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We show that besides the Wigner crystal, the lowest Landau level supports a state with the same unit cell but
a qualitatively different charge density distribution. Instead of periodic peaks, the new state forms percolating
ridges that may favor an energy decrease through correlated ring exchange contributions. It is found after
developing a general framework for the determination of the mean-field states at arbitrary filling factor p /q, q
odd. For fillings 1/q, the eigenstate is given in complete analytical form. In the case for which the unit cell
contains one half electron, a crossover is found close to filling 1/7 between this state and the periodic peak
solid, suggesting that it may compete with the Wigner solid after correlations are included.
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I. INTRODUCTION

The quantum Hall effect has been the source of continued
interest for over a quarter century.1 As the samples have be-
come cleaner and the temperature made lower, unexpected
structures have been seen, suggesting a richer physics than
originally thought. Although the system was first believed to
simply transit from a liquid state to a Wigner crystal �WC� as
the electron density is decreased below about filling fraction
1/6.5,2–6 magneto-optical measurements soon displayed
quantum Hall features down to filling 1/9.7 More recently,
observation has shown that new structures that may signal
transitions between states of different symmetries develop
near major fractions.8–11 Numerical calculations done in
small samples also find a variety of states of nonuniform
charge density that are found to be the lowest energy states in
certain filling fraction ranges, including striped phases,
bubble crystals, and others.12–15

One of the most studied is the two-dimensional WC. In it,
electrons form a hexagonal lattice with a Gaussian-like peri-
odic density amounting to one whole electron per unit cell.
As the magnetic field is increased, such peaks become
sharper and the electrons approach a classical ensemble of
well separated charged particles forming a crystal.16 Al-
though the exchange energy makes this state a stable mean-
field solution in a high magnetic field, early results showed it
to be incapable of explaining the odd-denominator rule ob-
served in the lowest Landau level in transport experiments,
e.g., that only filling fractions of odd denominator exhibit the
quantum Hall effect.17

It was later discovered that another mean-field solution, a
crystalline charge density wave with only half an electron
per unit cell, predicted the Fermi energy to be in a gap at all
odd-denominator filling fractions and at the center of a band
if the denominator is even, thus providing an odd-
denominator rule consistent with experiment.18,19 In spite of
such remarkable property, this state was found to have higher
energy than the Wigner crystal, a fact that placed a question
mark in its actual relevance to the ground state problem. As
the electron number per unit cell � is varied at filling 1/3, for
example, the energy goes through pronounced cusplike

minima at �=1 and 1/2, but the minimum in the former is
deeper than in the latter.20 However, the �=1/2 state has a
charge distribution qualitatively different from that of the
WC, being made of ridges that percolate the entire sample
even at low fillings. This fact has prompted the proposal that
correlations could affect this state more than it does the WC
possibly changing the energy ordering,19 owing, in particular,
to the high degree of wave function overlap exhibited by
such mean-field solution.21,22 Because a class of crystalline
states compatible with the quantum Hall effect has been
called Hall crystals in the past, we adopt here this same
nomenclature for the particular state with half electron per
unit cell described above.23

In this work, we develop a formalism that allows for a
closer study of the Hall crystal state. We derive analytic ex-
pressions for the Hartree-Fock problem in the lowest Landau
level �LLL� at arbitrary filling fraction �= p /q, q odd, gen-
eralizing work reported in the past for filling 1/3.24–26 Re-
gardless of how many electrons are trapped in each cell, we
find that two crystalline solutions are always possible, one
whose charge density exhibits a single peak at a point of high
symmetry in the unit cell, and another whose charge density
forms hexagonal ridges that become sharper as the electron
density is lowered, increasingly resembling a honeycomb.
The first we call electronlike, while the second shall be re-
ferred to as holelike in what follows.20 The Hall crystal be-
longs to this latter class in the case �=1/2. The percolating
charge density that characterizes it makes strong correlated
ring exchange effects more likely.27,28 We find this mean-
field solution to have lower energy than the electronlike state
at this value of �, except below filling 1/7 where the latter
becomes lowest in energy.

