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The effects of static disorder on the Z2 quantum spin-Hall effect for noninteracting electrons propagating in
two-dimensional space are studied numerically. A two-dimensional time-reversal symmetric network model is
constructed to account for the effects of static disorder on the propagation of noninteracting electrons subjected
to spin-orbit couplings. This network model is different from past network models belonging to the symplectic
symmetry class in that the propagating modes along the links of the network can be arranged into an odd
number of Kramers doublet. It is found that �1� a two-dimensional metallic phase of finite extent is embedded
in a Z2 insulating phase in parameter space and �2� the quantum phase transitions between the metallic and Z2

insulating phases belong to the conventional symplectic universality class in two space dimensions.
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I. INTRODUCTION

An early triumph of quantum mechanics applied to the
theory of solids was the understanding that, in the thermody-
namic limit, the metallic state can be distinguished from the
insulating state based on the energy spectrum of noninteract-
ing electrons subject to the �static� periodic crystalline poten-
tial. The Bloch insulating state occurs when the chemical
potential falls within the energy gap between the electronic
Bloch bands while the metallic state follows otherwise.

It took another 50 years with the experimental discovery
of the integer quantum Hall effect1 to realize that a more
refined classification of the Bloch insulating state follows
from the sensitivity of occupied Bloch states to changes in
the boundary conditions. A two-dimensional electron gas
subjected to a strong magnetic field turns into a quantum
Hall insulating state characterized by a quantized Hall con-
ductance in units of e2 /h.2–9 The topological texture of the
quantum Hall insulating state manifests itself through the
existence of chiral edge states:3 energy eigenstates that
propagate in one direction along the boundary of a sample
with strip geometry. On the other hand, the topologically
trivial Bloch insulating state is insensitive to modification of
boundary conditions and, therefore, it does not support gap-
less edge states in a strip geometry. The breaking of time-
reversal symmetry by the magnetic field in the integer quan-
tum Hall effect implies the chirality of edge states: all edge
states propagate in the same direction. Chiral edge states thus
cannot be backscattered into counterpropagating edge states
by impurities. For this reason, the quantization of the Hall
conductance is insensitive to the presence of �weak�
disorder.3 �Strong disorder destroys the very existence of
edge states.�

The �global� breaking of time-reversal symmetry is not,
strictly speaking, necessary for integer quantum Hall-like
physics. As a thought experiment, one can consider, for ex-
ample, a noninteracting two-component electronic gas with
each component subjected to a magneticlike field of equal
magnitude but opposite direction.10 Each �independent� com-
ponent is then characterized by its quantized Hall conduc-

tance. The arithmetic average of the two quantized Hall con-
ductances vanishes, while their difference is quantized in
units of 2e*2 /h, with e* the effective conserved charge.
Bernevig and Zhang, in Ref. 11, suggested along these lines
that, for some semiconductors with time-reversal symmetric
noninteracting Hamiltonians, the role of the magnetic field is
played by the intrinsic spin-orbit coupling, while the quan-
tum number that distinguishes the two components of the
two-dimensional noninteracting electronic gas is the elec-
tronic spin.11 If so, the quantized Hall conductance for the
electric charge �arithmetic average� vanishes, while the quan-
tized Hall conductance for the spin �difference� is nonvan-
ishing �see Fig. 1�.

In the proposal of Bernevig and Zhang, independent
quantization of the Hall conductance for each spin requires
two independent U�1� conserved currents. The first one fol-
lows from charge conservation. The second one follows from
conservation of the spin quantum number perpendicular to
the interface in which the electrons are confined. However,
while the intrinsic spin-orbit coupling breaks the SU�2� spin
symmetry down to its U�1� subgroup, the underlying sym-
metry responsible for the quantization of the spin-Hall con-
ductance in Ref. 11, other spin-orbit couplings such as the
Rashba spin-orbit coupling break this leftover U�1� spin
symmetry. This is not to say that an unquantized quantum
spin-Hall effect cannot be present if the counterpropagating
edge states survive the breaking of the residual U�1� spin
symmetry. However, a physical mechanism different from

FIG. 1. �Color online� In the proposal of Ref. 11, a spin-up edge
state �full line� and a spin-down edge state �dashed line� at the
boundary of a two-dimensional electronic droplet propagate with
opposite velocities. The quantized Hall conductance for the charge
vanishes while that for the spin is nonvanishing.
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the one protecting the integer quantum Hall effect must then
be invoked for these edge states to be robust against �weak�
disorder.12–22

Kane and Mele showed in Refs. 17 and 18 that a nonin-
teracting tight-binding Hamiltonian inspired from graphene,
with a staggered chemical potential and with translation in-
variant intrinsic and extrinsic �Rashba� spin-orbit couplings,
realizes a time-reversal symmetric insulating state that they
dubbed as the Z2 quantum spin-Hall state, provided that the
chemical potential lies within the bulk spectral gap �see Fig.
2�. Although the SU�2� spin symmetry is completely broken
in most of the coupling space, parameter space can neverthe-
less be divided into two regions depending on whether the
number of Kramers doublet localized at the edges in a strip
geometry is even or odd. The dispersion of one Kramers
doublet edge state must necessarily cross the gap in the bulk
of the sample when the number of Kramers doublet edge
state is odd, in which case it supports an intrinsic quantum
spin-Hall effect: an electric field induces a spin accumulation
on the edges transverse to the direction of the electric field.
This insulating state with an odd number of Kramers edge
state defines the Z2 quantum spin-Hall state. It displays a
topological texture different from that of the integer quantum
Hall state.18,22–24 The insulating state with an even number of
Kramers edge state is a conventional Bloch insulator.

