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Electrostatically defined serial triple quantum dot charged with few electrons
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A serial triple quantum dot (TQD) electrostatically defined in a GaAs/AlGaAs heterostructure is character-
ized by using a nearby quantum point contact as charge detector. Ground-state stability diagrams demonstrate
control in the regime of few electrons charging the TQD. An electrostatic model is developed to determine the
ground-state charge configurations of the TQD. Numerical calculations are compared with experimental re-
sults. In addition, the tunneling conductance through all three quantum dots in series is studied. Quantum
cellular automata processes are identified, which are where charge reconfiguration between two dots occurs in

response to the addition of an electron in the third dot.
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I. INTRODUCTION

Extensive experimental work has recently been aimed to-
ward electrostatically defining and controlling semiconductor
quantum dots (QDs) and double quantum dots (DQDs).!~!!
The complete control of the QD charge, down to the limit of
only one trapped conduction band electron, has been demon-
strated by monitoring the single electron tunneling current
through the device,? by counting the charge on the QD elec-
tron by electron by means of a nearby quantum point contact
(QPC),>” or by combining both methods.!" Such efforts are
predominantly motivated by the desire to control and under-
stand the physics of quantum systems, and provide impetus
for proposals for using the spin,'? charge states,'? or encoded
subspaces'*!> of localized electrons as qubits, the elementary
registers of the hypothetical quantum computer. Recent ex-
periments have demonstrated the realization and coherent
control of charge® and spin qubits®!? in DQDs.

Extending (double) QD circuits toward a few electron
triple quantum dot (TQD) is a natural step toward scalable
multiqubit systems. Quantum information processing relies
on a coupling between qubits, allowing coherent exchange of
quantum information.'”> In QD-based implementations of
quantum computing, where qubit coupling is local, introduc-
ing coherent qubit transport is important in the design of a
scalable fault-tolerant architecture.'® Coherent transfer by
adiabatic passage (CTAP) has been proposed as a way to
efficiently move electrons along chains of tunnel-coupled
QDs and entangle quantum mechanical states of distant
qubits.!”!8 A TQD is the smallest system that, in principle,
allows the implementation of CTAP.

In addition, the spin states in three tunnel-coupled QDs
can be used to encode a qubit in the logical states of a
decoherence-free subspace. In this way, the coherence time
of the qubit is expected to increase and gate operations to be
simplified at the cost of a higher number of required
QDs. #1920 A serial few electron TQD is the smallest pos-
sible device that can serve as a spin cluster qubit requiring no
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control over local spin interactions.?! A TQD allows an in-
teresting spin-detection scheme via spin-to-charge conver-
sion without double occupancy.??

In addition to applications in quantum information pro-
cessing, the interest in TQDs is triggered by a rich spectrum
of phenomena going beyond the physics of DQDs. These
include combined charging and reconfiguration events that
can be identified as quantum cellular automata (QCA)
processes,” applications as current rectifiers,’*> and Fano®®
effects.

In the context of spin physics, a TQD offers the potential
to create spin-entangled electrons®’-?® and charge-separated
singlet-triplet mixing over several sites.”! The usual Kondo
physics combines spin and charge degrees of freedom and
can be extended to a number of electron occupation configu-
rations across the TQD.?%-3!

Several efforts have been undertaken to produce laterally
defined TQDs. In an early attempt, large TQDs in a serial
configuration were studied via transport measurements as a
function of the coupling between the QDs.?233 More re-
cently, current rectification effects were observed in devices
consisting of three tunnel-coupled QDs charged with many
electrons.”*?>3* Charge stability diagrams at low electron
numbers were first investigated in a geometry in which one
of two coupled QDs is split further, thus realizing a TQD in
a ringlike device consisting of three tunnel-coupled QDs.?
The mapping of charge stability diagrams revealed a QCA
effect near points of resonant transport. Magnetoconductance
experiments  further  unveiled = Aharonov-Bohm-like
oscillations.*® The realization of three laterally coupled ver-
tical quantum dots is under investigation.?’

In this paper, we report on the realization of a TQD in a
serial configuration charged with few electrons. The gate lay-
out was specifically designed to define three small QDs tun-
nel coupled in series. We characterize the TQD by means of
stability diagrams. Integrated charge detection is performed
using a nearby QPC. In addition, electron tunneling transport
through the three QDs in series is investigated. Observed
features, which are specific for a TQD, including triple
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FIG. 1. (Color online) Scanning electron microscope micro-
graph of the sample structure. Gate electrodes (bright tone) are used
to electrostatically define a TQD and three QPCs. The approximate
position of the three QDs (A, B, and C) are depicted by black
circles. Large (small) arrows mark possible tunneling current paths
through QPCs (the TQD). Ohmic contacts are labeled with roman
numbers. The gates marked with «, (8, and vy are used as plunger
gates of the three QDs A, B, and C. Gates marked as dl1, d2, and d3
serve to define QPCs as charge sensors.

points, quadruple points, and QCA effects, are discussed in
detail. We derive a classical electrostatic model that allows
us to predict charge stability diagrams of a TQD by minimiz-
ing its free energy. The model is easily scalable to larger
systems containing more QDs. A detailed comparison be-
tween this model and our data is presented in a regime close
to points of sequential resonant transport through the TQD.

II. TRIPLE QUANTUM DOT LAYOUT

Our sample is fabricated from an AlGaAs/GaAs hetero-
structure with a two-dimensional electron system (2DES)
embedded 120 nm below the surface. At T=4.2 K, the 2DES
features an electron sheet density of 7,=1.8X 10" m~2 and
a mobility of =75 m?/V s. Experiments are performed in
a dilution refrigerator at an electron temperature of T,pgg
=100 mK, as determined by the width of Coulomb blockade
conductance peaks.??

