energy are occupied, a strong
population of the hole s shell for more than one exciton is
found. The ground states are therefore not given by those
states with lowest noninteracting energy. This is already con-
firmed by a calculation that contains only the Hartree Cou-
lomb terms and can qualitatively be explained as follows:
The attraction between the electron and hole being in their
respective s shells is stronger than the attraction in the case
of s- and p-shell carriers. Therefore it can compensate the
higher single-particle energy of the hole in the s shell. This
leads already for the biexciton to an occupation of the hole s
shell. However, an additional promotion of the other hole is
not favored in this case because the increase in energy due to
the stronger repulsive interaction between the holes in their s
shell is higher than the energy reduction due to the stronger
attraction between s electrons and s holes. As a consequence,
the s and p shells for the holes are equally populated in the
biexciton ground state. Therefore the biexcitonic line has ap-
proximately the same oscillator strength as the excitonic one.

From three excitons on, the ground states are dominated
by configurations in which both the s shell for electrons and
the s shell for holes are fully populated. As a consequence,
one obtains qualitatively the same spectra as in the case of
the smaller dot with the normal order of the shells. However,
one finds that the oscillator strengths are strongly reduced in
the larger system and that the Hartree shifts are even more
pronounced, due to the strong separation of electron and hole
wave functions.

IX. CONCLUSION

In this work we have investigated the electronic and op-
tical properties of lens-shaped InN/GaN QDs. Employing a
tight-binding model where the weak crystal-field splitting
and spin-orbit coupling for the system studied here are ne-
glected, we found an exactly degenerate single-particle p
shell. This degeneracy originates from the C3v symmetry of
the underlying wurtzite lattice. This result is in particular
intriguing in view of a recent discussion in the literature,
which revealed a nondegenerate p shell in the case of an
atomistic treatment of zinc-blende QDs. Based on the micro-
scopically determined single-particle wave functions, the di-
pole and Coulomb matrix elements were evaluated. These
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FIG. 15. �Color online� Ground-state emission spectra for the
smaller QD �d=4.5 nm and h=1.6 nm� with �solid lines� and with-
out �dashed lines� the inclusion of the internal field. Different num-
ber of excitons with Sz

tot=0 are chosen as initial states. For the
studied system almost no ground-state emission is observed for the
exciton and biexciton.
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FIG. 16. �Color online� Schematic representation of a three ex-
citon configuration. The light �red� and dark �blue� shaded areas
connect the carriers that will lead to emission at the low- and high-
energy sides of the spectrum, respectively.

BAER et al. PHYSICAL REVIEW B 76, 075310 �2007�

075310-12



matrix elements served as input parameters for
configuration-interaction calculations and allowed the deter-
mination and further analysis of optical properties. Our pre-
diction of dark exciton and biexciton ground states for small
dots is confirmed by symmetry considerations. In contrast to
other III-V material systems, the emission from nitride-based
QDs is dominated by skew excitons, so that completely dif-
ferent multiexciton spectra arise. For larger QDs, we found
that the strong internal electric built-in field can reverse the
energetic order of the hole states, which results in a bright
exciton and biexciton ground state. However, the oscillator
strength is strongly reduced in these structures due to the
quantum confined Stark effect. By restricting the analysis to
the energetically lowest shells, a semianalytic description of
the optical properties was possible, leading to a deeper in-
sight into the origin of the various emission lines.
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