The effect of disorder is to fill the gap in the bulk spec-
trum of the �clean� Z2 quantum spin-Hall state. Sufficiently
strong disorder is expected to wash out the Z2 quantum spin-

Hall state by removing the edge states very much in the same
way as strong disorder does in the integer quantum Hall ef-
fect. On the other hand, Kane and Mele have argued that the
Z2 quantum spin-Hall state is robust to a weak time-reversal
symmetric disorder, as a single Kramers doublet cannot un-
dergo backscattering by a time-reversal symmetric impurity.
Both expectations were confirmed by a numerical study of �i�
the four-probe Landauer-Büttiker and Kubo formulas19 and
of �ii� the spectral flow induced by changes in the twisted
boundary conditions.22 By appealing to the symplectic sym-
metry of the Kane-Mele Hamiltonian, tuning the value of the
chemical potential away from the tails of the disorder-
broaden bands toward their center should trigger a disorder-
induced transition to a metallic state �see the two mobility
edges below and above the metallic state in Fig. 2�.25 Onoda
et al. have raised the possibility that the topological nature of
the insulating phase might affect critical properties at this
transition.26 Using standard techniques27 to investigate the
existence of mobility edges in tight-binding Hamiltonian per-
turbed by on-site disorder �here, the Kane-Mele Hamiltonian
with random on-site energies distributed with a box distribu-
tion�, Onoda et al. deduced the existence of a mobility edge
separating the Z2 quantum spin-Hall state from a metallic
state characterized by the exponent ��1.6 for the diverging
localization length. This exponent is different from the value
2.5���2.8 �Refs. 28 and 29� that characterizes the conven-
tional mobility edge in the two-dimensional symplectic uni-
versality class.

Critical properties at the plateau transition in the integer
quantum Hall effect are the same for two very different mi-
croscopic models. There is the effective tight-binding model
with random off-diagonal matrix elements in the basis of
Landau wave functions describing the lowest Landau
level.30,31 There is the Chalker-Coddington network model
valid for disorder potentials that vary smoothly on the scale
of the cyclotron length.32 This agreement supports the notion
that, for the problem of Anderson localization, disorder-
induced continuous quantum phase transitions fall into uni-
versality classes determined by dimensionality, intrinsic
symmetry, and topology. Furthermore, some network models
have provided useful theoretical insights into the problem of
Anderson localization and some have even been tractable
analytically.33 The purpose of this paper is to construct a
network model that realizes a quantum critical point separat-
ing the Z2 quantum spin-Hall state from a metallic state.
From this point of view, the network model for the two-
dimensional symplectic universality class introduced in Ref.
28 is unsatisfactory as it is built from an even number �2� of
Kramers doublets propagating along the links of the network.
Instead, the network model that we define in Sec. II has a
single Kramers doublet propagating along the links of the
network. Spin is a good quantum number along the links of
the network, so that the spin-up and spin-down components
of the Kramers doublet can be assigned opposite velocities
�chiralities�. Scattering takes place at the nodes of the net-
work. If the scattering matrix is diagonal in spin space, the
network model realizes the proposal of Bernevig and Zhang:
two copies of the Chalker-Coddington network model for the
integer quantum Hall effect arranged so as not to break �glo-
bal� time-reversal symmetry �see Fig. 1�. However, we will

FIG. 2. Qualitative plot of the bulk single-particle density of
state �DOS� as a function of the chemical potential for �a� the inte-
ger quantum Hall effect without disorder, �b� the integer quantum
Hall effect with weak disorder, �c� the Z2 quantum spin-Hall state
without disorder, and �d� the Z2 quantum spin-Hall state with weak
disorder. The chemical potential runs along the vertical axis, while
the DOS runs along the horizontal axis. The gray and white in these
figures denote extended and localized states, respectively. The black
straight lines in �b� and �d� denote the critical energies at which a
quantum phase transition takes place between two Hall insulating
states for �b� and between a metallic and an insulating state for �d�.
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only demand that the scattering matrix at a node respects
time-reversal symmetry, i.e., it can completely break spin-
rotation symmetry. Randomness is introduced through a
spin-independent U�1� random phase along the links. We
also treat the cases of random and nonrandom scattering ma-
trices at the nodes. In either case, our spin-filtered chiral
network model captures a continuous quantum phase transi-
tion between the Z2 quantum spin-Hall state and the metallic
state. We find in Sec. III the scaling exponent ��2.7 for the
localization length that is different from the exponent �
�1.6 seen by Onoda et al. but agrees with the conventional
scaling exponent in the two-dimensional symplectic univer-
sality class.

II. DEFINITION

To represent the effect of static disorder on the coherent
propagation of electronic waves constrained to a two-
dimensional plane and subject to a strong magnetic field per-
pendicular to it, Chalker and Coddington introduced a chiral
network model in Ref. 32. The Chalker-Coddington network
model makes three assumptions. The disorder is smooth rela-
tive to the characteristic microscopic scale: the cyclotron
length. Equipotential lines of the disorder potential define the
boundaries of mesoscopic quantum Hall droplets along
which chiral edge states propagate coherently. Edge states
belonging to distinct equipotential lines can only undergo a
unitary scattering process by which momenta are exchanged,
provided that the distance between the two equipotential
lines is of order of the cyclotron length. Such instances are
called nodes of the network model.