Electron beam lithography is used to produce Ti/Au gates
on the surface of the heterostructure as shown in Fig. 1. The
TQD and up to three QPCs are defined by applying appro-
priate negative voltages to the gates to locally deplete the
2DES beneath. The gate layout extends a single QD geom-
etry that allows transport spectroscopy at low electron
numbers.” Our sample allows the definition of up to three
QDs (A, B, and C as indicated by black circles in Fig. 1)
tunnel coupled in a serial configuration. Transport measure-
ments can be performed even in the regime of only few
electrons charging the QDs. Three independent QPCs
(marked with arrows in Fig. 1) can be used to determine the
charge configuration of the TQD in the same way as has been
demonstrated for the case of DQDs.>”# The described ap-
proach using laterally defined surface gates is, in principle,
scalable to much larger systems containing many QDs.

III. ELECTROSTATIC MODEL OF A TRIPLE QUANTUM
DOT STABILITY DIAGRAM

A charge stability diagram affords a quick and intuitive
mechanism to understand many of the properties of a quan-
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FIG. 2. Equivalent circuit diagram for three tunnel-coupled QDs
A, B, and C in serial configuration. QDs A and C are, in addition,
tunnel coupled to leads II and III, respectively. Tunnel barriers are
modeled as resistors and capacitors in parallel and electrostatic cou-
pling to three plunger gates «, (3, and vy as capacitors.

tum electronic system. As the surface gate voltages are var-
ied, the system tries to minimize its free energy by exchang-
ing electrons with the leads and by redistributing the charges
between its constituents. In the case of a DQD, the stable
charge configurations form a characteristic honeycomb dia-
gram as a function of the voltages applied to two plunger
gates.>” The TQD introduces further complexity and rich-
ness of phenomena. The obvious choice for a full description
of all possible charge configurations of a TQD would be a
three-dimensional stability diagram as a function of three
plunger-gate voltages. Here, we investigate two-dimensional
slices of such a three-dimensional stability diagram.

Standard electrostatic models describing a DQD?*# can be
extended toward a TQD.3** We introduce a scalable matrix
approach describing electrostatic Coulomb interaction by ca-
pacitance matrices. Quantum mechanical tunneling between
QDs is not taken explicitly into account for the classical
model. Implicitly, tunneling of electrons allows transitions
between charge configurations. Figure 2 sketches an equiva-
lent circuit diagram for a serial TQD. It models tunnel bar-
riers of the TQD as Ohmic resistors and capacitors in parallel
and electrostatic coupling to three plunger gates as capaci-
tors. During a typical measurement, all other gate voltages
are kept constant. They are not included in the equivalent
circuit diagram in Fig. 2 for simplicity. The relevant circuit
consists of charge nodes (QDs A, B, and C), voltage nodes
(plunger gates V,, Vg, and V,), and capacitors separating
nodes. The electrostatic potential of the 2DES, including
source and drain leads, is assumed to be at ground level (i.e.,
Vii=Vi=0). This is a good approximation for a typical mea-
surement in the linear response regime.

In a structure with N nodes with electrostatic potentials
V;, we can express the total charge Q; of each node (includ-
ing voltage nodes) as

N N
Qj= E qjk= E Cjk(Vj -V,
k=1 k=1

where g, and Cj; are the continuous polarization charge and
capacitance between nodes j and k, respectively. This expres-
sion is more conveniently written in matrix notation as Q
=CV, where Q and V are vectors with the elements Q; and
V;, respectively. The matrix € contains the capacitances Cj
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between nodes. The diagonal matrix elements C.,-jECj2 are
the self-capacitances of nodes j, defined as the sum of the
capacitances between the node and all other objects in the
universe. Explicitly, our model only considers variable volt-
ages applied to the plunger gates. All other gates have con-
stant electric potentials but contribute implicitly via the self-
capacitances C?.
We can separate the matrix equation Q=€V as

Qp Cop v || Vb
= T , (1)
Qv Cpy Cyv ILVy
where charge nodes (QDs) are labeled with subscript D and

voltage nodes (gates) with V. The vectors Qp
= [QA? QB ’ QC]T’ QV=[Qa’ QB’ Qy]T? VD=[VA7 VB ’ VC]T’ and
Vy=[V,.Vs,V,]" contain the total charges and voltages on
the three QDs and three gates, respectively. The matrix C is
split into

Cx —Cap —Cac
cDD =|—Cas Cé
~Cac -Cpe  Ct

- Cgc |,

containing only capacitances between QDs and the self-
capacitances of the QDs,

—Caa —Cag —Cy,
Cov=|—Cpa —Crp —Cp, |,
- CCa - CCB - CCy

and its transpose containing all capacitances between gates
and QDs, and €y containing all capacitances between the
three plunger gates.

In our experiments the electrostatic potentials on all gates
are independent of the capacitances between the gates, be-
cause they are imposed by externally applied voltages.
Hence, the matrix Cyy only influences the zero point of en-
ergy. For simplicity, we assume €yy=0 without loss of gen-
erality.

Our intention is to find the ground-state stability diagram
of a TQD by numerically minimizing its free energy F=U
—W. Here, U is the electrostatic energy of a given configu-
ration created by achieving the work W. It is useful to intro-
duce the total effective charge of the QDs defined as the sum
of Qp and the electrostatic influence charge —€pyVy. The
relevant part of Eq. (1) then reads

efo = QDDVD = QD - QDVVV = eND - Q:vav,

where we allow only discrete values of the charges of the
QDs expressed by Qp=eNp with the electronic charge e.
The vector Np=[N,,Ng,Nc]T contains the number of elec-
trons per QD and defines the charge configuration
(N4 ,Ng,Nc) of the TQD. The free energy reads
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Vb

1
F=U-W= E[QDT,QVT][VJ -V,'Qy

1 B 1
= (€0 Q5 Qp"= 5 0N (EAQK" + ExnC'
€ l € (&} € (&)
+ EzcOE") + e O (ExpQ%' + Eg Q' + Epc Q"

1 . . )
+ 2—62Qeéf(EAcQ;“ + EpcQf + EcOY), )
where

0% = Qx + CxaVa+ CxgVg+ Cx,V,,

Ey=K(C3C5 - C2),
_ >
Exy=K(C;Cxy+ Cx;Cy),

K= 62/(C§C§C§ = 2C7gCacCrc — CECZAB - C%Cic
- CxCie),

and X, Y, and Z stands for the cyclic permutations of A, B,
and C. In accordance with Refs. 4 and 34, we define the
prefactors E,, Eg, and Ec in Eq. (2) as charging energies of
the individual QDs, and E,p, Egc, and Exc as the electro-
static interdot coupling energies between two QDs.