In Sec. II, a formula for the single-particle Fock operator
is presented for the case of a hexagonal lattice and arbitrary
electron number �. In Sec. III, a basis is constructed in terms
of which the Fock operator matrix representation reduces to
q-dimensional blocks. Section IV discusses the holelike
state, characterized by a region of very low charge density
around a high symmetry point in the unit cell. The depres-
sion becomes a zero of order 2��q−1� if the filling is of the
form 1/q, a property that is used to completely determine the
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analytic form of the Hartree-Fock state. Finally, Sec. V pre-
sents our conclusions.

II. FOCK OPERATOR

We consider Ne electrons on a plane, in a strong perpen-
dicular magnetic field. For such a system, it was proven long
ago that at filling less than 1, the only consistent mean-field
solutions have space fluctuations.19 We shall here assume the
charge density to form a periodic lattice with a unit cell
containing � electrons, this number being fractional or inte-
ger. Denoting by � the flux through such cell in units of the
flux quantum �0=hc /e, one can readily verify the simple
relation

�� = � . �1�

The Fock operator in the LLL may then be written in the
form26

HHF = �
Q

v�Q�exp�−
ro

2Q2

4
�Tro

2n�Q, �2�

where

v�Q� = 2�ro
2��Q�exp� ro

2Q2

4
��1 − �Q,0

ro�Q�
exp�−

ro
2Q2

4
�

−��

2
Io� ro

2Q2

4
�	 e2

�oro
. �3�

Here, r0= �	c /eB�1/2 is the magnetic length, I0�u� a modified
Bessel function, and �0 the background dielectric constant.
The operator Ta displaces the function it acts upon in −a
adding a magnetic phase factor, as defined in the Appendix.
The Fourier components of the periodic charge density ��x�
are defined as usual as

��Q� =
1

Acell

 dx��x�exp�iQ · x� , �4�

where Acell is the unit cell area

Acell = n · a1 � a2 = 2�ro
2� , �5�

n being a unit vector normal to the plane containing the
electrons. Assuming triangular symmetry, the lattice formed
by the electrons is then invariant under translations in the set
of vectors

R = n1a1 + n2a2, n1,n2 = 0, ± 1, ± 2, . . . , �6�

a1 = a�1,0� , �7�

a2 = a�1

2
,
�3

2
�, a =�4��

�3
ro. �8�

The vectors Q in Eq. �4� span all points in the reciprocal
lattice and are given by

Q = Q1s1 + Q2s2, �9�

Q1,Q2 = 0, ± 1, ± 2, . . . ,

s1 = −
1

�ro
2n � a2,

s2 =
1

�ro
2n � a1,

si · a j = 2��ij .

The Fourier components of the density obey the sum rule19

�
Q

�
�2�ro

2��Q��2 exp� ro
2Q2

2
� = ��1 − �� , �10�

where the term Q=0 is omitted from the sum. This relation
states that within the mean-field approximation, the liquid
state of uniform density, ��Q�=0 all finite Q, is only possible
at filling 1 or 0 in the LLL. At fractional fillings, the right
hand side is finite and so must be at least one wave-vector
Fourier component of the charge density associated with
some Q�0.

III. BLOCK DIAGONALIZATION OF THE FOCK
OPERATOR

The mean-field Hamiltonian �2� describes an electron in a
periodic potential and a perpendicular magnetic field, a case
for which many results are known.29 An important property
is that the single-particle spectrum in the LLL is arranged in
nonoverlapping bands, each with the same number of
states.30 The number of bands equals the numerator of the
flux per cell, the latter assumed a rational. For filling �
= p /q, with p ,q prime to each other, Eq. �1� yields a flux
�=�q / p per plaquette. Assuming � to be a rational, this flux
is then a rational number as well.

We consider in what follows two simple cases that illus-
trate how different values of the flux � are to be treated. One
is when this number is an integer, and another when it is half
an integer. For simplicity, we set �=1,1 /2 and �=1/q, so
that �=q ,q /2, respectively. Our results cover the more gen-
eral case �= p , p /2 and �= p /q, giving rise to the same val-
ues of the flux we include in the following discussion. Other
cases may be treated using similar methods to the ones de-
scribed below.