We are seeking a network model that describes coherent
propagation of electronic waves in a random medium that
preserves time-reversal symmetry but breaks spin-rotation
symmetry, in short, a symplectic network model. A second
condition is that the number of edge states that propagate
along equipotential lines can be arranged into an odd number
of Kramers doublet. We choose the number of Kramers dou-
blet to be 1 for simplicity. A third condition is that the sym-
plectic network model reduces to two independent Chalker-
Coddington models in some region of parameter space. The
symplectic network model from Ref. 28 does not fulfill the
last two conditions.

Given the last condition, it is natural to start with spin-
filtered edge states moving along equipotential lines of the
disorder potential depicted as squares with rounded corners,
as is done in Fig. 3. The third condition on the symplectic
network model is then satisfied when all the 4�4 unitary
scattering matrices at nodes of the network do not couple
edge states represented by the arrows along the full lines
with edge states represented by the arrows along the dashed
lines in Fig. 3. The first two conditions are otherwise satis-
fied when all the scattering matrices at the nodes of the net-
work model from Fig. 3 are the most general 4�4 unitary
matrices that respect time-reversal symmetry. Without loss of
generality, we choose a node of type S from Fig. 3. The most
general 4�4 unitary scattering matrix that respects time-
reversal symmetry is given by

�
�1↑

�o�

�2↓
�o�

�3↑
�o�

�4↓
�o�
� = S�

�2↑
�i�

�1↓
�i�

�4↑
�i�

�3↓
�i�
� ,

S = � r�0 tQ

− tQ† r�0
�, ��2 0

0 �2
�S*��2 0

0 �2
� = S†,

r = tanh x, t =
1

cosh x
,

Q = i�0 cos � sin �1 + �1 sin � cos �2 − �2 sin � sin �2

+ �3 cos � cos �1, �2.1�

with the labeling of incoming and outgoing scattering states
given in Fig. 4. The structure displayed by Eq. �2.1� can be
understood as follows. First, the amplitude for an incoming
spin-filtered edge state not to tunnel must be spin indepen-
dent and thus parametrized by the single real number r. Sec-
ond, the strength of quantum tunneling at a node can be
parametrized by the positive-valued transmission amplitude t
that multiplies the purely imaginary quaternion Q. The
purely imaginary quaternion acts on the spin-1 /2 degrees of
freedom through the unit 2�2 matrix �0 and the Pauli ma-
trices �1,2,3 and must therefore depend on four real param-
eters. Third, the local gauge transformation S→U†SU, with
U=diag�e+i	1 e−i	1 e+i	2 e−i	2� can absorb the dependence of

S
S’

FIG. 3. A network model is a collection of equipotential lines
�of the disorder potential� and nodes. Equipotential lines are closed
in the bulk and possibly open at the boundaries. In this paper, equi-
potential lines are the boundaries of identical squares with rounded
corners, while nodes are the midpoints between adjacent rounded
corners. Edge states propagate anticlockwise �full lines� or clock-
wise �dashed lines� along equipotential lines if their spin is up or
down, respectively. Each pair of edge states along an equipotential
line can be arranged into a single Kramers doublet. Edge states
belonging to two different equipotential lines can exchange their
momenta or spin at the nodes of the network such as S or S�. Each
node is thus assigned a 4�4 unitary scattering matrix. Two inde-
pendent copies of the Chalker-Coddington network model are ob-
tained in the limit in which all the 4�4 scattering matrices are
diagonal with respect to the spin degrees of freedom.
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Q on the two independent phase shifts 0
�1,2�2� compat-
ible with time-reversal symmetry. At last unitarity delivers
the constraints r2+ t2=1 and QQ†=�0. Up to an overall sign
of S and a local gauge transformation, S can thus be param-
etrized by

��x,��	0 
 x 
 , 0 
 � 
 �/2
 . �2.2�

The boundary x= for which the transmission amplitude
vanishes and the scattering matrix is diagonal defines the
classical limit of the network model. Quantum tunneling be-
tween neighboring plaquettes in Fig. 3 is very weak when
x�1. In this limit, the network model can be interpreted as
follows. The host Z2 quantum spin-Hall state, i.e., the trans-
lation invariant bulk state that supports an odd number of
Kramers doublet edge states in a confined geometry free of
disorder, breaks down into droplets of Z2 quantum spin-Hall
states separated by smooth random potential barriers. To ap-
preciate the role played by the parameter 0
�
� /2, we
now consider different values of x and � on the boundary of
parameter space. To this end, it is more convenient to replace
the scattering matrix by two transfer matrices.

