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In the present work, we theoretically analyze the contribution from a transverse Fermi-liquid collective mode
to the transmission of electromagnetic waves through a thin film of a clean metal in the presence of a strong
external magnetic field. We show that at the appropriate Fermi surface geometry, the transverse Fermi-liquid
wave may appear in conduction electron liquid at frequencies � significantly smaller than the cyclotron
frequency of charge carriers, �, provided that the mean collision frequency �−1 is smaller than �. Also, we
show that in realistic metals, size oscillations in the transmission coefficient associated with the Fermi-liquid
mode may be observable in experiments. Under certain conditions, these oscillations may predominate over the
remaining size effects in the transmission coefficient.
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I. INTRODUCTION

It is well known that electromagnetic waves incident on
the surface of a metal cannot penetrate inside the metal
deeper than a thin surface layer �skin layer�. This happens
due to the damping effect of conduction electrons absorbing
the wave energy via dissipationless Landau damping
mechanism.1 A strong magnetic field B= �0,0 ,B� applied to
the metal restricts the motion of electrons in the x ,y plane,
creating “windows of transparency.” These windows are re-
gions in the q ,� plane �q ,� are the wave vector and the
frequency of the electromagnetic wave, respectively� where
the Landau damping cannot take place. As a result, in the
presence of the external magnetic field, various weakly at-
tenuating electromagnetic waves, such as helicoidal, cyclo-
tron, and magnetohydrodynamic waves, may propagate in
the electron liquid of a metal.2,3

Fermi-liquid �FL� correlations of conduction electrons
bring changes in the wave spectra. Also, new collective
modes may appear in metals due to FL interactions among
the electrons. These modes solely occur owing to the FL
interactions, so they are absent in a gas of charge carriers.
Among these modes, there is the Fermi-liquid cyclotron
wave first predicted by Silin4 and observed in alkali
metals.5,6 In a metal with the nearly spherical Fermi surface
�FS�, this mode is the transverse circularly polarized wave
propagating along the external magnetic field whose disper-
sion within the collisionless limit ��→�� has the form7

�

�0
= 1 +

8

35

1

�
�qR�2. �1�

Here, R=v0 /�; v0 is the maximum value of the electron
velocity component along the magnetic field �for the spheri-
cal FS, v0 equals the Fermi velocity vF�; �=eB /mc is the
cyclotron frequency, � is the electron scattering time, and the
dimensionless parameter � characterizes FL interactions of
conduction electrons. For the spherical FS, the electron cy-
clotron mass coincides with their effective mass m. The dif-
ference between the frequency �0=��0� and the cyclotron
frequency is determined with the value of the Fermi-liquid
parameter �, namely, �0=��1+��. Depending on whether �

takes on a positive or negative value, �0 is greater for
smaller than �. Further, we assume for certainty that ��0.
When qR�1, the dispersion curve of this Fermi-liquid cy-
clotron wave is situated in the window of transparency
whose boundary is given by the relation �=�−qv0, which
corresponds to the Doppler-shifted cyclotron resonance for
the conduction electrons.

This is shown in Fig. 1 �left panel�. However, the disper-
sion curve meets the boundary of the transparency region at
q=qm�5 �� � /3R,7 and at this value of q, the dispersion
curve is terminated.8 So, for reasonably weak FL interactions
�����0.1�, the Fermi-liquid cyclotron wave may appear only
at qR�1 and its frequency remains close to the cyclotron
frequency for the whole spectrum.9 Similar conclusions were
made using some other models to mimic the FS shape such
as an ellipsoid, a nearly ellipsoidal surface, and a lens made
out of two spherical segments.10,11

It is clear that the main contribution to the formation of a
weakly attenuated collective mode near the boundary of the
transparency region at ��� comes from those electrons
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FIG. 1. Left panel: Dispersion of the transverse Fermi-liquid
cyclotron wave traveling along the external magnetic field for the
spherical �dash-dot line� and paraboloidal �solid line� FSs. The
curves are plotted using Eqs. �1� and �3� assuming �=−0.2. Right
panel: A schematic plot of the dispersion of a transverse Fermi-
liquid mode in a metal whose FS includes nearly paraboloidal seg-
ments. The low-frequency ����� branch is shown along with the
cyclotron wave. For both panels, the straight line corresponds to the
Doppler-shifted cyclotron resonance.
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which move with the greatest possible speed along the mag-
netic field B. The greater is the relative number of such elec-
trons, the more favorable conditions are developing for the
wave to emerge and to exist at comparatively low frequen-
cies, �−1����. The relative number of such “efficient”
electrons is determined with the FS shape, and the best con-
ditions are reached when the FS includes a lens made out of
two paraboloidal cups. Such lens corresponds to the follow-
ing energy-momentum relation for the relevant conduction
electrons:

E�p� =
p�

2

2m�

+ v0�pz� , �2�

where pz ,p� are the electron quasimomentum components in
the plane perpendicular to the external magnetic field B
= �0,0 ,B� and along the magnetic field, respectively. The ef-
fective mass m� corresponds to electron motions in the x ,y
plane. This model was employed in some earlier works to
study transverse collective modes occurring in a gas of
charge carriers near the Doppler-shifted cyclotron resonance
which are known as dopplerons.12–14 It was shown15 that for
negative values of the Fermi-liquid parameter � and pro-
vided that the FS contains a paraboloidal segment described
by Eq. �2�, the dispersion of the transverse Fermi-liquid
wave propagating along the magnetic field has the form ��
→��

�

�
= 1 −

1

2
�qR + ����

−
1

2
��qR − ����2 +

4

3

����qR�2

qR + ��qR�2 + ���2
, �3�

where �=eB /m�c. This result shows that for the paraboloi-
dal FS, there are no limitations on frequency of the Fermi-
liquid cyclotron wave within the collisionless limit �see Fig.
1, left panel�. The only restriction on the wave frequency is
caused by the increase of the wave attenuation due to colli-
sions. Taking into account electron scattering, one can prove
that the wave is weakly attenuated up to a magnitude of the
wave vector of the order of ��1−1/ ������ /v0. This value
�especially for small ���� is significantly larger than the value
qm for the spherical Fermi surface. Therefore, the frequency
of the Fermi-liquid cyclotron waves for negative � can be
much smaller than � �remaining greater than 1/��. Compar-
ing the dispersion curves of the transverse Fermi-liquid cy-
clotron wave for spherical and paraboloidal FSs, we see that
the FS geometry strongly affects the wave spectrum, and it
may provide a weak attenuation of this mode at moderately
low frequencies, ���. In the present work, we concentrate
on the analysis of the effects of the FS geometry on the
occurrence of weakly damped Fermi-liquid cyclotron waves
propagating in metals along the applied magnetic field at low
frequencies ��−1�����.

We show below that in realistic metals with appropriate
FSs, one may expect a low-frequency Fermi-liquid mode to
occur along with the Fermi-liquid cyclotron wave, as pre-
sented in Fig. 1 �right panel�. Both waves have the same
polarization and travel in the same direction. Also, we con-

sider possible manifestations of these low-frequency Fermi-
liquid waves by estimating the magnitude of the correspond-
ing size oscillations in the transmission coefficient for
electromagnetic waves propagating through a thin metal
film.

II. DISPERSION EQUATION FOR THE TRANSVERSE
FERMI-LIQUID WAVES

In the following analysis, we restrict our consideration
with the case of an axially symmetric Fermi surface whose
symmetry axis is parallel to the magnetic field. Then, the
response of the electron liquid of the metal to an electro-
magnetic disturbance could be expressed in terms of the
electron conductivity circular components, 	±�� ,q�
=	xx�� ,q�± i	yx�� ,q�. The above restriction on the FS
shape enables us to analytically calculate the conductivity
components. Also, the recent analysis carried out in Ref. 16
showed that no qualitative difference was revealed in the
expressions for the principal terms of the surface impedance
computed for the axially symmetric FSs and those not pos-
sessing such symmetry, provided that B is directed along a
high order symmetry axis of the Fermi surface. This gives
grounds to expect the currently employed model to catch
main features in the electronic response which remain exhib-
ited when the FSs of generalized �nonaxially symmetric�
shape are taken into consideration.

Within the phenomenological Fermi-liquid theory,
electron-electron interactions are represented by a self-
consistent field affecting any single electron included in the
electron liquid. Due to this field, the electron energies E�p�
get renormalized, and the renormalization corrections depend
on the electron position r and time t:


E = Tr	�� d3p�

�2���3F�p,	̂;p�,	̂����p�,r,	̂�,t� . �4�

Here, ��p ,r , 	̂ , t� is the electron density matrix, p is the
electron quasimomentum, and 	̂ is the spin Pauli matrix. The
trace is taken over spin numbers 	. The Fermi-liquid kernel
included in Eq. �4� is known to have the form

F�p,	̂;p�,	̂�� = ��p,p�� + 4�	̂	̂����p,p�� . �5�

For an axially symmetric FS, the functions ��p ,p�� and
��p ,p�� do not vary under identical change in the directions
of projections p� and p�� . These functions actually depend
only on the cosine of the angle � between the vectors p� and
p�� and on the longitudinal components of the quasimo-
menta, pz and pz�.

