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All-electron calculations based on density functional theory have been carried out to study the electronic
structures of single-walled nanotubes with subnanometer diameters. Present studies suggest the need for per-
forming all-electron calculations, specifically for the nanotubes with very small diameters. Complete geometry
optimization is found to be very crucial for predicting the electronic properties. We report here the electronic
properties of two of the smallest single-walled carbon nanotubes (SWCNTs)—an armchair (2,2) and a zigzag
(4,0) SWCNT—with comparable diameters of about 3 A. It is observed that, both geometrically and electroni-
cally, they are quite different. The discussion on the properties of zigzag (n,0) SWCNTS, with diameters in the
subnanometer regime, as a function of n, involves the elucidation of their geometric and band structures. In the
band structures, systematic variations of a nearly-free-electron-like state and a nearly-dispersion-free state are
shown as a function of n and their implications have been discussed. The Fermi surfaces calculated for the
metallic SWCNTs show signature of a collection of quasi-Fermi-points. This shows the quasi-one-dimensional
nature of these nanotubes (NTs). From the present calculations, it is expected that the number of conduction

channels is restricted between 2 and 3 for the NTs studied here.
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I. INTRODUCTION

The recent interest in understanding the nanostructures,
including nanotubes (N'Ts) and nanowires, of carbon, silicon,
and other semiconducting materials can be attributed to the
advances in the modern methods of synthesis and the real
possibility of preparing these nanostructures. The NTs are a
typical class of materials in the nanoscale, and their proper-
ties can be altered controllably and significantly. Carbon
nanotubes are well studied in many of their physical proper-
ties, and these materials show great potential as building
blocks for nanoscale devices.!™* Hybrid structures of these
nanomaterials with other materials are also of immense in-
terest. It has been established from ab initio calculations that
transition metal and nanotube hybrid structures can be made
to exhibit substantial magnetism.>®

The carbon nanotubes of diameter as large as a few tens
of nanometers are rather well known since the discovery of
the NTs,” but with the advancement of the method of their
preparation, nowadays fabrication of smaller NTs with sub-
nanometer diameters is possible. Very recently, freestanding
single-walled carbon nanotubes (SWCNTs) of small diam-
eter were successfully grown on small catalyst particles de-
posited on porous materials.®? It is expected and observed
that the structural, electronic, and optical properties of NTs
with small diameter, in the subnanometer range, are quite
unusual compared to those of the NTs with large diameter.
Due to the severe curvature effect in the NTs with small
diameter, the detailed understanding of the microscopic
properties of these small diametered tubes is very important.
The interesting and often unique structural and electronic
properties observed in the NTs with small diameter as well as
the recent opportunities of studying them microscopically
from the advanced theoretical techniques led to many “com-
puter experiments” on these materials recently.!10-1

Independent studies on band structures and the geometric
structures based on first-principles calculations of many of
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the SWCNTs (studied here) exist in the literature.!-10:14:15.18.19
However, so far as our knowledge goes, systematic compari-
son and detailed studies of various geometric and electronic
properties of SWCNTs, with subnanometer diameters, as a
function of curvature or the wrapping indices, using all-
electron calculational method have not been carried out.
Hence the importance of the present study lies on the follow-
ing few aspects. Since carbon is an element from the first
row of the Periodic Table, the present all-electron calcula-
tions probe if there is any significant disagreement between
the all-electron and previous pseudopotential calculations,
and hence, if the necessity for all-electron calculations for
these small tubes can be established. Our studies suggest the
need of using all-electron calculations, specifically for very
small tubes and complete geometry optimization. The short-
comings of the pseudopotential calculations have been
shown from the detailed comparison of the electronic prop-
erties predicted by the present and previous pseudopotential
calculations. This comparison hints at a possible lack of
proper geometry optimization in the existing pseudopotential
calculations. Further, we observe and study the systematics
of a few important features of the band structures, as a func-
tion of size. The systematics for a nearly-dispersion-free
state and a nearly-free-electron-like state in the band struc-
tures has been noted in this study and the implication of this
has been discussed. The importance of establishing the sys-
tematics for small tubes is that it can enable us to extrapolate
these results for larger tubes, based on the different trends
obtained here. We also discuss here the nature of the Fermi
surface observed for the metallic tubes. We then make a gen-
eral observation about the typical number of conduction
channels expected for these tubes.