Nodes of type S in Figs. 3 and 4 are assigned the transfer

matrix M̃,

�
�1↑

�1↓

�4↑

�4↓
� = M̃�

�2↑

�2↓

�3↑

�3↓
�, M̃ = UMU†, U = diag�e+�i/2���1+�2� e−�i/2���1+�2� e−�i/2���1−�2� e+�i/2���1−�2�� ,

M =
2

cosh 2x − cos 2��
sinh x cosh x sin � cos � sinh x cos � cosh x sin �

− sin � cos � sinh x cosh x − cosh x sin � sinh x cos �

sinh x cos � cosh x sin � sinh x cosh x sin � cos �

− cosh x sin � sinh x cos � − sin � cos � sinh x cosh x
� . �2.3a�

Nodes of type S� in Fig. 3 are assigned the transfer matrix M̃�,

�
�2↑

�2↓

�1↑

�1↓
� = M̃��

�3↑

�3↓

�4↑

�4↓
�, M̃� = U1M�U2,

U1 = diag�e+�i/2���1+�2� e−�i/2���1+�2� e+�i/2���1+�2� e−�i/2���1+�2��, U2 = diag�e+�i/2���1−�2� e−�i/2���1−�2� e+�i/2���1−�2� e−�i/2���1−�2�� ,

M� =�
− cosh x cos � sinh x sin � sinh x cos � − cosh x sin �

− sinh x sin � − cosh x cos � cosh x sin � sinh x cos �

− sinh x cos � cosh x sin � cosh x cos � − sinh x sin �

− cosh x sin � − sinh x cos � sinh x sin � cosh x cos �
� . �2.3b�

Here, the convention for initial and final scattering states is
given in Fig. 4. One verifies that, for all values of 0
�1,2

�2�, 0
x
, and 0
�
� /2 that parametrize M̃ and

M̃�, the conditions for pseudounitary,

A�+ �3 0

0 − �3
�A† = �+ �3 0

0 − �3
� , �2.4�

and time-reversal symmetry,

FIG. 4. There are two nonequivalent nodes S and S� from the
point of view of the transfer matrix. Spin up �full line� and spin
down �dashed line� are good quantum numbers on the links but
need not be conserved by the scattering at the nodes.
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�i�2 0

0 i�2
�A�− i�2 0

0 − i�2
� = A*, �2.5�

hold �A=M or M��.
Along the boundary �=0, the transfer matrices �2.3a� and

�2.3b� reduce to

M =�
coth x 0 1/sinh x 0

0 coth x 0 1/sinh x

1/sinh x 0 coth x 0

0 1/sinh x 0 coth x
�

�2.6a�

and

M� =�
− cosh x 0 sinh x 0

0 − cosh x 0 sinh x

− sinh x 0 cosh x 0

0 − sinh x 0 cosh x
� ,

�2.6b�

respectively. As is depicted in Fig. 5, up and down spins have
decoupled into two independent Chalker-Coddington mod-
els, each of which describes the integer quantum Hall plateau
transition. Whenever x=0 or x=, either M or M� is diag-
onal so that edge states cannot escape the equipotential lines
encircling the local extrema of the disorder potential. These
are strongly insulating phases characterized by different in-
teger topological �Chern� numbers, one for each spin direc-
tion. Across the plateau transition, the number of edge states
changes by 1 for each spin, and so does the number of Kram-
ers doublet edge mode. This implies that the two insulating
phases are distinct in the Z2 classification. Quantum tunnel-
ing is strongest at the integer quantum Hall transition defined
by the condition M�M� for which xcc= ln�1+�2�. �By �
is meant equality in magnitude of all matrix elements.�

Along the boundary �=� /2, the transfer matrices �2.3a�
and �2.3b� reduce to

M =�
tanh x 0 0 1/cosh x

0 tanh x − 1/cosh x 0

0 1/cosh x tanh x 0

− 1/cosh x 0 0 tanh x
�
�2.7a�

and

M� =�
0 sinh x 0 − cosh x

− sinh x 0 cosh x 0

0 cosh x 0 − sinh x

− cosh x 0 sinh x 0
� ,

�2.7b�

respectively. The network model has decoupled into two in-
dependent network models, as is depicted in Fig. 6. The U�1�
residual spin-rotation symmetry at �=0 is maximally broken
by �=� /2. When x=, M becomes diagonal while M� is
off-diagonal, so that edge states cannot escape the equipoten-
tial lines encircling the local extrema of the disorder poten-
tial. The point x=0 is dominated by quantum tunneling since
M�M� are then both antidiagonal. �By � is meant equal-
ity in magnitude of all matrix elements.� Furthermore, at x
=0, propagation of Kramers doublets is ballistic along de-
coupled one-dimensional chiral channels. Each network
model depicted in Fig. 6 belongs to the unitary universality
class �without topological term� when �=� /2 and 0
x

. We thus anticipate an unstable fixed point at x=0 de-
scribing a metallic phase and an insulating phase for x�0.

Along the boundary x=0, the transfer matrices �2.3a� and
�2.3b� reduce to

M =�
0 cot � 0 1/sin �

− cot � 0 − 1/sin � 0

0 1/sin � 0 cot �

− 1/sin � 0 − cot � 0
�

�2.8a�

and

FIG. 5. �Color online� The network model at �=0 decouples
into two networks depicted by the thick �red� and thin �blue� lines.
Full and dashed lines distinguish propagation along the links of the
networks of up and down spins, respectively.