We can separate out even and odd in the cos � parts of the
Fermi-liquid functions. Then, the function ��p ,p�� can be
presented as follows:

��p,p�� = �0�pz,pz�,cos �� + �p�p�� ��1�pz,pz�,cos �� , �6�

where �0 ,�1 are even functions of cos �. Due to invariancy
of the FS under the replacements p→−p and p�→−p�, the
functions �0 and �1 should not vary under simultaneous
change in signs of pz and pz�. Using this, we can subdivide
the functions �0 ,�1 into the parts which are even and odd in
pz , pz�, and to rewrite Eq. �6� as
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��pz,pz�,cos �� = �00 + pzpz��01 + �p�p�� ���10 + pzpz��11� .

�7�

The function ��p ,p�� may be presented in the same way. In
Eq. �7�, the functions �00,�01,�10,�11 are even in all their
arguments, namely, pz , pz�, and cos �.

In the following computation of the electron conductivity,
we employ the linearized transport equation for the nonequi-
librium distribution function g�p ,r , t�=Tr	���p ,r , 	̂ , t�	.
While considering a simple harmonic disturbance, E
=Eq� exp�iq ·r− i�t�, we may represent the coordinate and
space dependencies of the distribution function g�p ,r , t� as
g�p ,r , t�=gq� exp�iqr− i�t�. Then, the linearized transport
equation for the amplitude gq��p� takes on the form

�gq�
e

�t̃
+ iq · vgq�

e + 
1

�
− i��gq� + e

�fp

�Ep
vEq� = 0. �8�

Here, fp is the Fermi distribution function for the electrons
with energies E�p�, and v=�E /�p is the electron velocity.
The collision term in Eq. �8� is written using the � approxi-
mation which is acceptable for high frequency disturbances
����1� considered in the present work. The derivative
�gq�

e /�t̃ is to be taken over the variable t̃ which has the
meaning of time of the electron motion along the cyclotron
orbit. The function gq�

e �p� introduced in Eq. �8� is related to
gq��p� as follows:

gq�
e �p� = gq��p� −

�fp

�Ep
�
p�

��p,p��gq��p�� . �9�

So, the difference between the distribution functions gq��p�
and gq�

e �p� originates from the FL interactions in the system
of conduction electrons.

Using the transport equation �Eq. �8�	, one may derive the
expressions for 	±�� ,q� including terms originating from the
Fermi-liquid interactions. The computational details are
given in Refs. 17 and 18. The results for the circular compo-
nents of the conductivity for a singly connected FS could be
written as follows:

	± =
2ie2A�0�

�2���3q

�

�0
±
1 −

�2u

Q2

�2
±� +

�2u

Q2

��1
±�2�


1 −
�1u

Q0

�0
±�
1 −

�2u

Q2

�2
±� +

�1�2

Q0Q2

u2��1
±�2� .

�10�

Here,

�n
± = �

−1

1 ā�x�m̄��x�xndx

u�± � v̄�x�
, �11�

Qn = �
−1

1

ā�x�m̄��x�xndx . �12�

ā�x� = A�x�/A�0�, v̄�x� = vz/v0,

m̄��x� = m��x�/m��0�, x = pz/p0,

�± = 1 ± �/� + i/��, u = �/qv0, �13�

where v0, p0 are the maximum values of the longitudinal
components of the electron quasimomentum and velocity;
A�x� is the FS cross-sectional area; m��x� is the cyclotron
mass of electrons. The dimensionless factors �1,2 in Eq. �10�
are related to the Fermi-liquid parameters �10 and �11:

�1,2 = f1,2/�1 + f1,2� , �14�

where

f1 =
2

�2���3 � p�
2 �10m�dpz,

f2 =
2

�2���3 � p�
2 pz

2�11m�dpz. �15�

When an external magnetic field is applied, electromag-
netic waves may travel inside the metal. In the present work,
we are interested in the transverse waves propagating along
the magnetic field. The corresponding dispersion equation
has the form

c2q2 − 4�i�	±��,q� = 0. �16�

When dealing with the electron Fermi liquid, this equation
for “�” polarization has solutions corresponding to helicoi-
dal waves and the transverse Fermi-liquid waves traveling
along the magnetic field, while when the relevant charge
carriers are holes, the “�” polarization is to be chosen in Eq.
�16�.