The charging energies, electrostatic coupling energies,
and capacitances in Eq. (2) can be obtained from measure-
ments, i.e., charge stability diagrams, and the conductance of
the TQD in the nonlinear regime. Equation (2) only takes
explicitly into account voltages that are applied to the
plunger gates (V,, Vg, and V,). It does not consider the de-
tailed geometry of the TQD device. Therefore, the free en-
ergy of a given configuration of the TQD is not completely
determined by Eq. (2). Selection of a suitable zero point of
the charge distribution scales a modeled stability diagram to
fit measured data. This zero point might be defined as the
charge on each QD at grounded plunger gates. The described
model is rather suited for a qualitative than a quantitative
analysis.

Figure 3 shows a model stability diagram of a serial TQD
calculated with Eq. (2) as explained above. Here, the y and x
axes correspond to the plunger-gate voltages V, and V., of
the two outer QDs (compare Fig. 1). All other gate voltages
are kept constant. Lines mark borders of stable charge con-
figurations (N ,Ng,Nc).

The variable brightness of the lines in Fig. 3 simulates an
experimental situation, where the left QPC in Fig. 1 would
be used as charge detector. The brightness reflects the elec-
trostatic coupling strength between the QDs and the left
QPC. In a corresponding experiment, the change of the cur-
rent through the QPC in response to an amplitude modula-
tion of the plunger-gate voltage V., will be measured. Adding
the charge of one electron to the TQD while increasing V.,
decreases the current through the detector QPC. This results
in a charging line of negative transconductance dlgpc/dV,,

The spacing between charging lines belonging to a QD is
approximately proportional to the charging energy Ey of that

075306-3



SCHROER et al.

o
digpc/dV, (a.u.)

FIG. 3. (Color online) Numerically calculated ground-state sta-
bility diagram of the TQD device shown in Fig. 1 for charging
energies, electrostatic interdot coupling energies, and capacitances
between QDs and plunger gates, similar to experimentally derived
values. The color scale of the lines is chosen to simulate a possible
measurement of the transconductance of the left QPC in Fig. 1 as a
function of the plunger-gate voltages V, and V,, where V,, is modu-
lated. The background color denotes zero transconductance. Stable
charge configurations are labeled by triples of numbers
(Na,Ng,Nc).

QD.* The slope of a charging line is always negative and
determined by the ratio of the respective couplings between a
QD and the two plunger gates « and 7. Accordingly, the
stability diagram of a TQD contains charging lines with three
different main slopes. The nearly vertical charging lines in-
dicate charging events of QD C, which couples strongly to
plunger gate y but weakly to a (compare the gate layout in
Fig. 1). Lines corresponding to charging events of QD B (in
the center) have a slope of dV,/ dVyz—l, since we assumed
equal capacitances between QD B and the two plunger gates
a and vy. The predetermined symmetry properties result in
charging lines with reciprocal slopes for QD A compared to
QDC.

All crossings of two charging lines are avoided, because
of the electrostatic interdot couplings. The result are pairs of
two triple points, each with three degenerate charge configu-
rations. If well separated from charging lines of the third QD,
the distance between the two triple points of a pair is propor-
tional to the corresponding electrostatic interdot coupling en-
ergy Eyy. Since our model neglects quantum mechanical tun-
nel couplings, these avoided crossings are of purely classical
nature. The triple points of a pair are connected via a charge
reconfiguration line.*® Along these lines with positive slopes,
an increase of V, always causes a charge transfer between
the three QDs, with the center of charge moving away from
the detector QPC, hence, resulting in a positive transconduc-
tance. The total charge of the TQD stays constant at the
charge reconfiguration lines.

Between lines of extremal transconductance, the ground-
state charge configuration is stable and, hence, the transcon-
ductance is zero. The electrostatic interdot couplings can
lead to the zigzag course of charging and charge reconfigu-
ration lines, as clearly observable in the range of approxi-
mately six electron charges on the TQD. More complex be-
havior, including QCA processes, is expected, where
charging lines of all three slopes are close by, as will be
discussed in Sec. V.
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The model stability diagram in Fig. 3 shows the situation
expected for a TQD in the few electron regime. The lack of
charging lines in the lower left corner of the figure indicates
that, here, the TQD is uncharged. Along the horizontal (ver-
tical) axis, QD C (A) is charged electron by electron. The
plunger-gate voltage Vg is chosen such that QD B can only
be charged if another QD is already occupied by at least one
electron. However, increasing Vg would shift the charging
lines with slope dV,/dV.,=-1 of QD B toward the lower left
corner of the figure. The QDs A and C are separated by QD
B and, hence, have a relatively small mutual interdot cou-
pling. This results in pairs of triple points being close to each
other and charging lines that almost intersect [compare, e.g.,
the transition between configurations (0,0,1)« (1,0,0) in
Fig. 3]. In comparison, the electrostatic interdot couplings
between neighboring QDs is much stronger, resulting in a
larger distance between triple points [e.g., see charge recon-
figuration line between (0,2,4)« (1,1,4) in Fig. 3]. Note
that, for the discussed model calculation, we chose the cou-
pling between QDs B and C to be smaller than that between
QDs A and B.