FIG. 6. �Color online� The network model at �=� /2 decouples
into two networks depicted by the thick �red� and thin �blue� lines.
Full and dashed lines distinguish propagation along the links of the
networks of up and down spins, respectively.
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M� =�
− cos � 0 0 − sin �

0 − cos � sin � 0

0 sin � cos � 0

− sin � 0 0 cos �
� , �2.8b�

respectively. The network model has decoupled into two in-
dependent network models, as is depicted in Fig. 7. When
�=0, M is off-diagonal while M� is diagonal, yielding a
strongly insulating phase. The point �=� /2 is dominated by
quantum tunneling since M�M� are then both antidiago-
nal. �By � is meant equality in magnitude of all matrix ele-
ments.� Furthermore, at �=� /2, propagation of Kramers
doublets is ballistic along decoupled one-dimensional chiral
channels. Each network model depicted in Fig. 7 belongs to
the unitary universality class �without topological term�
when x=0 and 0
�
� /2. We thus anticipate an unstable
fixed point at �=� /2 describing a metallic phase and an
insulating phase for 0
��� /2.

Observe that the duality relation

tanh x = cos � �2.9a�

implies that

M�x = 0,�� � M��x,� = �/2� ,

M��x = 0,�� � M�x,� = �/2� . �2.9b�

�By � is meant equality in magnitude of all matrix ele-
ments.�

From the analysis of the network model on the boundaries
of parameter space, we deduce the qualitative phase diagram
shown in Fig. 8. The numerics of Sec. III confirms the over-
all topology of this phase diagram.

The definition of the two-dimensional spin-filtered chiral
network model for the Z2 quantum spin-Hall effect is com-
pleted by specifying the boundary conditions. These are dic-
tated by the numerical method that we shall use in Sec. III.
Following MacKinnon and Kramer, we seek the transfer ma-
trix of a long but narrow sample connected at both ends to
semi-infinite ideal metallic leads. To minimize finite size ef-
fects, we impose periodic boundary conditions in the trans-
verse direction. The transfer matrix is then a 4M �4M

pseudounitary matrix that maps 4M plane waves from the
left lead into 4M plane waves from the right lead that we
define as follows. First, we consider a slice of the sample that
we label by the integer n=1,2 , . . . ,N, as is depicted in Fig.
9�a� �N�4M�. We assign to this slice the 4M �4M
pseudounitary matrix Msl�n�,

Msl�n� ª MS��n�Usl
�2��n�MS�n�Usl

�1��n� ,

Usl
�1��n� = diag�e+i	1

�1��n� e−i	1
�1��n�

¯ e+i	2M
�1� �n� e−i	2M

�1� �n�� ,

MS�n� =�
M00�n� 0 ¯ 0 M0M�n�

0 M1�n� 0 ¯ 0

 � � � 
0 ¯ 0 MM−1�n� 0

MM0�n� 0 ¯ 0 MMM�n�
� ,

Usl
�2��n� = diag�e+i	1

�2��n� e−i	1
�2��n�

¯ e+i	2M
�2� �n� e−i	2M

�2� �n�� ,

MS��n� = diag�M1��n� ¯ MM� �n�� . �2.10a�

Here, Mm�n� with m=1, . . . ,M −1 and Mm� �n� with m
=1, . . . ,M are given by Eqs. �2.3a� and �2.3b�, respectively,
while we have imposed periodic boundary conditions in the
transverse direction with the choice

M00�n� = MMM�n�

=
2

cosh 2x − cos 2�
�sinh x cosh x sin � cos �

− sin � cos � sinh x cosh x
� ,

�2.10b�

FIG. 7. �Color online� The network model at x=0 decouples into
two networks depicted by the thick �red� and thin �blue� lines. Full
and dashed lines distinguish propagation along the links of the net-
works of up and down spins, respectively.

FIG. 8. �Color online� Expected phase diagram from the analy-
sis of the network model along the boundaries of the parameter
space �Eq. �2.2��. The fixed point denoted by a filled �green� square
along the boundary �=0 is the unstable quantum critical point lo-
cated at xcc= ln�1+�2� separating two insulating phases in the
Chalker-Coddington model. The fixed point denoted by the filled
�blue� rhombus at the upper left corner is the unstable metallic
phase. The shape of the metallic phase is controlled by the symme-
try crossover between the unitary and symplectic symmetry classes.
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M0M�n� = MM0�n�

=
2

cosh 2x − cos 2�
� sinh x cos � sin � cosh x

− sin � cosh x sinh x cos �
� .

�2.10c�

The phases 	m
�l��n� with l=1,2, m=1, . . . ,2M, and n

=1, . . . ,N take values between 0 and 2�. Second, we assign
to the quasi-one-dimensional network model depicted in Fig.
9�b� the transfer matrix

Mtot ª �
n=1

N

Msl�n� . �2.10d�

This completes the definition of the two-dimensional spin-
filtered chiral network model for the Z2 quantum spin-Hall
effect.

We close Sec. II by showing that Mtot belongs to the Lie
group SO*�4M�. By construction, flux conservation,

Mtot�3Mtot
† = �3, �3 = ��3 0

0 − �3
� � IM , �2.11�

and time-reversal symmetry,

�2Mtot�2
T = Mtot

* , �2 = i�2 � I2M , �2.12�

where I2M is the 2M �2M unit matrix, hold. It follows from
Eq. �2.12� that

Mtot
† = �2Mtot

T �2
T. �2.13�

Substituting Eq. �2.13� into Eq. �2.11� yields

Mtot�1Mtot
T = �1,

�1 = �3�2 = ��1 0

0 − �1
� � IM . �2.14�

We introduce the matrix

A =
1
�2

��2 + �3 0

0 �2 − �3
� � IM , �2.15�

and write �1=−iAAT. Equation �2.14� then reads

M̂totM̂tot
T = 1, M̂tot = AMtotA , �2.16�

where we have used the identity A2=1. We can rewrite Eq.