Considering these waves, we may simplify the dispersion
equation �Eq. �16�	 by omitting the first term. Also, we can
neglect corrections of the order of c2q2 /�p

2 ��p is the electron
plasma frequency� in the expression for the conductivity.
Then the Fermi-liquid parameter �1 falls out from the dis-
persion equation, and the latter takes on the form


�u� = 1/�2, �17�

where 
�u�= �u /Q2���2
−− ��1

−�2 /�0
−	.

Assuming the mass m� to be the same over the whole FS
and expanding the integrals �n

− in powers of u−1 and keeping
terms of the order of u−2, we get the dispersion relation for
the cyclotron mode at small q�u�1�:

� = ��1 + f2�1 +
�

f2

qv0

�
�2� , �18�

where

� = ��
−1

1

ā�x�v̄2�x�x2dx −
1

Q0
�

−1

1

ā�x�v̄�x�xdx�2� 1

Q2
.

�19�

For an isotropic electron liquid, �=8/35, and expression
�18� coincides with expression �1� where �= f2. Also, adopt-
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ing model �2�, we may analytically calculate the integrals �n
−

and transform the dispersion equation �Eq. �17�	 as

3��− + �2��1 − �u�−�2	 = �2. �20�

At small negative values of the parameter �2, this equation
has a solution of the form in Eq. �3� where �=�2.

Now, we start to analyze possibilities for the low-
frequency ��−1����� transverse Fermi-liquid mode to
emerge in realistic metals where the cyclotron mass depends
on pz. Such waves could appear near the Doppler-shifted
cyclotron resonance. Assuming �2�0, we may describe the
relevant boundary of the transparency region by the equa-
tions

S��,q,pz� = 0,

�S��,q,pz�/�pz = 0, �21�

where S�� ,q , pz�=�−��pz�+qvz�pz�. For small �, we have

��pz�
1 +
cq

2��e�B
dA

dpz
� = 0,

d�

dpz

1 +

cq

2��e�B
dA

dpz
� +

��pz�cq

2��e�B
d2A

dpz
2 = 0. �22�

We see that the attenuation at the boundary for small � is
carried out by the electrons belonging to neighborhoods of
particular cross sections on the Fermi surface where extrema
of the value dA /dpz are reached. These can be neighbor-
hoods of limiting points or lines of inflection, as shown in
Fig. 2.

In general, to study the various effects in the response of
an electron liquid of a metal near the Doppler-shifted cyclo-
tron resonance, one must take into account contributions
from all segments of the FS, therefore, the expressions for
the conductivity components �Eq. �10�	 are to be correspond-
ingly generalized. However, in studies of our problem, it is
possible to separate out that particular segment of the FS
where the electrons producing the low-frequency Fermi-

liquid wave belong. The contribution from the rest of the FS
is small, and we can omit it, as shown in Ref. 15.

So, in the following studies, we may use the dispersion
equation �Eq. �17�	 where the integrals �n

± are calculated for
the appropriate segment of the FS. It follows from this equa-
tion that the dispersion curve of the cyclotron wave will not
intersect the boundary of the region of transparency when the
function 
�u� diverges there. A similar analysis was carried
out in the theory of dopplerons.14 It was proven that when
the appropriate component of the conductivity �integral of a
type of �0�u�	 goes to infinity at the Doppler-shifted cyclo-
tron resonance, it provides the propagation of the doppleron
without damping in a broad frequency range.

In the further analysis, we assume for certainty that the
extrema of dA /dpz are reached at the inflection lines pz
= ± p*. In the vicinities of these lines, we can use the follow-
ing approximation:

ā�x� � ā�x*� + �dā

dx
�

x=x*
�x � x*� ±

1

s!
�dsā

dxs�
x=x*

�x � x*�s.

�23�

In this expression, x*= pz / p*, and the parameter s�s�3�
characterizes the FS shape near the inflection lines at x
= ±x*. The greater is the value of s, the closer is the FS near
pz= ± p* to a paraboloid �see Fig. 2�. When s=1, the FS has
spherical or ellipsoidal shape in the vicinities of these points.