In this paper, using state of the art all-electron calcula-
tions based on the density functional theory (DFT), we com-
pare the details of the geometric and electronic properties of
the two smallest N'Ts, namely, the armchair SWCNT(2,2)
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TABLE I. Optimized geometries of different nanotubes. Distances (d1 and d2) are in angstrom and angles

(al and a2) are in degrees.

Material Diameter dl d2 al a2
SWCNT(2,2) 2.93 1.44 1.46 111.6 111.6
SWCNT(4,0) 3.39 1.40 1.49 107.0 119.5
SWCNT(5,0) 4.25 1.39, 1.40, 1.43 1.45, 1.48, 1.49 110.3, 110.6 119.4, 119.9
SWCNT(6,0) 4.82 1.40 1.44 112.9, 113.5 120.2
SWCNT(7,0) 5.56 1.41 1.43 115.0 120.0
SWCNT(8,0) 6.28 1.41 1.42 115.3-115.6 120.1, 120.6
SWCNT(9,0) 7.05 1.42 1.42 116.2 120.4

and zigzag SWCNT(4,0), both with comparable diameter of
about 3 A. Systematic variation of geometric and electronic
properties of the SWCNTs and their implication as well as
possible application, as a function of n for the zigzag
SWCNT(n,0)s, have also been discussed in detail in this
paper. In the next section, we discuss the method employed
for the all-electron calculations. Section III discusses the re-
sults. Finally, in Sec. IV, we summarize the results and con-
clude.

II. METHOD

Optimized geometric and electronic structures of NTs
made of elements of carbon, with subnanometer diameter,
have been obtained from all-electron calculations based on
density functional theory.”’ For all-electron calculations,
WIEN97 code?! has been used to perform the ab initio relativ-
istic full potential linearized augmented plane wave calcula-
tions using generalized gradient approximation 2? for the ex-
change correlation. In calculations of SWCNTs, a minimum
energy cutoff of 15 Ry has been used. The cutoff for charge
density was G,,,=14. The muffin-tin radius was taken to be
1.3 a.u. for C. The number of k points for self-consistent
field cycles is taken such that it resulted in a minimum of
102-208 k points in the irreducible part of the Brillouin zone
(BZ). The calculations were performed with the convergence
criterion for total energy (E,,) to be less than 0.1 mRy. All
the parameters for the calculations have been used after op-
timizing them with respect to the electronic properties of the
materials. A supercell geometry is assumed, where in one
direction the nanotube is periodic, and hence, infinitely long;
this direction is called the tube axis. In the other two direc-
tions, a vacuum region, spanning about 12 A, has been used
so that the interaction between two adjacent tubes in the
periodic arrangement is negligible. The structures are opti-
mized by minimizing the Hellmann-Feynmann forces until
the forces on individual atoms are small (below 5 mRy/a.u.).

III. RESULTS AND DISCUSSION
A. Geometric structure

We study the optimized geometric structures of
SWCNT(2,2) and SWCNT(n,0), with n being 4-9. The
numbers in the parentheses denote the wrapping indices of