Resonant tunneling transport of electrons through the
TQD is only possible at quadruple points, where four charge
configurations are degenerate. However, as quadruple points
are distinct points in a three-dimensional space, two-
dimensional stability diagrams of a TQD containing qua-
druple points are rare. Since two charging lines can meet (but
never cross) in one point of a stability diagram, a quadruple
point of a TQD always represents a meeting point of two
charging lines and two charge reconfiguration lines. A charge
stability diagram in the direct vicinity of quadruple points
contains up to eight triple points at four avoided crossings. A
detailed discussion of this complex situation and compari-
sons with measured stability diagrams follow in Sec. V.

In the case of a high degree of symmetry, i.e., equal in-
terdot couplings Exg=FEgc=FEcas, Very rare hextuple points
with six degenerate charge configurations are theoretically
possible. Hextuple points involve the meeting of two charg-
ing lines and the crossing of two reconfiguration lines in one
point. However, in our serial TQD geometry, where two elec-
trostatic interdot coupling energies are larger than the third
one, we would not expect to see such hextuple points.

Two important limits restrict the validity of the electro-
static model. The geometry of the electronic probability dis-
tribution inside a realistic TQD lacks perfect symmetry. It
rather is a complicated function of applied gate voltages and
the local disorder potential. This causes a nonlinear gate volt-
age dependence of the capacitance matrix elements. It can
result in a change of the distance between parallel charging
lines or even in a continuous change of slopes of charging
lines. In addition, our model neglects corrections caused by
quantum mechanical tunneling. The classical avoided cross-
ings are accompanied by quantum mechanical anticrossings,
causing additional curvatures for interdot tunnel splittings
comparable to the electrostatic interdot coupling energies.®

IV. CHARGE AND TRANSPORT MEASUREMENTS

In this section, we discuss the measured ground-state sta-
bility diagram of the TQD structure in Fig. 1. In the data
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FIG. 4. (Color online) Measured charge stability diagram of the
TQD device shown in Fig. 1 as a function of gate voltages V, and
V. The color scale measures the transconductance of the left QPC
in Fig. 1 as a function of the (modulated) plunger-gate voltage V.
Stable charge configurations are denoted by triples of numbers
(Na,Ng,N¢). The graph is composed of several consecutive mea-
surements explaining, e.g., the horizontal line at V,,~-0.22 V.

presented, we always use the left QPC (see Fig. 1) as charge
detector.*? The differential conductance of the TQD is inves-
tigated within a range of the stability diagram that allows
cotunneling at strong enough tunnel couplings.

The stability diagram in Fig. 4 displays the transconduc-
tance dlgpc/dV, of the left QPC as a function of gate volt-
ages V, and V,, with constant voltages applied to all other
gates. Figure 4 clearly demonstrates that a single nearby
QPC is sensitive enough to monitor charging events in all
three QDs. To measure transconductance using a lock-in am-
plifier, V, is modulated with an amplitude of AV,=0.7 mV
at a frequency of f=33 Hz. In all transconductance measure-
ments shown in this paper, V{=-300 uV is applied to Ohmic
contact I (compare Fig. 1) in order to bias the QPC, if not
stated otherwise. Measurements with a smaller bias voltage
applied to the QPC assure that the linear response condition
is fulfilled at V;=-300 wV. All other Ohmic contacts besides
contact I are grounded. The data in Fig. 4 feature lines with
three different main slopes as expected for a TQD (compare
with Fig. 3). Almost horizontal lines of minimum transcon-
ductance are charging lines of QD A. Likewise, almost ver-
tical charging lines belong to QD C. The slope of dV,/dV,
~—1 of the third kind of charging lines belongs to QD B and
shows that the electrostatic coupling strengths between QD
B and the two plunger gates « and y have similar values. The
absence of all three kinds of charging lines in the lower left
corner of the stability diagram suggests that the TQD is com-
pletely uncharged in this area of Fig. 4.

However, the tunnel barriers of the QDs are larger for
smaller gate voltages. In principle, charging lines can be in-
visible at very high tunnel barriers if the charging process of
a QD is slow compared to the time scales limiting the ex-
periment. We ruled out the slow tunneling rate scenario by
conducting careful test measurements, including different
voltages applied to other gates than « and 7. We conclude,
therefore, that our TQD is really uncharged in the lower left
corner of Fig. 4.

Figure 5 expands a region of the stability diagram in Fig.
4 for similar gate voltages applied. The charge reconfigura-
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FIG. 5. (Color online) Expansion of a region of the TQD charge
stability diagram in Fig. 4 for similar surface gate voltages. A black
rectangle marks an area also marked by rectangles in Fig. 7.

tion lines (of positive transconductance and positive slope)
are well resolved. The electrostatic interdot coupling (pro-
portional to the length of charge reconfiguration lines) be-
tween the distant QDs A and C is small compared to those
between neighboring QDs. In addition, the interdot coupling
between QDs A and B is larger than that between QDs C and
B. This is reflected in the length of the charge reconfiguration
lines between configurations (0,1,3) <« (1,1,2) compared to
(0,2,3)«(1,1,3). For few electrons charging the TQD, we
find electrostatic interdot coupling energies of E,p
=680 ueV, Egc=150 ueV, and E,c=70 pueV. From the
distances between charging lines, we find charging energies
of the order E,=1.1 meV, Ezg=20meV, and E.
=1.0 meV. The conversion of gate voltages to energies is
done with the help of nonlinear transport measurements, as
will be discussed at the end of this section (compare Fig. 7).