�2.11� in terms of M̂tot,

M̂tot�2M̂tot
† = �2,

iA�3A = �i�2 0

0 i�2
� � IM = �2. �2.17�

With an orthogonal transformation that exchanges rows and
columns, we can bring �2 into the form

O�2OT = � 0 I2M

− I2M 0
� = J2M . �2.18�

We thus conclude that OM̂totO
T is an element of the group

SO*�4M� defined by the conditions

gJ2Mg† = J2M, ggT = I4M, g � GL�4M,C� . �2.19�

III. NUMERICS

This section is devoted to a numerical study of the depen-
dence of the smallest Lyapunov exponent of the transfer ma-
trix Mtot defined in Eq. �2.10�, as a function of the width M
of the quasi-one-dimensional network model. Although Mtot
is taken from a statistical ensemble that we will specify be-
low, Lyapunov exponents are self-averaging random vari-
ables for an infinitely long quasi-one-dimensional network
model, N→.13,34

The eigenvalues of the 4M �4M Hermitian matrix
Mtot

† Mtot are doubly degenerate and written as exp�±2Xj�
with 0�X1�X2� ¯ �XM. The localization length �M is
then given by

FIG. 9. �Color online� �a� A
slice of the network model assum-
ing periodic boundary conditions
in the transverse direction, here
represented by the gray links. �b�
Wire geometry of the network
model.
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�M = lim
N→

N

X1
. �3.1�

The localization length �M is a finite and self-averaging
length scale that controls the exponential decay of the Lan-
dauer conductance for any fixed width M of the infinitely
long quasi-one-dimensional network model, as the transfer
matrix �2.10� belongs to the group SO*�4M�.13 It is, of
course, impossible to study infinitely long quasi-one-
dimensional network models numerically and we shall ap-
proximate �M with �M,N obtained from the Lyapunov expo-
nents of a finite but long quasi-one-dimensional network
model made of N slices. In our numerics, we have set N
=5�105–8�106.

As shown by MacKinnon and Kramer,27 criticality in two
dimensions can be accessed from the dependence of the nor-
malized localization length

� ª �M/M �3.2�

on the width M of the quasi-one-dimensional network model.
For example, if � denotes the two-dimensional localization
length and if � diverges according to the power law

� � 	z − zc	−� �3.3�

upon tuning of a single microscopic parameter z close to its
critical value zc, the singular part of � as M→ should be
given by a scaling function35

� � F��M1/�,�My, . . . � . �3.4�

Here, � and � are the single relevant and dominant irrelevant
scaling variables, respectively.36 The largest irrelevant scal-
ing exponent satisfies y�0. We assume that F can be ex-
panded in powers of �My and �M1/�,

� � �
p=0



�
q=0



Fp,q�p�qMpy+q/�, �3.5�

where Fp,q�R are the expansion coefficients. We also as-
sume that the relevant scaling variable � is linearly related to
	z−zc	, while the irrelevant scaling variable � is a constant in
the vicinity of the critical point. Finally, for any given 0

�
� /2 from the scattering matrix �2.1�, we identify the
microscopic parameter z as the parameter 0
x
. This
motivates the scaling ansatz

� = �
q=0

3

f0,q
����x − xc

����qMq/� + �
q=0

2

f1,q
����x − xc

����qMy+q/�,

�3.6a�

with the ten real-valued fitting parameters

�, y, xc
���, �c

���
ª f0,0

��� �3.6b�

and

f0,1
���, f0,2

���, f0,3
���, f1,0

���, f1,1
���, f1,2

��� . �3.6c�

Observe that the single-parameter scaling is obeyed by

�� ª � − �
p=1



�
q=0



Fp,q�p�qMpy+q/�, �3.7�

or, in practice,

�� ª � − �
q=0

2

f1,q
����x − xc

����qMy+q/� = �
q=0

3

f0,q
����x − xc

����qMq/�.

�3.8�

The values taken by the width M of the quasi-one-
dimensional network model are M =4,8 ,16,32,64. To re-
duce the statistical error, averages over 16 different realiza-
tions of the disorder potential are calculated for any given
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FIG. 10. �Color online� �a� Normalized localization length � as
a function of x at fixed �=3� /16 for the widths M =4 �crosses�,
M =8 �open squares�, M =16 �filled squares�, M =32 �open circles�,
and 64 �filled circles� of the quasi-one-dimensional network. Error
bars are much smaller than symbol sizes. There are two values of x
�xs�0.46 and xl�0.97� for which � does not appear to depend on
M. �b� A fit of the data shown in �a� with the help of the one-
parameter scaling ansatz �3.8� when x is close to xs. Inset: A blowup
of �a� in the vicinity of xs. �c� A fit of the data shown in �a� with the
help of the one-parameter scaling ansatz �3.8� when x is close to xl.
Inset: A blowup of �a� in the vicinity of xl.
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M ,x ,� when � is not random, and M ,x otherwise.
The disorder potential is modeled in two different ways,

i.e., we introduce disorder in the transfer matrix �2.10� as
follows. For case I, 0
�
� /2 and 0
x
 are the same
for all nodes and randomness is introduced by taking all the
phases 	m

�l��n�, with l=1,2, m=1, . . . ,2M, and n=1, . . . ,N,
to be independently and uniformly distributed between 0 and
2�. For case II, in addition to the randomness in the phases
	m

�l��n�, we allow � to be independently distributed with the
probability sin�2�� between 0 and � /2 at each node of the
network. As before, 0
x
 is the same for all nodes.