A. Integer flux quanta per unit cell

Now, �=q, �=1/q, and �=1. This case is important since
it corresponds to the standard WC, in which each unit cell
captures one whole electron charge. The flux traversing a
plaquette is q so that the single electron spectrum will have q
bands, one of which is completely filled and the others
empty. Since these bands do not overlap,30 the WC state has
a gap for all values of q, whether even or odd. Because an
essential feature of experiment at not too low filling fractions
is the different behavior at even and odd values of the de-
nominator of the filling fraction—q in our case—the WC
state is not a good candidate for being the mean-field precur-
sor to the true ground state.
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Owing to definition �9�, the magnetic translations entering
the Fock operator have the form

Tro
2n�Q = T−�Q2/q�a1+�Q1/q�a2

. �11�

Since the flux piercing the unit cell is an integral number q of
flux quanta, the set of translation operators TR for all the R
defined in Eq. �6� commute among themselves, allowing to
find common eigenfunctions to all of them. This is not the
case for the translations �11� since the original unit cell is
partitioned in smaller sectors if q is greater than 1. The basis
we shall construct defines a set of q-dimensional subspaces,
which are closed under the action of translations �11� for all
values of Q.

A first step in finding the basis is to define a set of eigen-
functions 
k�x� of a translation in the vector −a1 /q for each
value of the momentum p=	k. Expressed as linear combi-
nations of the functions �k�x� defined in the Appendix, we
write them in the form


k�x� = �
s=−�q−1�/2

�q−1�/2

cs�k�T−�s/q�a1
�k�x� , �12�

where, for definiteness, we have assumed q to be odd. These
functions must obey the condition

T−�1/q�a1

k�x� = �
k�x� .

One finds for the eigenvalues � and coefficients cs the set of
q solutions

��r��k� = exp�i
k · a1

q
+ i

2�r

q
� ,

cs
r�k� =

1
�q

exp�− i
sk · a1

q
− i

2�rs

q
� ,

r = −
q − 1

2
, . . . ,

q − 1

2
. �13�

Substituting in Eq. �12� yields the q eigenfunctions


k
�r��x� =

1
�q

�
s=−�q−1�/2

�q−1�/2

exp�− i
sk · a1

q
− i

2�rs

q
�T−�s/q�a1

�k�x� ,

�14�

k � k + ns1 + ms2, n,m = 0, ± 1, ± 2, . . . . �15�

The last relation expresses the fact that the states in the new
basis are equivalent upon a shift of k in any linear combina-
tion with integer coefficients, of the unit cell vectors of the
reciprocal lattice corresponding to the periodicity of the den-
sity. The equivalence follows from the following properties:
�a� the functions �k�x� are eigenfunctions of any translation
TR for lattice vectors R given by Eq. �6�, �b� the operator TR
commutes with all translations entering in the definition of

k

�r��x�, and �c� relation �A8� in the Appendix, stating the
equivalence between magnetic translations acting on �k�x�
and a shift in the momentum labeling these functions.

Let us now inspect the effect of a magnetic translation in
a2 /q on the new functions. If such a transformation leaves
the q-plets invariant, then the matrix reduction of the
Hartree-Fock Hamiltonian will follow. One has

T�1/q�a2

k

�r��x� =
1
�q

�
s=−�q−1�/2

�q−1�/2

exp�− i
sk · a1

q
− i

2�rs

q
�

�T�1/q�a2
T−�s/q�a1

�k�x� . �16�

After using Eq. �A4� for changing the order of the two op-
erators within the sum, it follows that

T�1/q�a2

k

�r��x� = exp�− i
k · a2

q
�
k

��r−1��x� , �17�

where the square bracket defines the number in the set
�−

�q−1�
2 , . . . ,

�q−1�
2

� which is equivalent, modulo q, to the in-
teger in the argument. Thus, a magnetic translation in a2 /q
just turns one function in the q-plet into another. Besides the
properties already discussed, the basis can be checked to
obey

Ta1

k

�r��x� = exp�− ik · a1�
k
�r��x� , �18�

Ta2

k

�r��x� = exp�− ik · a2�
k
�r��x� , �19�

P
k
�r��x� = 
−k

�−r��x� , �20�

where the parity transformation P is defined as usual,
P
k

�r��x�=
k
�r��−x�.

From the above considerations, it follows that the
q-dimensional subspace spanned by the functions 
k

�r��x� at
fixed values of k is left invariant by the action of the opera-
tors �11� for arbitrary values of the integers Q1 and Q2. Since
the Fock Hamiltonian involves just a sum of such transla-
tions, it leaves invariant these q-dimensional subspaces as
well. It is of interest to note that this is a purely kinematic
result which does not depend on the form of the interaction
potential.