The model stability diagram in Fig. 3 was calculated for
the energies and capacitances derived from the measured sta-
bility diagrams. We find good agreement of the main fea-
tures, including the mean distances between charging lines
and triple points, and the average slopes. A complete quan-
titative agreement is not expected, because of the limits of
the model, as discussed in Sec. III. Moreover, the measured
data reveal a spectrum of phenomena, not accounted for in
the simple electrostatic model assuming a constant capaci-
tance matrix. Some of these features are discussed below.

The interdot coupling between QDs A and C increases as
V., is increased [compare the charge reconfiguration lines in
Fig. 5 between configurations (0,1,3)«(1,1,2) with
(0,2,4)«(1,2,3) and (0,2,5)+(1,2,4)]. This effect,
which can also be observed when increasing V,,, can be ex-
plained by considering two aspects. First, the quantum me-
chanical tunnel coupling between neighboring QDs increases
with increasing gate voltages, adding to the classical avoided
crossing and causing a curvature of charging lines at the
triple points. Second, the charge distribution and the position
of the center of charges within all three QDs depend on the
charge configuration.

The distance between the almost horizontal charging lines
of QD A varies strongly. A detailed analysis yields a charging
energy of QD A that is larger for the third electron than for
the first or fourth electron (compare Fig. 4). Such a strong
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effect implies a quite asymmetric confinement potential of
QD A for the gate voltages applied. For instance, a situation
where the first two electrons fit next to each other into an
elongated QD could explain the observation.

Charging lines belonging to different QDs have different
brightness, reflecting the amplitude of the transconductance
extrema. The brightness of a charging line is a linear function
of its slope, diminishes at a larger width, and is proportional
to the electrostatic coupling between the QD and the detector
QPC. The slope of a charging line determines the component
of the linewidth parallel to the gate voltage V,, which is
modulated and relevant for the transconductance measure-
ment. The quantum lifetime of an electron in a QD directly
influences the widths of the charging lines. Generally, charg-
ing lines widen as gate voltages are increased and the in-
volved tunnel couplings grow. The charging line of QD B is
brightest, because QD B is well decoupled from the leads
and exhibits the longest quantum lifetime. The widths and
brightness of a charge reconfiguration line depend on the
corresponding interdot coupling rather than a quantum life-
time.

In the upper right corners of Figs. 4 and 5, charging lines
turn into two parallel double lines, one with a large negative
transconductance and one with a large positive transconduc-
tance. They are caused by current flowing through the TQD
and the grounded contact III, branching off the current flow-
ing from the biased contact I to the grounded contact II
(compare Fig. 1). Note that the Ohmic contacts have resis-
tances in the order of R~ 500 (), resulting in a small poten-
tial drop across the TQD. A current maximum at contact III
causes a dip of the measured current at contact II. Hence, the
transconductance dly;/dV, splits in a negative and a positive
contribution, as observed. Comparison with Fig. 7 confirms
the areas of enhanced transport. A finite current through the
TQD along charging lines is caused by higher order tunnel-
ing processes. A detailed discussion of transport through the
TQD follows at the end of this section.

Within the triangular area marked with (0,0,1/0,1,1) in
Fig. 5, the TQD fluctuates between the two charge configu-
rations. We expect this bistability to be generic for serial
systems of more than two QDs in the limit of small tunnel
rates, as will be discussed in a separate paper.

Along the dark vertical line visible in Fig. 5 at V,
=—-(0.272 V, the extrema of the transconductance appear to
be more pronounced. This is caused by an internal switching
in one of the measurement instruments and is not related to
the TQD.

Figure 6 demonstrates the three-dimensional nature of the
TQD charge stability diagram. It shows a two-dimensional
slice spanned by gate voltages V; and V., perpendicular to
that in Fig. 5, which is spanned by V, and V,. The two
stability diagrams in Figs. 5 and 6 together allow one to
determine all capacitances necessary for model calculations
with Eq. (2). As before, charging lines with three different
slopes can be identified, but two of the charging lines have
similar slopes. They indicate a comparable ratio of couplings
to both plunger gates 8 and 7y for the two QDs A and B. In
addition, as will be discussed in Sec. V, the data in Fig. 6
contain features characteristic of the regime in which all
three QDs are nearly energetically degenerate.
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FIG. 6. (Color online) TQD charge stability diagram as in Fig.
5, but as a function of the plunger-gate voltages Vg and V.. The
graph is composed of three independent measurements. The white
region was not investigated. Slight changes of the internal potential
between the measurements lead to slightly imperfect seams between
parts of the graph (e.g., at Vz=-0.37V; V,=-0.28 V). Two
dashed lines are a guide for the eyes and follow very faint charge
reconfiguration lines of positive transconductance. The bistable re-
gion observed in Fig. 5 is also visible.

Figure 7 shows the differential conductance ditqgp/dVsp
of the TQD as a function of the plunger-gate voltages V,, and
V,, for various bias voltages —0.3 mV<Vgp=<0.5 mV be-
tween the source and drain contacts (I and III in Fig. 1) of
the TQD. The differential conductance is measured by means
of a lock-in technique with an ac modulation of AV
=20 nV at a frequency of f=33 Hz. For better comparison,
all gate voltages are identical for the transport measurements
shown in Fig. 7 and the charge detection measurement dis-
played in Fig. 5. Note that, compared to Fig. 5, the area
spanned by V, and V,, is smaller for the transport measure-
ments in Fig. 7. It corresponds to the upper right corner of
the stability diagram in Fig. 5, where the tunnel couplings of
the TQD are largest. The logarithmic color scale for the dif-
ferential conductance in Fig. 7 overemphasizes very small
currents through the TQD.

The differential conductance in linear response for Vgp
=0 [Fig. 7(a)] is entirely caused by higher order tunneling
processes as this area of the stability diagram does not con-
tain quadruple points (compare discussion in Sec. V). Alter-
natively, such higher order processes could be explained in a
picture using molecular eigenstates® of a triatom. Here, we
restrict ourselves to the picture of higher order tunneling pro-
cesses on the basis of single-dot eigenstates.