the nanotube, obtained after rolling a two-dimensional single
layer graphitic (graphene) sheet.>® The unit cell of armchair
tube (2,2) and zigzag tube (n,0) contains 8 and 4n atoms,
respectively. For carbon, the values of bond length and bond
angles in graphene (sp? hybridization) and in diamond (sp?
hybridization) are taken as 1.42 A, 120° and 1.54 A,
109.47°, respectively. The starting value of the bond length is
taken after a graphenelike structure with sp? hybridization.
We optimize the geometric structures of all the nanotubes.
Table I shows the diameters as well as the values of nearest
neighbor bond lengths and bond angles for the optimized
structures. The relaxed structures of carbon nanotubes show
two types of bond length (denoted by d1 and d2, see Fig. 1)
and bond angle (denoted by al and a2, see Fig. 1). The
geometric structures of SWCNT(2,2) and SWCNT(4,0) are
compared here. Due to the armchair structure, the
SWCNT(2,2) has a different definition of bond length d1 as
is clear from Fig. 1. d1 in the armchair case is a C-C bond
along the tube ring and perpendicular to the tube axis. In the
case of zigzag tubes, d1 is parallel to the tube axis. The sp?
type character is prevalent in the former case in terms of the
bond lengths, with two different bond lengths d1 and d2
being 1.44 and 1.46 A, which are somewhat closer to the sp?
value of 1.42 A. However, the bond angle of 111.6° matches
better with that corresponding to the sp® hybridization. On
the contrary, as is evident from Table I, there is a distribution
in the bond length with respect to the starting value in the
case of SWCNT(4,0). d1 and d2 are 1.40 and 1.49 A. al and
a2 are 107° and 119.5°. These values clearly indicate a stron-
ger mixture of the sp? and sp® hybridizations in this case.
Next we discuss the effect of size (diameter) or curvature
on the geometric structure of the zigzag nanotubes. For the
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FIG. 1. Two types of bond lengths (d1 and d2) and bond angles
(al and a2) are shown in both armchair and zigzag tubes. Axis of
tube is marked with an arrow. al is the angle between two d2 bond
lengths, and a2 is between d1 and d2 in the case of both the arm-
chair and zigzag tubes.
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FIG. 2. (Color online) A part of the armchair tube SWCNT(2,2)
along with its valence charge density (in left panel) is shown in the
top row. Below, part of zigzag tubes with n=4, 7, and 9 (from
second to last row, respectively) are also shown along with their
valence charge densities (in left panel).

zigzag (n,0) tubes with smaller diameter, the bond along the
axis of the tube (d1) gets shortened, whereas the other bond
(d2) gets enlarged (see Fig. 1 and Table I). This effect is
prevalent when tube diameter is smaller.! The increase in
bond length (d2) and decrease in bond angles (al) indicate
substantial contribution from sp?, in addition to sp? hybrid-
ization, for SWCNT with n less than and around 7. Con-
versely, for tubes with n greater than and around 7 for car-
bon, the bond lengths and bond angles are very similar to
that of a graphenelike structure, indicating more contribution
from sp? rather than from sp>. This signifies that the curva-
ture effect in larger tubes is less predominant as is indicated
from the valence charge density plots as well (discussed be-
low).

B. Electronic structure
1. Valence charge density

Figure 2 shows the valence charge density distribution of
the carbon nanotubes, (2,2), (4,0), (7,0) and (9,0), calculated
in the plane perpendicular to tube axis using XCRYSDEN
package.”> We compare the valence charge densities for the
SWCNT(2,2) and (4,0). The geometry of SWCNT(2,2) is
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such that there are two o bonds (d1 type) on the plane per-
pendicular to the tube axis. This can be easily seen from the
valence charge distribution. However, in the case of
SWCNT(4,0), there are no o bonds on the plane perpendicu-
lar to the tube axis. Hence, while the SWCNT(4,0) has a
strong asymmetry in charge distribution inside and outside
the tube, (2,2) shows a different charge distribution. From
the geometry discussion above also, it is evident that the
SWCNT(4,0) has a stronger mixture of sp> and sp* hybrid-
izations than the (2,2) case (see Table I). Figure 2 also gives
the valence charge densities of SWCNT(7,0) and
SWCNT(9,0). Our results match well with previous
studies.'® When we compare the zigzag tubes, SWCNT(n,0)
with different n, an asymmetry in the distribution of valence
charge density inside and outside the tubes becomes evident.
This effect is more pronounced as the tube diameter de-
creases and n becomes less than and around 7. This is due to
the fact that, as the tube diameter decreases, the overlap be-
tween the 7 orbitals (inside the tube) and o orbitals (on the
surface of the tube) increases. Hence, the valence charge
redistribution between 7 and o orbitals arises and the tubes
are not in sp> hybridization as expected from the band fold-
ing scheme, but a mixture of both sp? and sp?, as discussed
above.