The dependencies of the derivative dā /dx of x near x
=x* are presented in the left panel of Fig. 3. In this figure, the
horizontal line corresponds to a paraboloidal FS �s→��, the
straight line on the right is associated with a spherical FS
�s=1�, and the remaining curves are plotted for �s�3�. We
can see that the greater is the shape parameter s, the broader
are the nearly paraboloidal strips in the vicinities of the FS
inflection lines. Consequently, the greater number of conduc-
tion electrons is associated with the nearly paraboloidal parts
of the FS, and this creates more favorable conditions for the
wave to occur. A similar analysis may be carried out for the
case when dA /dpz reaches its extremal values at the vertices
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FIG. 2. Schematic plots of the FS profiles in the vicinities of
inflection lines �left panel� and vertices �right panel�. Left panel:
The profiles are drawn in accordance with Eq. �23� assuming p*
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near x*=0.5�s→��. Right panel: The curves are plotted assuming
x*=1 and ā�1�=0. Curves 1 and 4 correspond to spherical and
paraboloidal FSs, respectively; curves 2 and 3 represent nearly pa-
raboloidal FSs with s=7 and 9, respectively.
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of the FS. Again, to provide the emergence of the transverse
low-frequency Fermi-liquid mode, the FS near pz= ± p0 must
be nearly paraboloidal in shape.

Using the asymptotic expression in Eq. �23�, we may cal-
culate the main term in the function 
�u�. This term diverges
at the boundary of the region of transparency when s�3, and
it has the form


−�u� = − �su�1 − u�−��s �24�

where �s= �5−2s� / �2s−2�. For s�3, �s takes on negative
values, so within the collisionless limit ��→��, the function

−�u� diverges when 1−u�−→0. The value of the factor �s

is determined with the FS geometry near the inflection line,
namely,

�s =
�ā�x*�m̄��x*��s

Q2�s − 1�sin�3�/�2s − 2�	
, �25�

where

�s =  �dsā/dxs�x=x*

�s − 1�!�dā/dx�x=x*
�−3/2�s−1�

. �26�

Now, we can employ approximation �24� to solve the dis-
persion equation �Eq. �17�	. The solutions of this equation
within the collisionless limit describing the low-frequency
transverse Fermi-liquid wave at different values of the shape
parameter s are plotted in Fig. 3 �right panel�. All dispersion
curves are located in between the boundary of the transpar-
ency window and the straight line corresponding to the limit
s→� �a paraboloidal FS�. The greater is the value of s, the
closer is the dispersion curve to this line.

So, we showed that the low-frequency ����� transverse
Fermi-liquid wave could appear in a metal put into a strong
����1� magnetic field. This could happen when the FS is
close to a paraboloid near those cross sections where dA /dpz
reaches its maxima or minima. Therefore, the possibility for
this wave to propagate in a metal is provided with the local
geometry of the Fermi surface near its inflection lines or
vertices.

When � depends on pz and � increases, electrons associ-
ated with various cross sections of the Fermi surface partici-
pate in the formation of the wave. To provide the divergence
of the function 
�u� near the Doppler-shifted cyclotron reso-
nance, we have to require that not merely narrow strips near
lines of inflection or vicinities of limiting points but rather
large segments of the Fermi surface be nearly paraboloidal.
This condition is too stringent for FSs of real metals. So, we
can expect that the dispersion curve of the low-frequency
transverse Fermi-liquid wave intersects the boundary of the
region of transparency at rather small �, as shown in the
right panel of Fig. 1.

III. SIZE OSCILLATIONS IN THE SURFACE IMPEDANCE

To clarify possible manifestations of the considered
Fermi-liquid wave in experiments, we calculate the contribu-
tion of these waves to the transmission coefficient of a metal
film. We assume that the film occupies the region 0�z�L in

the presence of an applied magnetic field directed along a
normal to the interfaces. An incident electromagnetic wave
with the electric and magnetic components E�z� and b�z�
propagates along the normal to the film. Also, we assume
that the symmetry axis of the FS is parallel to the magnetic
field �z axis� and the interfaces reflect the conduction elec-
trons in a similar manner. Then, the Maxwell equations in-
side the metal are reduced to the couple of independent equa-
tions for circular components of the electrical field
E±�z�exp�−i�t� where �E±=Ex± iEy�:

�2E±

�z2 = −
�2

c2 E±�z� −
4�i�

c2 j±�z� , �27�

�E±�z�
�z

= �
�

c
b±�z� . �28�

Here, b±�z� and j±�z� are the magnitudes of the magnetic
component of the incident electromagnetic wave and the
electric current density inside the film, respectively. Expand-
ing the magnitudes E±�z� and j±�z� in Fourier series, we ar-
rive at the following equation for the Fourier transforms:

−
c2qn

2

4�i�
En

± + jn
± = �

ic

4�
��− 1�nb±�L� − b±�0�	 , �29�

where En
± equals

En
± = �

0

L

E±�z�cos�qnz�dz �30�

and qn=�n /L.
It was mentioned above that possible frequencies of the

low-frequency Fermi-liquid mode have to satisfy the in-
equality ���2���−1����. For ��10−9 s, the frequency �
cannot be lower than 109–1010 s−1. Due to the high density
of conduction electrons in good metals, the skin depth  may
be very small. Assuming the electron density to be of the
order of 1030 m−3 and the mean free path l�10−5 m �a clean
metal�, we estimate the skin depth at the disturbance fre-
quency ��109 s−1 as �10−6 m. Therefore, at high fre-
quencies �, the skin effect in good metals becomes ex-
tremely anomalous so that  / l�10−1–10−2 or even smaller.
Correspondingly, the anomaly parameter �= l /�� is of the
order 102–103. Thus, for the whole frequency range of the
considered Fermi-liquid mode, the skin effect is of anoma-
lous character. Under these conditions, electrons must move
nearly in parallel with the metal surface to remain in the skin
layer for a sufficiently long while. The effect of the surface
roughness on such electrons is rather small. Nevertheless, we
may expect the effects of surface roughness to bring changes
in the corresponding size oscillations of the transmission co-
efficient. To take into account the effects of diffuse scattering
of electrons from the surfaces of the film, one must start from
the following expression for the Fourier transforms of the
current density components:
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jn
± = 	n

±En
± + �

n�=0


1 −
1

2
n�0�	nn�

± En�
± , �31�

where 	n
±=	xx�� ,qn�± i	yx�� ,qn� are the circular

components of the bulk conductivity and 	nn�
=	xx�� ,qn ,qn��±	yx�� ,qn ,qn�� are the circular components
of the surface conductivity. The effects originating from the
surface roughness are included in 	nn�

± which becomes zero
for a smooth surface providing the specular reflection of
electrons. The calculation of 	nn�

± is a very difficult task
which could hardly be carried out analytically if one takes
into account Fermi-liquid correlations of electrons. However,
such calculations were performed for a special case of pa-
raboloidal FS corresponding to the energy-momentum rela-
tion �Eq. �2�	 in the earlier work.19 As was mentioned before,
the FS segments which give the major contributions to the
formation of the transverse Fermi-liquid mode are nearly pa-
raboloidal in shape, therefore, the results of the work19 may
be used to qualitatively estimate the significance of the sur-
face scattering of electrons under the conditions of the
anomalous skin effect. We assume for simplicity that the
diffuse scattering is characterized by a constant P�0�P
�1�. When P=0, the reflection of electrons is purely specu-
lar, whereas P=1 corresponds to the completely diffuse re-
flection. Adopting expression �2� to describe the electron
spectrum, one could obtain

	n
± = ±

iNe2

3m��
�± 1

�n
± +

2��±
*/�±�2

�n
*± � , �32�

	nn�
± =

4

3

Ne2

m��
 

v0

�L
�±

2 1

1 �  s±

1

�n
±�n�

±

+
2��±

*/�±�4

1 �  s±
*�±

*/�±

1

�n
*±�n�

*±� , �33�

where N is the electron density,

s± = i tan�L��±/v0� ,

s±
* = i tan�L��±

*/v0� ,

�n
± = �±

2 − qn
2,

�n
*± = �±

*2 − qn
2 � �±

2 � �2�± − qn
2. �34�

The parameter  = P / �2− P� characterizes the strength of the
diffuse component in the electron scattering from the sur-
faces of the metal film.

Comparing expressions �32� and �33�, we conclude that
	n

± predominates over 	nn� in magnitude when  � /L
�� /�. Assuming that the anomaly parameter ��102, the
skin depth �10−6 m, and ���, we conclude that the
roughness of the surface does not affect the transmission
coefficient if the film thickness L is not smaller than 10−4 m.
For thinner films, the surface roughness may bring noticeable
changes into the transmission. For instance, when L� l
�10−5 m, we may neglect the diffuse contribution to the

electron reflection at the surfaces of the film when  
�0.1�P�0.2�. In further calculations, we assume the film
surfaces to be smooth enough, so that we could treat the
electron reflection from the metal film surfaces as nearly
specular. Correspondingly, we omit the second term in ex-
pression �31�.