In the new basis, the q2 matrix elements of the Hamil-
tonian �2� can be readily found to have the convenient form

hk
�r�,r� = �
k

�r���HHF�
k
�r��

= �
Q

v�Q�exp�−
r0

2Q2

4
�

�exp�− ik · n � Qr0
2 + i

�

q
Q2�2r + Q1�	�r�,�r−Q1.

�21�

The problem has thus been reduced to the self-consistent
diagonalization of a q-dimensional matrix for each value of
the wave vector k. For a sample of surface S, the degeneracy
D=BS /�0 of the Landau level of the noninteracting problem
is then split into q bands that span their range as k covers the
Brillouin zone, each holding exactly D /q single-particle
states.
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B. Half integer flux quanta per unit cell

We next turn our attention to the case �=1/q, �=1/2 for
which, following Eq. �1�, �=q /2. This case is particularly
interesting because if q is even, say, q=2r, then �=r and the
single-particle spectrum has just r bands. Since �=1/2r,
only the lowest of these energy bands has any occupied
states, being half filled. The Fermi energy is at the center of
the band and the state is metallic. By contrast, if q is odd, the
fraction �=q /2 is not reduced and there are q bands in the
spectrum, one of which is completely filled and the others
empty, leaving the Fermi level in a gap. Even and odd filling
fraction denominators thus show qualitatively different be-
havior, a metal or an insulator, as experiment requires. Such
remarkable property makes this state a reasonable candidate
to be the mean-field precursor to the true ground state of the
system.

The magnetic translations defining the Fock operator have
now the form

Tr0
2n�Q = T−�2/q�Q2a1+�2/q�Q1a2

. �22�

We define a doublet invariant under magnetic translations in
the vectors a1 and a2,

�k
�x� =

1
�2
��k�x� +



exp�− ia2 · k�
Ta2

�k�x�	,  = ± 1.

�23�

These functions obey

Ta1
�k

�x� = exp�− ia1 · k��k
−�x� ,

Ta2
�k

�x� =  exp�− ia2 · k��k
�x� , �24�

being turned into each other by translations along the axes,
save for a phase factor. In analogy with the previous section,
we define next a set of eigenfunctions of the translations
T�2/q�a1

with the form


k
�r,��x� =

1
�q

�
s=−�q−1�/2

�q−1�/2

exp�i
2k · a1s

q
− i

2�rs

q
�T�2s/q�a1

�k
�x� ,

k � k + ns1/2 + ms2/2, n,m = 0, ± 1, ± 2, . . . . �25�

Note that the last line indicates for this case that the equiva-
lence of states is now under shifts in half the reciprocal lat-
tice unit cell vectors. This is related to the fact that magnetic
translations in vectors �6� are noncommuting, so that they
have no common eigenfunctions. However, translations in
twice the spatial unit cell vectors are commuting operations.
Similarly, as in the previous section, the equivalence follows
after considering that �a� the functions �k�x� are eigenfunc-
tions of any operator T2R for lattice vectors R given by Eq.
�6�, �b� T2R commutes with all the translations entering in the
definition of 
k

�r,��x� through the original functions �k�x�,
and, as before, �c� relation �A8� in the Appendix, expressing
the equivalence between magnetic translations acting on
�k�x� and a shift in the momentum labeling these functions.

Aside from relations �24�, our functions satisfy the fol-
lowing transformations:

T�2/q�a1

k

�r,��x� = exp�i
2k · a1

q
+ i

2�r

q
�
k

�r,��x� , �26�

T�2/q�a2

k

�r,��x� = exp�− i
2

q
k · a2�
k

��r−2,��x� . �27�

Consider now fixed values of the quantum numbers �k ,�.
Relations �26� and �27� directly show that all translations
�22� included in the Fock operator �2� leave invariant the
q-dimensional subspace spanned by the set 
k

�r,��x�, all r.
Using the commutation properties �A4� and relations �26�

and �27�, the matrix elements of the Hamiltonian �2� can now
be written as

hk
�r�,r� = �
k

�r�,��HHF�
k
�r,��

= �
Q

v�Q�exp�−
r0

2Q2

4
�

�exp�− ik · n � Qr0
2 + i

2�Q2

q
�r + Q1�	�r�,�r+2Q1.