2. Band structure

In the present work, we calculate the band structures
(BSs) of SWCNTs with small diameters using all-electron
method. The electronic structures of nanotubes have been
explained earlier by a simple band folding picture, where it
has explicitly been assumed that the ¢ orbitals are orthogonal
to m orbitals. However, this is a very simplified picture be-
cause when the diameter of the tube is small, then the o
orbitals are no longer orthogonal to the 7 orbitals.>!° There-
fore, simple band folding scheme does not predict the elec-
tronic structure of small tubes correctly. In the present work,
we do a systematic study of all the band structures for
SWCNT(n,0), for n=4-9. These have been obtained using
the all-electron calculations®! to study the difference in their
various features with respect to the pseudopotential calcula-
tions. Figure 3 depicts some of the band structures of the
(n,0) nanotubes, n being even (6 and 8) and odd (7 and 9)
numbers. Figures 4—6 give the electronic band structures of
SWCNT(2,2), SWCNT(4,0), and SWCNT(5,0), respectively,
without and with geometry optimization. The band structures
are plotted along the high symmetry points (along the axis of
the tube).

Figures 3—6 show that all the other nanotubes are metallic
except SWCNT with (n,0), n being 5 and 7-9. According
to the simple band folding scheme, SWCNT(4,0),
SWCNT(5,0), SWCNT(7,0), and SWCNT(8,0) should be
semiconductors and SWCNT(2,2), SWCNT(6,0), and
SWCNT(9,0) are metallic. However, it is generally observed
that there are some disagreements with this simple scheme.
We find that while SWCNT(4,0) is metallic, SWCNT(9,0) is
semiconducting, with a very small gap. For bigger tubes,
with n greater than or equal to 6, all-electron results on the
electronic nature and the overall band structure of the tubes
agree reasonably well with the previous pseudopotential
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FIG. 3. Band structures of (a) SWCNT(6,0), (b) SWCNT(8,0),
(c) SWCNT(7,0), and (d) SWCNT(9,0). The Fermi energy is shown
by a dashed line. The band energies are normalized with respect to
the Fermi level.

calculations.'>!71 SWCNT(6,0) is a metallic case. The band
structure of SWCNT(7,0) (Fig. 3) shows that the tube is a
semiconductor with a band gap of 0.19 eV. There is an en-
ergy gap of about 0.43 eV in the case of SWCNT(8,0), while
in the case of SWCNT(9,0), although it is expected to be
metallic, a very small gap (0.07 eV) opens up. These values
agree well with the earlier reported values.'>!7-1
All-electron versus pseudopotential calculations. For
smaller tubes, where data are available, namely, for (2,2) and
(5,0) SWCNTSs, the electronic nature of the material as well
as the details of the band structures turn out to be different

(@) (b)

Energy (eV)

r Z T Z

FIG. 4. Band structures of (a) SWCNT(2,2) without geometry
optimization and (b) SWCNT(2,2) with geometry optimization. The
Fermi energy is shown by a dashed line. The band energies are
normalized with respect to the Fermi level.
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FIG. 5. Band structures of (a) SWCNT(4,0) without geometry
optimization and (b) SWCNT(4,0) with geometry optimization. The
Fermi energy is shown by a dashed line. The band energies are
normalized with respect to the Fermi level.