Substituting the resulting expressions for jn
± into Eq. �29�,

we get

En
± = �

�

c
F±��,qn���− 1�nb±�L� − b±�0�	 . �35�

Here, we introduced the notation

F±��,qn� = 
qn
2 −

4�i�

c2 	n
±�−1

. �36�

Now, using these expressions for the Fourier transforms, we
get the relations for the electric and magnetic fields at the
interfaces z=0 and z=L:

E±�0� =
c

4�
�Z±

�0�b±�0� − Z±
�1�b±�L�	 , �37�

E±�0� =
c

4�
�Z±

�1�b±�0� − Z±
�0�b±�L�	 , �38�

where the surface impedances are given by

Z±
�0� = ±

8��

Lc2 �
n=0


1 −
1

2
n0�F±��,qn� , �39�

Z±
�1� = ±

8��

Lc2 �
n=0


1 −
1

2
n0��− 1�nF±��,qn� . �40�

To get the expression for the transmission coefficient which
is determined by the ratio of the amplitudes of the transmit-
ted field �Et� at z=L and the incident field �Ei� at z=0, we
use the Maxwell boundary conditions

2Ei
± = E±�0� + b±�0�, Et

± = b±�L� . �41�

Then, we define T±= �Et
± /Ei

±� where Et
± /Ei

±= �E±�L�
+b±�L�	 / �E±�0�+b±�0�	. Assuming that the transmission is
small �T±�1�, we get the asymptotic expression

Et
±

Ei
± �

c

4�
Z±

�1�, �42�

where Z±
�1� is given by relation �40�.

Therefore, keeping the “-” polarization, we can start from
the following expression for the transmission coefficient:

T =
4i�

Lc
�
n=0

�− 1�n+1
1 −
1

2
n0�F−��,qn� , �43�

Using Poisson’s summation formula

�
n=0

y�qn� = �
r=−�

� �
0

�

y
�
L

x�exp�2�irx�dx , �44�

we convert the expression for the transmission coefficient to
the form
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T =
2

�

�

c
�

−�

�

sign�q�csc�Lq�F−��,q�dq , �45�

where sign�q� is the sign function: sign�q�= �q� /q. An impor-
tant contribution to the integral in Eq. �45� comes from the
poles of the function F−�� ,q�, i.e., the roots of the dispersion
equation �Eq. �16�	 for the relevant polarization. The contri-
bution from the considered low-frequency mode to the trans-
mission coefficient is equal to a residue from the appropriate
pole of the integrand in expression �45�.

When dA /dpz gets its extremal values at the inflection
lines �pz= ± p*�, the contribution T1 from this wave to the
transmission coefficient is

T1 �
�s

�

v0

c
�2

2�̃3���2��̃�−7s/2�1 − �̃�−3/�2s−5�

��sin2L

l
���1 − �̃�� + sinh2
L

l
��−1/2

, �46�

where �̃=� /��p*� and �s is the dimensionless factor of the
order of unity:

�s =
2s − 3

2s − 5

Q0

Q2
�x*�2��s��2s−3�/�2s−5�. �47�

The size oscillations of the transmission coefficient arising
due to the low-frequency cyclotron wave could be observed
in thin films whose thickness is smaller than the electron
mean free path �L� l�. Under this condition, we can obtain
the following estimates for �T1� in a typical metal in a mag-
netic field of the order of 5 T and for the shape parameter
s=3:

T1 � �10−10 – 10−11�l/L . �48�

Size oscillations of the transmission coefficient described by
expression �43� are shown in Figs. 4 and 5. When �s=3� �see
Fig. 4�, the oscillation amplitudes accept values �10−8–10−9

depending on the ratio L / l. The values of such order can be
measured in experiments on the transmission of electromag-
netic waves through thin metal films. However, the oscilla-
tion magnitudes may reach significantly greater values when
the shape parameter increases. As displayed in Fig. 5, T1 can
reach the values of the order of 10−6 when s=5.