�28�

Again, the mean-field problem has been reduced to the di-
agonalization of a q-dimensional matrix, but now, this must
be done for each value of the wave vector k and the index .
An interesting outcome is that the matrix representing the
Hamiltonian is identical for the two values of , so that its q
eigenvalues are twice degenerate .

IV. HOLELIKE STATE AT �=1/q

Further progress will normally require a numerical routine
that diagonalizes self-consistently either Eq. �21� or �28�,
where the solutions obtained at the end generate the same
Fourier coefficients of the potential v�Q� that gave rise to
them. There is a special case, however, for which a com-
pletely analytic result is possible. Because of the form the
charge density acquires in the unit cell, we have called it a
holelike state.

Its characterization rests on the following observation.
Earlier numerical work showed that there are two
self-consistent solutions within the Hartree-Fock
approximation.19 In one solution, the charge density has
Gaussian-like peaks centered at equivalent symmetry points
in the lattice. In the other, the charge density has a deep
depression at the point of highest symmetry in the unit cell
and actually vanishes there if the filling fraction is of the
form �=1/q. Further inspection showed this zero to be of
order 2��q−1�. Since the total particle density is a sum of
the positive definite particle densities of the single-particle
occupied states, all filled orbitals must vanish at the special
points at least as the power ��q−1�. We use this condition to
determine completely the state of interest.

In terms of the basis states defined previously, the eigen-
functions of the Fock operator may be written in the form

�k
�b,��x� = �

r=−�q−1�/2

�q−1�/2

gr
b�k�
k

�r,��x� , �29�
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�
r=−�q−1�/2

�q−1�/2

gr
*b�k�gr

b�k� = 1, �30�

where b=0,1 , . . . ,q−1 is the band index, and the label 
= ±1 is to be omitted if �=1. Because these functions are in
the LLL, in our sign convention �e=−�e��, they must be of
the form31

��z,z*� = F�z*�exp�−
zz*

4r0
2� , �31�

where z=x+ iy, z*=x− iy, and F�z*� is an analytic function of
its argument. With no loss of generality, we choose one of
the special zeros to be at the origin. As one approaches this
point, one expects that asymptotically F�z*���z*�s, with s
=��q−1�. Thus, the function � itself and its first s−1 de-
rivatives must vanish at the origin, giving in all s indepen-
dent equations to be satisfied. These, together with the
normalization condition �30� total s+1 equations, being
sufficient to determine the q coefficients �gr

0�k� ,
r=− q−1

2 , . . . , q−1
2 � of the occupied orbitals. Specifically, for

�=1, one has s+1=q, while for �=1/2, one has 2s+1=q,
the factor of 2 arising from the double valued index .

As an example, we discuss the simple case q=3, �=1.
The electronlike state—the WC—has been reported in the
literature for these parameter values,17,20 whereas the hole-
like state has not. Figure 1�a� shows the charge density for
the WC, obtained after achieving numerical self-consistency
in the Hartree-Fock equations. The holelike state density
may be obtained analytically using the above procedure by
way of the coefficients g−1

0 �k� ,g0
0�k� ,g1

0�k� defining the filled
orbitals, and after substitution in the expression

��x� = �
k
� �

r=−1

1

gr
0�k�
k

�r��x��2

. �32�

Here, the first sum runs over all momenta k in the Brillouin
zone. The result is shown in Fig. 1�b�. Notice the presence of
sharp hexagonal ridges surrounding low density regions
leading to the origin, where the density vanishes as the fourth
power of the distance. The fact that the density percolates the
structure much like the wax in a honeycomb marks the es-
sential difference with the WC solution, whose charge den-
sity is made up of essentially of Gaussian functions centered
at lattice points, as seen in Fig. 1�a�.