from the pseudopotential calculations.'*!® Figure 6 contains
the electronic structures of SWCNT(5,0) before and after
geometry optimization. From all-electron calculation, the un-
relaxed geometry corresponds to a metallic nature of this
tube. However, even with geometry optimization, previous
pseudopotential calculations obtain a metallic nature.'® How-
ever, in our calculations, when the geometry is optimized, a
band gap appears, thus making the fully relaxed tube a semi-
conductor. In addition, opening up of a band gap is clearly
observed when it is plotted as a function of decreasing re-
sidual force, averaged on the different carbon atoms (Fig. 7).
We also note that for the SWCNT(2,2), while the existing
pseudopotential calculations'* report that it is an indirect
band gap semiconductor, the present calculations predict a
metallic nature (Fig. 4). When the present band structure
without geometry optimization is compared with the pseudo-
potential calculations, we find that these band structures are
rather similar, specifically near the Fermi level. Similarly,
while SWCNT(4,0) is found to be metallic both ways, its BS
in Fig. 5 exhibits differences in the band structures with and

(a) (b)
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FIG. 6. Band structures of (a) SWCNT(5,0) without geometry
optimization and (b) SWCNT(5,0) with geometry optimization. The
Fermi energy is shown by a dashed line. The band energies are
normalized with respect to the Fermi level.
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FIG. 7. Band gap of SWCNT(5,0) as a function of the residual
force, averaged over different carbon atoms. The dashed line is a
guide for the eye.

without optimization, specifically around the Fermi level.

The above-mentioned observations hint at a possible lack
of proper geometry optimization in the pseudopotential
calculations.'*!® We note that for smaller tubes, the starting
and final optimized geometries (Table I) are quite different.
Moreover, due to the smaller size of the tubes, the steric
hindrance at places is much more and atoms can interact
strongly along the diameter since the size is very small.
Hence obtaining the global equilibrium structure in the
smaller tubes is difficult. On the contrary, for larger NTs,
both starting and final optimized geometries are close to that
of the sp? hybridized ones. So optimization of geometry is
expected to be easier. We know that the role of geometry
optimization is very crucial for obtaining the correct proper-
ties: we observe that the discrepancy between the pseudopo-
tential and present calculations is greater for the smaller
tubes compared to the larger ones, due to the reasons dis-
cussed above. Hence it is suggested from the present study
that, for electronic structure of SWCNTs of ultrasmall diam-
eters, the all-electron calculations seem to be the method of
choice. The reason for the shortcomings of the pseudopoten-
tial calculations may lie on the choice of parameters, namely,
the energy cutoff or the choice of the potential itself, which
may have led to insufficient optimization of geometry for the
very small tubes.

Detailed comparison of the BS of SWCNT(2,2) and
SWCNT(4,0). Now we compare the electronic structure of
the two smallest tubes. Due to larger curvature effect, 7 or-
bital overlaps with the o orbital, which pushes down some of
the band toward the Fermi level and makes SWCNT(4,0)
metallic. The metallicity of the armchair SWCNT(2,2) tube,
however, does not change due to curvature because the shift
in the wave vector is parallel to an allowed line of the nano-
tube, and hence, armchair SWCNT(2,2) remains metallic
even in the modified band folding scheme.> When the band
structure of the SWCNT(2,2) is compared with the same one
obtained from pseudopotential-based DFT calculations,'# it
is observed that the bands below the Fermi level from both
studies are in reasonable agreement.'* However, while this
pseudopotential study predicted an indirect band gap for the
(2,2) case, present calculations yield a metallic nature.
Though the band structure from the present study shows that
the SWCNT (4,0) is metallic as it is in case of SWCNT(2,2),
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there are certain features which make the two cases very
different in their properties. When the band structure of the
SWCNT(2,2) is compared with that of the SWCNT(4,0), of
very similar diameter, the dispersion of the bands around the
Fermi level is found to be quite different. While for the latter,
the dispersion of the bands near the Fermi level is more of
linear type, the former has it otherwise.