As the plunger-gate voltages in Fig. 7(a) are increased, the
tunnel barriers decrease and, hence, the differential conduc-
tance increases. An exception to this rule can be seen along
the charging lines of slope dV,/dV,~-1 to the left of the
black square in Fig. 7(a), along which the central QD B is in
resonance with the 2DES in the leads. Here, the differential
conductance is larger than along charging lines in the direct
vicinity of the black square (for larger V,). Near the black
square, only QD A or C can be resonant with the chemical
potentials of the leads. Here, if away from triple points, cur-
rent through the TQD is caused by third order tunneling pro-
cesses through two nonresonant QDs in series. In contrast,
along the charging lines of QD B, an electron can occupy a
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resonant state in QD B between two sequential cotunneling
processes. Transport via such two successive second order
processes is highly enhanced compared to transport involv-
ing one resonant first order and one third order tunneling
process.*!

For Vgp#0, the charging lines in Fig. 7 split into two
parallel lines corresponding to two different resonances of
one of the QDs with the source or drain potential in the two
leads. For the same reason, triple points turn into triangles. In
a similarly way as for a DQD,* the size of such a triangle or
the distance between parallel double lines can be used to
determine the conversion factors between gate voltages and
the energy scales. These conversion factors are needed in
order to calibrate the ground-state stability diagrams and de-
termine the charging energies and electrostatic interdot cou-
pling energies of the QDs.

V. VICINITY OF QUADRUPLE POINTS

Because of the presence of three discrete charges in the
triple-dot system, the charge-configuration diagrams are for-
mally defined in a three-dimensional phase space. By anal-
ogy with the two-dimensional honeycomb diagrams seen for
double-dot structures, we term this three-dimensional
charge-configuration diagram a beehive diagram, and a cal-
culated example is shown in Fig. 8. In this case, we have
deliberately chosen a capacitance matrix regime with mini-
mal cross coupling, so that the planes of the three visible end
faces show honeycomblike charging diagrams.

In the remainder of this paper, we focus on an area of the
stability diagram where all three QDs of the TQD are close

FIG. 7. (Color online) The differential con-
ductance dlpqp/dVsp measured through the TQD
plotted with a logarithmic color scale as a func-
tion of the plunger-gate voltages V, and V. Volt-
ages applied to other gates are the same as for
Fig. 5. Black rectangles mark the same region as
in Fig. 5. White color indicates a differential con-
ductance exceeding the full range of the ampli-
fier, small areas of the darkest blue color denote
negative differential conductance. Applied bias
voltages Vgp are indicated.

VY (v) —0.15

to being resonant with the chemical potential in the adjacent
2DES, that is, where charging lines of all three QDs are close
by.

In the case of a DQD, avoided crossings of any two
charging lines always result in two triple points enclosed by

-1 -1

FIG. 8. (Color online) Three-dimensional charging diagram, or
beehive diagram, showing stable configurations of the triple-dot
system as a function of the three plunger-gate biases, normalized by
their capacitive couplings to the closest dot. The front and bottom
regions of the structure corresponds to the configuration (0,0,0).
Each of three visible end faces resembles a two-dimensional hon-
eycomblike diagram, although more complicated diagrams can be
seen at other slices, as shown in Fig. 9.
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FIG. 9. (Color online) Expansion of a region of the stability diagram of the TQD as a function of the plunger-gate voltages V, and V..
Here, charging lines of all three QDs are close by. Vg is increased in steps of 2 mV from (a) to (d) or from (e) to (i). The upper two rows
show identical results from model calculations in two different representations. Triples of numbers denote stable charge configurations,
where X=1,2,3 and Y=2,1,4. The third row shows transconductance measurements as, e.g., in Fig. 5. The two lowest rows display
identical differential conductance measurements of the TQD with a linear (upper) and a logarithmic (lowest row) color scale (see main text
for more explanations). The voltage ranges of V, and V,, are identical for all subplots and shown in the left corner.

four different areas of stable charge configurations, since two
QDs are each charged by up to one additional electron (2°
=4). In a TQD, charging lines of three different slopes (be-
longing to the three QDs) exist. If two of them meet in a
two-dimensional stability diagram, they form triple points
just as in the case for a DQD (see Fig. 3). In a three-
dimensional stability diagram of a TQD, e.g., spanned by the
plunger gates «, 8, and 7, charging lines turn into planes and
triple points turn into lines (compare Fig. 8). In a region
where charging planes of all three QDs meet, each QD can
be charged by one additional electron. This results in 23=8
possible charge configurations, surrounding four avoided
crossings with eight triple lines. Such a three-dimensional
structure contains four quadruple points, where two charging
planes and two charge reconfiguration planes meet. Only at
these quadruple points is transport by sequential resonant
tunneling of electrons through a serial TQD possible.

To more clearly examine the three-dimensional stability
diagram in an experimentally accessible fashion, we study a
series of parallel two-dimensional slices through the beehive
diagram. We concentrate on regions of high degeneracy and
use the terms appropriate for two dimensions as triple points
and charging lines. In Fig. 9, such measurements are plotted
as a function of V, and V., and compared with model calcu-
lations. The voltage ranges of V, and V., are identical for all
subplots. The third plunger-gate voltage Vj is increased in
steps of 2 mV between =396 mV<V,;<-390 mV from (a)
to (d). The two bottom rows of Fig. 9 show conductance

measurements, which will be discussed later. The middle row
plots the transconductance of QPC charge detection mea-
surements of comparable regions of the stability diagram.
The two upper rows feature identical numerical calculations
according to our model, displayed with two different meth-
ods.