Further, insertion of the calculated density in Eq. �4� and
use of this result in Eq. �3� allow finding the associated ei-
genvalues �r, r=0,1 ,2 by diagonalization of the 3�3 matrix
�21� for each value of k. Three bands are obtained that span
their range as k covers the Brillouin zone. The band disper-
sion relations are illustrated in Fig. 2. They are quite narrow,
with the lowest—the filled one—well separated from the rest
by a sizable gap. The same pattern was found for larger
values of q. The LLL having been split into q separate bands
appears to yield the spectrum associated with a value of the
magnetic field reduced by a factor of 1 /q. This feature is
reminiscent of the composite fermion theory, which inter-
prets the fractional quantum Hall effect as the integer quan-
tum Hall effect of composite fermions in a field reduced in
the same factor.32,33

The energy per particle of the holelike solution we have
just discussed is found through

� =
1

N
�
k

�0�k�
2

= − 0.362
e2

�0r0
. �33�

This value is higher than that of the WC state, for which case
�=−0.388e2 /�0r0. We find the WC to have lower energy at

FIG. 1. �Color online� Particle density for the �a� WC and �b� holelike states at �=1/3 and �=1 �one electron per cell�. Notice the
percolating hexagonal ridges and the absence of any Gaussian-like peaks in the latter.
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all fillings, save for �=1/2 for which value both states have
the same energy.

A more interesting case corresponds to the value �=1/2
which, as discussed earlier, gives rise to the odd-denominator
rule observed in experiment in the lowest Landau level. Fol-
lowing a similar procedure as above, the energy for both the
electronlike and the holelike states may be obtained. Results
are shown in Fig. 3 for a few values of q. Above filling 1/7,
the state of lowest energy is the holelike state, and below, the
electronlike crystal. It is interesting that the crossover occurs
at about the same value as obtained for the transition be-
tween the Laughlin state and the Wigner crystal.2 This is
likely to be just a coincidence, however, since correlations
are expected to affect differently both mean-field solutions.

We end by noting that in the more general case, when �
= p /q, the electrons fill p of the q bands so that the charge
density is obtained from an expression such as Eq. �32�, but
with an additional sum over the p occupied bands. The odd-
denominator rule still holds for �=1/2 but the zero found in
the holelike state for the case p=1 is no longer present.

V. SUMMARY AND CONCLUSIONS

Within mean-field theory, it is possible to find a variety of
crystalline solutions to the problem of 2D interacting elec-
trons moving in a high magnetic field. These may differ in
the symmetry of the unit cell, square or hexagonal, and in the
number of electrons that it contains. We find that once these
parameters have been fixed, there are still two possible solu-
tions to the mean-field problem, one where the electron dis-
tribution shows a single peak in the unit cell and another that
appears to have a hole in the point of highest symmetry
within the unit cell.

As we have shown, the holelike states may be completely
determined analytically if the filling is of the form �=1/q, a
truly unusual situation for a many-body Coulomb system in
the thermodynamic limit. This result follows from symmetry
considerations and the construction of a special set of com-
mon eigenfunctions to all magnetic translations in a lattice
vector. The spectrum of single-particle states is organized in
multiplets of dimension equal to the denominator q of the
filling fraction in such a basis, which are left invariant by the
action of the Fock operator. The solution is finally obtained
under the condition that the wave function and a certain
number of its derivatives must vanish at a point of high
symmetry in the unit cell and all its periodic replicas in the
crystal. The original degenerate Landau level is split into q
narrow subbands that may be interpreted as resulting from
weakly interacting particles either holding a reduced charge
e /q or placed in the reduced magnetic field B /q. These al-
ternative pictures conform with features contained in well
established theories based on ansatz wave functions.34,35

Also, if the electron number per cell equals 1 /2, the mean-
field solution provides naturally the experimental odd-
denominator rule.

In spite of its virtues, the holelike solution has higher
energy than the Wigner crystal. One is then in the presence
of a state that exhibits many features required by experiment
and found in other theories but not conforming with the
usual criterion of it being lowest in energy. As we have il-
lustrated, however, the honeycomblike charge density it
gives rise to is indicative of strong overlap favoring correla-
tions through ring exchange. The state is a well understood
approximation derived from the original many-body Hamil-
tonian, and it may very well be that correlations will affect it
differently than they do the Wigner crystal, which has quali-
tatively different features. The correlation energy of these
states has been estimated systematically through second or-
der perturbation theory only, yielding too small a correction
to make a final judgment possible.