A. Case I: Randomness on the links only

We found two unstable fixed points on the boundaries of
parameter space �Eq. �2.2��, and the expected phase diagram
was shown in Fig. 8. Boundary x= realizes an insulating
phase. Boundary �=0 realizes the plateau transition at xcc
= ln�1+�2� between two Hall insulating phases in the integer
quantum Hall effect. Boundaries x=0 and �=� /2 realize the
unitary universality class with its insulating phase terminat-
ing at the unstable metallic point �x ,��= �0,� /2�. Any criti-
cal point close to the last three boundaries is difficult to
identify numerically as characteristic crossover length scales
between different universality classes become very large. A
related difficulty comes about from the fact that the charac-
teristic disorder strength can remain stronger than the char-
acteristic strength of the spin-rotation symmetry breaking
away from the boundary �=0 of parameter space.37 For this
reason, we use the scaling ansatz �3.8� to search for the phase
boundaries in the interior of parameter space �Eq. �2.2��.

For illustration, we present in Fig. 10�a� the x dependence
of the normalized localization length � for the fixed values
of �=3� /16 and M =4,8 ,16,32. It is seen that � increases

with increasing M for x between 0.5 and 0.9. For fixed 0.5
�x�0.9, this is either the signature for an extended state or
that for a localized state whose localization length is larger
than the maximal width of the quasi-one-dimensional net-
work model. Conversely, for x smaller than 0.5 or larger than
0.9, � decreases with increasing M, i.e., this is the signature
of a localized state. There appears to be two values of x that
we denote with xs�xl, for which � does not depend on M
=4,8 ,16,32, and hence are good candidates for a pair of
critical points separating a metallic from an insulating phase.
The inset of Fig. 10�b� �Fig. 10�c�� magnifies the dependence
of � on M =4,8 ,16,32,64 close to xs �xl�. On this scale, xs

remains well defined but not xl. We attribute the absence of a
single crossing point xl in the inset of Fig. 10�c� to a large
contribution from an irrelevant scaling variable. This hypoth-
esis is verified in Figs. 10�b� and 10�c� where the single-
parameter dependence of �� on the scaling variable M1/�	x
−xs	 and M1/�	x−xl	, respectively, is demonstrated �we found
the value y�−1 for the largest irrelevant scaling exponent�.
The values of �, �c, xs, and xl obtained from the scaling
ansatz �3.8� for different values of � can be found in Tables I
and II. The values that we obtain for � and �c are consistent
with those for the standard two-dimensional symplectic uni-
versality class.28,29 Our numerical map of the phase bound-
aries separating the metallic from the insulating phase in the
parameter space �Eq. �2.2�� is shown in Fig. 11. The shape of
the metallic region in Fig. 11 is controlled by the crossover
from the unitary to the symplectic symmetry class.

The dependences of the normalized localization length �
on � in the insulating regimes x� ln�1+�2� and x� ln�1
+�2� are different, as is shown in Fig. 12. In the small �
insulating regime x� ln�1+�2� of Fig. 11, � is an increasing
function of � for fixed x and M, as is expected from the
proximity of a phase boundary to a metallic phase. In the
insulating regime x�1� ln�1+�2� of Fig. 11, � depends
weakly on � for fixed x and M, as is expected from a strongly

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

θ

x

Metal

Insulator

Insulator

π/2

π/4

π/8

3π/8

0

FIG. 11. �Color online� Phase diagram for the network model in
the parameter space �Eq. �2.2��. The location of a critical point
denoted by a filled �red� circle follows from the scaling ansatz �3.8�.
That denoted by a cross is a rougher estimate due to large symmetry
crossover effects. The critical points denoted by a filled �green�
square and a filled �blue� rhombus correspond to the critical points
of the Chalker-Coddington network model and the unstable metallic
fixed point from the unitary universality class, respectively. Dashed
lines are guide to the eyes.

TABLE I. Critical exponent, normalized localization length, and
�minimal� node parameter xs as a function of �. The poor agreement
at �=� /4 is probably due to the presence of a large crossover
length scale near the boundary x=0.

� � �c xs

� /8 2.85±0.30 1.87±0.09 0.667±0.004

3� /16 2.77±0.16 1.86±0.02 0.465±0.001

7� /32 2.73±0.05 1.90±0.01 0.244±0.001

� /4* 2.17±0.21 1.82±0.01 0.016±0.001

TABLE II. Critical exponent, normalized localization length,
and �maximal� node parameter xl as a function of �.

� � �c xl

� /8 2.78±0.19 1.94±0.10 0.972±0.004

3� /16 2.73±0.08 1.87±0.03 0.970±0.002

� /4 2.65±0.06 1.84±0.01 0.970±0.002

3� /8 2.85±0.10 1.78±0.06 0.982±0.002
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localized regime. When x is held fixed at the Chalker-
Coddington critical point xcc= ln�1+�2�, � is an increasing
function of � at fixed M while � is an increasing function of
M at fixed �. This is the expected behavior assuming that any
finite � drives the critical point �x ,��= �ln�1+�2� ,0� into a
metallic phase. The duality relation �2.9� is also verified nu-
merically in Fig. 12.