Under the considered conditions, the transmission coeffi-
cient also includes a contribution T2 from electrons corre-
sponding to the vicinities of those cross sections of the Fermi
surface where the longitudinal component of their velocity
becomes zero. This contribution always exists under the
anomalous skin effect. The most favorable conditions for the
observation of the size oscillations arising due to the Fermi-
liquid wave in experiments are provided when T1�T2. It
happens when L���v0. When the FS everywhere has a fi-
nite nonzero curvature the expression for T2 can be written as
follows:20

T2 �
4

3

v0

c

1

�
exp
−

L���

l
� . �49�

In magnetic fields �5T and for L��v0, the contribution T2
has the order of 10−10–10−11, i.e., the predominance of the
term T1 over T2 can be reached. Besides the contributions
from the poles of F−�� ,q�, the transmission coefficient �Eq.
�45�	 includes a term T3 originating from the branch points of
this function in the q ,� complex plane. These points cause
the Gantmakher-Kaner size oscillations of the transmission
coefficient.21 However, for L��v0, these oscillations have a
magnitude of the order of 10−9–10−10 or less. So, the present
estimates give grounds to expect that the size oscillations in
the transmission coefficient of the electromagnetic wave
through a thin film of a clean metal may include a rather
significant or even predominating contribution, which arises
due to the low-frequency ����� Fermi-liquid mode.

Fermi surfaces of real metals are very complex in shape
and most of them have inflection lines, so there are grounds

FIG. 4. Size oscillations in the transmission coefficient for the
transverse electromagnetic wave traveling through a metal film
which originate from the low-frequency Fermi-liquid mode. The
curves are plotted at �2=−0.2 and s=3. ���50, �=103, and L / l
=0.01 �dash-dot line�, 0.025 �solid line�, and 0.05 �dashed line�.

FIG. 5. The dependence of the transmission from the FS shape
near the inflection line. The curves are plotted for s=3 �dashed
line�, 4 �solid line�, and 5 �dash-dot line� and L / l=0.025. The re-
maining parameters coincide with those used to plot the curves in
Fig. 4.
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to expect the low-frequency Fermi-liquid waves to appear in
some metals. Especially promising are such metals as cad-
mium, tungsten, and molybdenum where collective excita-
tions near the Doppler-shifted cyclotron resonance �dopple-
rons� occur.12–14 Another kind of interesting substances are
quasi-two-dimensional conductors. Applying the external
magnetic field along the FS axis and using the tight-binding
approximation for the charge carriers, we see that the maxi-
mum longitudinal velocity of the latter is reached at the FS
inflection lines where d2A /dpz

2=0. So, we may expect the
low-frequency Fermi-liquid wave to appear at some of these
substances, along with the usual Fermi-liquid cyclotron
wave.

IV. CONCLUSION

It is a common knowledge that electron-electron correla-
tions in the system of conduction electrons of a metal may
cause occurrences of some collective excitations �Fermi-
liquid modes�, whose frequencies are rather close to the cy-
clotron frequency at strong magnetic fields ����1�. Here,
we show that a Fermi-liquid wave can appear in clean metals
at significantly lower frequencies ��−1�����. The major
part in the wave formation is taken by the electrons �or
holes� which move along the applied magnetic field with the
maximum velocity v0. Usually, such electrons belong to the
vicinities of limiting points or inflection lines on the FS.
When the FS possesses nearly paraboloidal segments includ-
ing these points for lines, the longitudinal velocity of the
charge carriers slowly varies over such FS segments, remain-

ing close to its maximum value v0. This strengthens the re-
sponse of these efficient electrons to the external distur-
bances. As a result, the spectrum of the Fermi-liquid
cyclotron wave may be significantly changed. These changes
were analyzed in some earlier works �see, e.g., Ref. 15� as-
suming that the cyclotron mass of the charge carriers remains
the same all over the FS. Under this assumption, it was
shown that the appropriate FS geometry at the segments
where the maximum longitudinal velocity of electrons for
holes is reached may cause the dispersion curve of the trans-
verse Fermi-liquid cyclotron wave to be extended to the re-
gion of comparatively low frequencies �����.

In the present work, we take into account the dependence
of the cyclotron mass of pz. This more realistic analysis leads
to the conclusion that one may hardly expect the above ex-
tension of the Fermi-liquid cyclotron wave spectrum in real
metals. However, when the FS has the suitable geometry at
the segments where the charge carriers with maximum lon-
gitudinal velocity are concentrated, the low-frequency
Fermi-liquid mode may occur in the metal alongside the
usual Fermi-liquid cyclotron wave. This mode may cause a
special kind of size oscillations in the transmission coeffi-
cient for an electromagnetic wave of the corresponding fre-
quency and polarization incident on a thin metal film.
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