States in the lowest Landau level obeying periodic bound-
ary conditions must vanish at a number of points equaling
the degeneracy of the noninteracting system.31 For �=1/q,
this number is qNe, where Ne is the total number of electrons
in the sample. The holelike states attach �q−1�Ne of them to
fixed high symmetry periodic points in the electron lattice,
leaving Ne zeros whose spatial location depends on the quan-
tum number k labeling each occupied state. This degree of
freedom is necessary to construct a Slater determinant that
makes the many particle wave function antisymmetric. The
determinant will vanish as the first power in the relative co-

FIG. 2. �Color online� Dispersion relation for the three bands
into which the lowest Landau level is split by the action of the
Coulomb interaction, for the same case as in Fig. 1. Energy units
are e2 /�0r0.

FIG. 3. Energy per particle for different values of q=1/� for the
electronlike �points line� and holelike �full line� solutions, both for
�=1/2. Units are as in Fig. 2. Lines are drawn to guide the eyes
only.
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ordinate as two particles approach each other, while the
Laughlin state does so as a power q. This feature decreases
the direct Coulomb energy in the latter state by keeping par-
ticles as far as possible from each other, exhibiting built-in
correlations which mean field solutions lack. We hope this
work will stimulate further research on corrections to the
mean-field results discussed above, which may account for
correlated ring exchange and other effects ignored by the
Hartree-Fock approximation.
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APPENDIX: EIGENFUNCTIONS OF MAGNETIC
TRANSLATIONS

It is well known that Bloch-like states may be constructed
by placing a seed function at each lattice point and attaching
to it an appropriate phase factor. In the presence of a mag-
netic field, this procedure may be implemented using the
zero angular momentum eigenfunction

��x� =
1

�2�r0

exp�−
x2

4r0
2� �A1�

and forming the sum24,25,36

�k�x� =
1

Nk
�

�

�− 1��1�2 exp�ik · ��T���x� ,

Nk = �N�0
��

�

�− 1��1�2 exp�ik · � −
�2

4r0
2� . �A2�

The summation indices �1 ,�2 run over all integers, defining a
planar lattice L through �=�1b1+�2b2 with the unit cell in-
tercepting one flux quantum, so that n ·b1�b2=2�r0

2. Dis-
placements of the seed function are effected by the magnetic
translation operator Ta in vector a, whose action on any func-
tion f is defined by37

Taf�x� = exp� ie

	c
A�a� · x	 f�x − a� . �A3�

Here, the vector potential is assumed in the axial gauge
A�x�=B�−x2 ,x1 ,0� /2 and the electron charge e is taken with
its negative sign �e=−�e��. These translations in general do
not commute,

Ta1
Ta2

= exp�2ie

	c
A�a1� · a2	Ta2

Ta1

= exp� ie

	c
A�a1� · a2	Ta1+a2

. �A4�

In the special case of displacements in any vector belonging
to L, however, since the flux trapped by any parallelogram
bounded by lattice vectors is an integral number of flux
quanta, all translations commute.

One can easily check that the functions �k are eigenstates
of translations in any lattice vector, satisfying the eigenvalue
equation

T��k�x� = �k����k�x� , �A5�

�k��� = �− 1��1�2 exp�− ik · �� . �A6�

Arranged in a Slater determinant, these functions are exact
solutions of the Hartree-Fock problem.21,22,25,38 This strong
property arises from the fact that the HF single-particle
Hamiltonian commutes with all translations leaving L
invariant.25 The functions �A2� are common eigenfunctions
of the commuting magnetic translations. Moreover, the set of
eigenvalues �A6� uniquely determines them. Therefore, the
HF Hamiltonian associated with the Slater determinant can-
not change those eigenvalues and the �k should be eigen-
functions.

An important property of the basis functions �A2� is that
an arbitrary translation is equivalent to a shift in the momen-
tum label, modulo a phase factor.24 Operating twice with the
translation operator involving an arbitrary vector a and a
vector in the lattice �, and using Eqs. �A4� and �A5�, one
readily gets

TaT��k�x� = �k���Ta�k�x�

= exp�2ie

	c
A�a� · �	T�Ta�k�x� , �A7�

which can also be written as

T�Ta�k�x� = �k+�2e/	c�A�a����Ta�k�x� .

Then, taking into account that the set of eigenvalues defines
uniquely the wave functions modulo a phase, it follows that

Ta�k�x� = Fk�a��k+�2e/	c�A�a��x� , �A8�

where

Fk�a� =
�k�0�

�k+�2e/	c�A�a��a�
. �A9�
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