B. Case II: Randomness on the links and nodes

Following Asada et al. in Ref. 29, we expect that correc-
tions due to irrelevant scaling variables should be reduced by
choosing � to be independently distributed between 0 and
� /2 with the probability sin�2�� for all nodes of the network.
As is illustrated with Fig. 13, a metallic phase exists when
0.05�x�1.0. There are two quantum critical points xs�xl
separating the metallic phase xs�x�xl from the insulating
phase. The scaling analysis must account for an irrelevant
scaling variable with y�−1 in the vicinity of xs. In the vi-
cinity of xl, a single-parameter scaling analysis suffices. Both
scaling analysis, summarized in Table III, imply that the
critical points xs�0.05 and xl�0.97 belong to the standard
symplectic universality class.

IV. SUMMARY

We have constructed and studied a two-dimensional spin-
filtered chiral network model for the Z2 quantum spin-Hall
effect. Disorder has been implemented in two distinct ways.
The quantum phase transitions between the insulating and
metallic states are found to be characterized by the scaling
exponent ��2.7 for the diverging localization length. This
value is consistent with that found in previous numerical
studies of the two-dimensional metal to insulator transition
in the symplectic universality class.28,29 We did not find the

value ��1.6 recently observed by Onoda et al. in Ref. 26,
which was interpreted as the signature of a new universality
class at the transition between the Z2 quantum spin-Hall in-
sulating and the metallic state.
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FIG. 12. �Color online� Logarithm of the normalized localiza-
tion length � as a function of x at fixed M =16 for �=0 �filled
circles�, � /8 �open circles�, 3� /16 �filled squares�, � /4 �open
squares�, 3� /8 �filled triangles�, and � /2 �open triangles�. The du-
ality relation �2.9� is verified by plotting the dependence of ln � on
� when x=0 and M =16 �crosses� as a function of x
=arctanh�cos ��. Inset: Dependence of � on � for x=ln�1+�2� and
M =4 �crosses�, M =8 �open squares�, M =16 �filled squares�, and
M =32 �open circles�.
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FIG. 13. �Color online� �a� Normalized localization length � as
a function of x with a random � for the widths M =4 �crosses�, M
=8 �open squares�, M =16 �filled squares�, M =32 �open circles�,
and 64 �filled circles� of the quasi-one-dimensional network. Error
bars are much smaller than symbol sizes. There are two values of x
�xs�0.05 and xl�0.97� for which � does not appear to depend on
M. �b� A fit of the data shown in �a� with the help of the one-
parameter scaling ansatz �3.8� �whereby fq,q

��� → fq,q for all p ,q�N�
when x is close to xs. Inset: A blowup of �a� in the vicinity of xs. �c�
A fit of the data shown in �a� with the help of the one-parameter
scaling ansatz �3.6a� �whereby f0,q

��� → f0,q and f1,q
��� =0 for all q�N�

when x is close to xl. Inset: A blowup of �a� in the vicinity of xl.

TABLE III. Critical exponent, normalized localization length,
and node parameter when � is distributed between 0 and � /2.

� �c xc

xs 2.74±0.12 1.81±0.01 0.047±0.001

xl 2.68±0.06 1.82±0.01 0.971±0.001
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It is important to remember the similarities and differ-
ences between our network model and the lattice model stud-
ied in Ref. 26. Common to the two models is that, in the
absence of disorder, they support a host Z2 quantum spin-
Hall state �a host Z2 insulator for brevity�, whereby an odd
number of Kramers doublet edge states cause an accumula-
tion of spin at the edges under an applied electric field. The
crucial difference lies in the spatial correlation of the disor-
der potential added to the host Z2 insulator. On the one hand,
in Ref. 26, disorder is introduced as a random on-site poten-
tial that has no spatial correlation. On the other hand, our
network model is obtained by perturbing the host Z2 insula-
tor with a spatially smooth disorder potential that breaks the
host Z2 insulator into droplets of Z2 insulators. The network
model can thus be viewed as a coarse-grained effective
model for Z2 insulating droplets that are weakly coupled
through quantum tunneling.

The intrinsic symmetry �time reversal� respected by the
statistical ensemble of random Hamiltonians or scattering
matrices is not changed by the range of the spatial correla-
tion of the disorder. The hypothesis of universality would
then suggest that the same critical scaling should be observed
at the localization-delocalization transitions in the lattice
model of Ref. 26 and in our network model. The apparent
violation of the universality by the two numerical results can
be reconciled if one assumes that there is a long crossover
length scale beyond which microscopic differences between
the two models become irrelevant. Corrections from irrel-
evant scaling variables may strongly depend on the range of

the disorder potential, as in the case of the plateau transition
in the second Landau level,38 and it could well be that the
system sizes studied in Ref. 26 were not large enough. Veri-
fication of this scenario is left for future work.

The fact that our network model is built out of two
Chalker-Coddington network models coupled in a time-
reversal invariant way has important consequences. Critical-
ity in each Chalker-Coddington network model can be en-
coded by the field theory of a single �two-component� Dirac
fermion coupled to a random vector potential, a random
mass, and a random scalar potential.39 It then follows by
continuity �for small enough �� that the two lines of critical
points emerging from the Chalker-Coddington critical point
in Fig. 11 can be encoded by a field theory for two flavors of
Dirac fermions. It is their coupling by disorder that prevents
the emergence of a time-reversal symmetric and topologi-
cally driven quantum critical behavior.40,41
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