Signature of the nearly-dispersion-free states. Unlike the
case of SWCNT(2,2), the electronic structure of
SWCNT(4,0) is observed to have an interesting feature of
existence of a few localized types of bands at energy values
close to the Fermi level. This indicates an accumulation of a
large density of states (DOS) at these energy values. Notably,
the nearly-dispersion-free states (denoted hereafter as NDF
states) closely below the Fermi level may have special sig-
nificance, in terms of the Van Hove singularity in the DOS.
One of these localized bands which is very near the Fermi
level (the band energy at the I" point is about —0.65 eV with
respect to the Fermi level), can become important due to the
possibility of a large DOS at the Fermi level [denoted here-
after as N(Ep)] as a result of hole doping, under the rigid-
band model. The important consequence may be altered op-
tical and electronic properties in the case of doped
SWCNT(4,0).

Furthermore, from the band structure calculations of the
(n,0) NTs, we observe that, in the SWCNTs with even-
numbered 7, signature of such NDF state exists, as is ob-
served in the case of (4,0), but they are further deep down in
energy with respect to the Fermi level. On the contrary, from
the band structures of the (n,0) SWCNTSs with odd values of
n, it is noticed that their band structures are rather similar
and that there is a notable absence of NDF states below the
Fermi level in these materials. However, in the energy region
above Fermi level, the signature of a band being flat appears.
An atom and orbital projected band analysis indicates that
for both the odd and even n cases, the contribution is from
the p orbitals of carbon. It is expected that in the even n case,
it is the contribution of the occupied part of the 2p orbitals,
while in the odd n case, it is the contribution of the unoccu-
pied part.

Figure 8(a) shows the plot of the two band energy values
of these NDF states, one at the I" point and the other at the Z
point; the energy values are normalized with respect to Ej.
Their difference is also plotted and has values around zero. It
is noticed that with increasing n, both these energy values
decrease overall, with alternating signs (due to odd and even
n) and a sawtooth structure. Our analysis indicates that for
some particular value of n (some value greater than 9), there
may be a possiblity of a significant accumulation of DOS at
the Fermi level. This accumulation can happen for a smaller
tube as well. For example, in the case of SWCNT(4,0), as a
result of hole doping, a large N(E) is possible under the
rigid-band model.

Systematics of the nearly-free-electron-like states. It is ob-
served that there is a signature of a band with a parabolic
type dispersion above the Fermi level in all the cases studied.
This is termed as a nearly-free-electron-like state (denoted
hereafter as NFE state) in the literature.?* Nanotubes are hi-
erarchical solids like Cg with an unusual space inside the
solid.2* In the case of NTs, the free space is near the center of
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FIG. 8. Energies of the (a) nearly-dispersion-free states and (b)
nearly-free-electron-like states as a function of n, the wrapping in-
dex. In (a), the solid line and the dashed line correspond to the
energies, normalized with respect to E, at the Z point and I" point,
respectively. The dot-dashed line corresponds to the difference be-
tween these two energies. In (b), the energy of the nearly-free-
electron-like state for graphene is indicated by a star.

the tube and away from the tube surface. Hence, near the
center of the tube, the electrons can be in the near-free state
giving rise to this NFE state, which will have important im-
plication in the electronic-transport properties of these tubes.
The band picture of armchair SWCNT(2,2) and zigzag
SWCNT(4,0) shows that the NFE state is around 3.91 and
4.98 eV, respectively, above the Fermi level at the I" point of
the BZ. In Fig. 8(b), we plot the energy corresponding to the
NFE state [denoted hereafter by E(NFE)] at the I point as a
function of n. The E(NFE) has been normalized with respect
to Fermi level. For n<9, there is a downward and linear
trend in the E(NFE) value with increasing n, and hence, the
diameter of the tube.