The transconductance is measured with the left QPC with
a bias voltage of V;=—300 wV applied to contact IT (com-
pare Fig. 1). This bias voltage also causes current through the
TQD at certain places of the stability diagram. This is proven
by the conductance measurements in linear response plotted
in the two bottom rows of Fig. 9. Thus, the finite bias applied
to contact II generates additional features in the transconduc-
tance measurements. These include extra lines, e.g., a line
with slope —1 within the (2,2,3) region in Fig. 9(biii), and
gaps that interrupt lines, e.g., on the bottom left of Fig.
9(diii). A small shift between the position of features in the
transconductance data as compared to the conductance data
can partly be explained by the applied biases, but could as
well be caused by potential drifts during the time gap be-
tween these experiments. For a rough compensation, the con-
ductance measurements in the lowest two rows of Fig. 9 are
horizontally shifted by AVz=1 mV. Unfortunately, no charge
detection measurements with the TQD left unbiased exist so
far. Nevertheless, all features of the model calculations (first
two rows of Fig. 9) are clearly seen in the measured trans-
conductance data (third row of Fig. 9).

Charge configurations, identified from a larger area stabil-
ity diagram, are depicted in the first row of the model stabil-
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ity diagrams of Fig. 9, where configurations X and Y equal
(1,2,3) and (2,1,4), respectively. Placing the stability dia-
grams from Fig. 9(a)-9(d) above each other, with distances
corresponding to Vg, results in a three-dimensional section of
the stability diagram. Regions X and Y are similar to irregu-
lar pentangular-based pyramids inverted with respect to each
other (as can be seen in Fig. 9). The tips of the pyramids are
oriented in approximately opposite directions from each
other at two quadruple points.

For the approximately symmetric case shown in Fig. 9(b),
the central charging line with slope dV,/dV,~~1 (belong-
ing to QD B) shows a zigzag behavior resulting in four triple
points. In addition, the other two charging lines both contain
a short segment parallel to the central charging line with
dV,/dV,~-1. These features can be roughly explained as
follows: Imagine the central charging line would be absent.
Then we were left with one avoided crossing, where four
lines end in two triple points. The central line, once added,
repels the other four charging lines and four new avoided
crossings occur, resulting in the observed geometry with
eight triple points.

In the following discussion, we use a notation that sub-
tracts the common charge state (1,1,3) to be left with con-
figurations of type (u,v,w), with u,v,w=0,1. In the most
symmetric case, the eight triple points then involve the fol-
lowing degenerate charge configurations [compare labels in
Fig. 9(bi)]:

TP,: (0,0,0) < (1,0,0) < (0,1,0),
TPg: (0,1,0) « (0,0,1) < (0,0,0),
TPe: (1,0,1) < (1,0,0) < (0,1,0),
TPp: (0,1,1) < (0,1,0) < (0,0,1),
TPg: (1,1,0) + (1,0,1) « (1,0,0),
TPg: (1,0,1) < (0,1,1) < (0,1,0),
TPs: (1,1,1) < (1,1,0) < (1,0,1),

TPy: (1,0,1) < (0,1,1) < (1,1,1).

At TP, either QD A or B can be resonantly occupied by an
additional electron from the leads, but the occupation of QD
C is energetically forbidden. Hence, at TP, sequential tun-
neling of an electron through the TQD requires one cotun-
neling process via an energetically forbidden state in QD C.
Similarly, transport at any other triple point requires one sec-
ond order tunneling process. While TP, and TPy allow se-
quential cotunneling of an electron, TPg and TPy allow se-
quential cotunneling of a hole. Second order transport
through the other four triple points involves two particles.
Where two charge reconfiguration lines (blue) with posi-
tive slopes and positive transconductance meet, two triple
points combine to a quadruple point. As a function of Vs, this
is possible for triple points TP, and TPy [close to the situa-
tion in Fig. 9(a)], triple points TPy and TPy [between Figs.
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9(c) and 9(d)], triple points TP and TP [close to the situ-
ation in Fig. 9(c)], and triple points TP, and TPy [between
Figs. 9(a) and 9(b)]. The resulting quadruple points involve
the following degenerate charge configurations:

QPAB: (070’0) A (19090) Ad (0,190) Ad (O’O> 1)»
QPcg: (1,0,0) «(0,1,0) < (1,1,0) < (1,0,1),
QPDF: (07091)H(1’0a1)H(091’1)H(0’19O),

QPgy: (1,1,1) « (1,1,0) « (1,0,1) < (0,1, 1).

At these four quadruple points, resonant tunneling through
the TQD is possible, e.g., at QP,p an electron can sequen-
tially tunnel from the left lead into QD A, QD B, and QD C,
and then escape to the right lead (or vice versa). Quadruple
points Qg and Qgy, respectively, allow sequential tunneling
of an electron versus a hole through the TQD, similar to
triple points in a DQD. However, the nature of transport at
quadruple points Qpr and Qcg cannot be described by one
electron or hole tunneling through the TQD, but involves two
particles (electrons or holes). This extends the possibilities in
a DQD, where only electron or holelike transport is possible.

As a function of Vg, the pairs of triple points TP¢ and TPg
as well as TPp and TPr meet in the corresponding quadruple
points, respectively, and then diverge again. During this pro-
cess, at the quadruple point, one resonant charge configura-
tion is exchanged between a pair of triple points, resulting in
the modified triple points

TPg: (1,0,0) < (0,1,0) < (1,1,0),
TPL: (0,1,0) < (1,1,0) < (1,0,1),
TPy (0,1,0) < (0,0,1) « (1,0,1),

TPg: (0,0,1) < (1,0,1) < (0,1,1).

Compared to the approximately asymmetric case in Fig.
9(b), in Fig. 9(a) TPy and TPy are replaced by TPy, and TPy,
and in Fig. 9(d) TP¢ and TPy are replaced by TP( and TPy.