It is observed from the energy plots of the nearly-free-
electron-like state as a function of n that the E(NFE) value
for graphene falls near the E(NFE) value for n=8. It is hence
expected that the graphitic nature is expected more in tubes
with n value around 7 or 8, and hence, the curvature effect in
these tubes is less predominant. From the linear nature of the
E(NFE) versus n curve in Fig. 8(b), it is indicated that there
may exist a possibility that for some value of n, say, n’,
which is larger than 9, the NFE state can be at energy E
=FE,. When the data in Fig. 8(b) are linearly extrapolated,
this n’ value turns out to be around 16, with the diameter of
the tube of about 12 A. In this respect, k-resolved inverse
photoemission studies can be very instructive to study the
NFE states of these tubes systematically as a function of n.

3. Quasi-Fermi-points

For metallic cases, the calculation of Fermi surface is in-
structive since the linear response of a metal to an electric,
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magnetic, or thermal gradient is determined by the shape of
the Fermi surface. The shape of the Fermi surface is gener-
ally derived from the symmetry, periodicity of the crystalline
lattice, and occupation of the electronic energy bands. The
systems under study are hexagonal networks of carbon rolled
into single-walled tubes. A carbon nanotube is a one-atom-
thick sheet of graphene rolled up into a cylinder with a di-
ameter which is of the order of a nanometer. This rolling-up
results in a quasi-one-dimensional nanostructure, where the
ratio of length and diameter is very high. For such a quasi-
one-dimensional nanostructure, the Fermi surface is expected
to consist of a few points. Our calculations of the Fermi
surface for all the metallic cases, at the limit of a large length
and diameter ratio, exhibit a behavior of Fermi surface which
can be ascribed as quasi-Fermi-points (hereafter denoted as
QFP). For each case, the QFPs are obtained at the points of
the BZ where a band crosses the Fermi level. This behavior
clearly shows the signature of the quasi-one-dimensional na-
ture of these NTs studied here. We note that the number of
Fermi crossings corresponds to the number of conduction
channels in a particular structure. We observe that for
SWCNT(2,2) and (6,0), there are three bands each, which
cross the Fermi level, while for SWCNT(4,0), there are two
band crossings. So for the SWCNTs studied here, the number
of conduction channels is expected to be restricted between
2 and 3.

IV. CONCLUSION

The most important observation of the present study in-
volves the band structure calculations of very small tubes
and the comparison of these with the same one obtained
from the pseudopotential calculations. The results and dis-
cussions on electronic structures of the SWCNTs stress on
the need for complete geometry optimization, and also the
all-electron calculations seem to be the method of choice,
specifically for the NTs with very small diameters.

From the geometric structure study of the SWCNT(n,0)
with n varying from 4 to 9, it is observed that the curvature
effect is less predominant in tubes for n being greater than
and around 7. This is indicated from the valence charge den-
sity calculations as well, namely, the asymmetry of the
charge distributions inside and outside the tube is more
prominent for smaller tubes. From the studies on the two
smallest carbon nanotubes, SWCNT(2,2) and SWCNT(4,0),
it is observed that these two tubes of very close diameters are
both geometrically and electronically quite different. The
Fermi surface calculated for the metallic SWCNTs shows a
signature of a collection of quasi-Fermi-points that, in turn,
clearly shows the quasi-one-dimensional nature of these NTs.
For the metallic SWCNTSs under study in this paper, the num-
ber of conduction channels is expected to be restricted be-
tween 2 and 3. It is observed that the band pictures of the
SWCNT(n,0)s with odd-numbered n show resemblance to
each other, and the band structures of tubes with even-
numbered 7 exhibit similar features. Both the odd and even n
tubes show systematic variations of a nearly-free-electron-
like state and a nearly-dispersion-free state. Under the rigid-
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band model, the possibility of a large DOS at the Fermi
level, as a result of moderate hole doping, exists for
SWCNT(4,0), thus making it technologically important. A
large density of states in the Fermi level is expected at a
particular value of n, which is larger than n=9, due to the
nearly-dispersion-free states. Under the rigid-band model,
hole or electron doping may also give rise to a large N(Ep) in
the tubes under study.
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