Pairs of quadruple points such as QP 5 QPgy as well as
QPcp— QPpr show electron-hole symmetry, respectively.
The same is true for triple points, e.g., TP, < TPy. In addi-
tion, after subtraction of the common charge state (1,1,3),
triple points are pairwise point symmetric with respect to the
central QD B regarding their charge occupation, e.g.,
TP A TPB .

The regions X and Y of stable charge configurations read
X=(0,1,0) and Y=(1,0,1) after subtraction of the common
charge state (1,1,3). Crossing the line of minimum transcon-
ductance, separating these two areas, from X toward Y, in-
volves adding a charge to QD A (or C). However, this is only
possible via a QCA process, where simultaneously one elec-
tron is pushed from the central QD B into QD C (or A). This
is a combination of charging one QD and a charge reconfigu-
ration between the other two QDs. Therefore, the slope of the
QCA line between regions X and Y is determined by the
combination of the two processes involved and differs from
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all other charging line slopes in the stability diagram.

Let us now consider the reverse process, which involves
crossing the QCA line from Y toward X. During this second
order tunneling process, an electron leaves QD C (or A) and
simultaneously pulls another electron from QD A (or C) into
the central QD B. Interestingly, the combination of both pro-
cesses (crossing the QCA line forward and backward) can
result in transport of one electron through the TQD via two
successive second order tunneling processes, similar to that
along the charging line of QD B.

Second order tunneling processes that preserve charge are
usually called cotunneling processes. The QCA processes de-
scribed above are not charge preserving, but second order.
Hence, we refer to these as QCA cotunneling processes.

Note that an equivalent situation to that shown in Fig. 9
occurs in the upper right quarter of the stability diagram in
Fig. 6, but, here, as a function of the plunger-gate voltages
Vgand V.. In Fig. 6, two charge transfer lines are retraced by
dashed lines as a guide for the eyes. Because QDs A and B
feature comparable electrostatic couplings to both plunger
gates 8 and vy, some of the triple points are hardly seen in
Fig. 6 (see also above discussion of Fig. 6).

The lowest two rows of Fig. 9 display the conductance of
the TQD plotted both with a linear (second lowest row) and
with a logarithmic (bottom row) color scale. The conduc-
tance is measured in the linear response regime and for zero
dc bias on all Ohmic contacts. Comparison of the logarith-
mic conductance representation with the model calculations
in Fig. 9 shows that along the charging lines belonging to the
central QD B and at the QCA line a small current flows
through the TQD. Both kinds of charging lines are distin-
guished, because they allow transport through the TQD via
two successive second order tunneling processes. As dis-
cussed above, along the other charging lines of QDs A and C,
only third order tunneling processes can cause transport. Ac-
cordingly, no current can be observed along charging lines
belonging to QDs A and C.

The linear representation of the conductance through the
TQD (second lowest row in Fig. 9) reveals distinct current
maxima at quadruple points, and triple points near quadruple
points. A detailed comparison with the model calculations in
Fig. 9 suggests that the conductance maxima in Figs. 9(ei)
and 9(ji) are very close to the quadruple points QP,g and
QPgy, respectively. Figures 9(fi) and 9(gi) each show four
bright maxima. The lower left one in Fig. 9(fi) corresponds
to the quadruple point also seen in Fig. 9(ei). The upper left
two maxima mark the triple points TP- and TPg in close
vicinity to QPcg, and the lower right maximum is close to
QPp. Figure 9(gi) can be described accordingly.

Strikingly, the QCA line connecting TP and TPg in Fig.
9(bi) is also visible as a line of minimal transconductance in
Figs. 9(fi) and 9(gi). On the other hand, the current flowing
at the charging line of QD B is too small to be seen in the
linear representation. Both transport channels involve two
successive second order tunneling processes. Still, the QCA
line near quadruple points shows a larger conductance than
the charging lines of the central QD B. This suggests that
QCA cotunneling processes, with two particles simulta-
neously moving, result in a larger tunneling probability than
regular second order cotunneling processes, which can be
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explained in a one-particle picture. The origin of this phe-
nomenon lies in the electrostatic interaction between two
electrons tunneling simultaneously, and will be discussed in
a separate paper.

Finally, we would like to note that spin blockade of trans-
port in linear response through a TQD is expected for certain
quadruple point configurations. It was not observed in the
regime treated in Fig. 9. This can, in part, be explained by
the special configuration, where up to three electrons are
added to the charge state (1,1,3), but at most one electron to
each QD. In the configuration (1,1,3), each QD already has a
spin 1/2. After an extra electron charge has been added to
one of the QDs, this QD has zero spin. This implies that this
QD can now provide an electron with arbitrary spin (up or
down) to tunnel to an adjacent QD. Hence, a full spin block-
ade is not expected for the region of the stability diagram
discussed in Fig. 9.

VI. CONCLUSION

In summary, we have realized a lithographically defined
serial triple quantum dot that can be tuned to contain any
number of electrons between zero and about ten in various
configurations. Quantum point contacts as integrated charge
sensors allow one to determine the exact number of electrons
charging each of the quantum dots. We have studied the
ground-state stability diagram of the triple quantum dot in
close vicinity to quadruple points, where four different
charge configurations are energetically degenerate. In this re-
gime, quantum cellular automata processes are observed
among other features, adding to the physics that can be found
in double quantum dots. A simple electrostatic model, which
can easily be scaled to larger structures containing more than
three quantum dots, is compared with our data. A detailed
discussion of the conductance near quadruple points reveals
several kinds of tunneling processes. Quantum cellular au-
tomata cotunneling processes lead to an enhanced conduc-
tance at only twofold degeneracy of the triple quantum dot.
The excellent control of charge configurations and tunnel
couplings achieved in this triple quantum dot now opens the
possibility to study coherent dynamics, e.g., of charge and
possible spin transfer in such a complex quantum system.
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