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Supersymmetry is a symmetry between a boson and a fermion. Although there is no apparent supersymmetry
in nature, its mathematical consistency and appealing properties have led many people to believe that super-
symmetry may exist in nature in the form of a spontaneously broken symmetry. In this paper, we explore an
alternative possibility by which supersymmetry is realized in nature, that is, supersymmetry dynamically
emerges in the low-energy limit of a nonsupersymmetric condensed matter system. We propose a �2+1�-di-
mensional lattice model which exhibits an emergent space-time supersymmetry at a quantum critical point. It
is shown that there is only one relevant perturbation at the supersymmetric critical point in the � expansion and
the critical theory is the two copies of the Wess-Zumino theory with four supercharges. Exact critical exponents
are predicted.
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I. INTRODUCTION

Poincare invariance is the underlying space-time symme-
try of relativistic quantum field theories. There are only two
mathematically consistent ways of extending the symmetry
in nontrivial ways due to a no-go theorem.1 One is a confor-
mal symmetry and the other, a supersymmetry. A conformal
symmetry combines the Poincare invariance with scale in-
variance. It is realized in the long-distance limit of a mass-
less theory at which all finite length scales are scaled out. A
supersymmetry is a symmetry between a boson and a fer-
mion. Generators of supersymmetry Q�, which are called
supercharges, are spinors and they satisfy the commutation
relations

�Q�,Q�� = 2P����
� + Z��, �Q�,P�� = 0, �1�

where � and � are spinor indices, ���
� are constants, P� is

the energy-momentum operator and Z�� are central charges.
Because supercharges are fermionic operators, a boson is
transformed into a fermion �and vice versa� under supersym-
metry transformations. Therefore, the number of bosonic
modes is equal to the number of fermionic modes in super-
symmetric theories. The second commutation relation in Eq.
�1� implies �P�P� ,Q��=0, and masses of supersymmetric
partners are identical. Since bosons and fermions contribute
to quantum effective actions with quantum corrections of the
opposite signs and they have same masses, the effects of
quantum fluctuations of bosons and fermions are canceled
with each other in supersymmetric theories. Because of this,
quantum corrections are highly constrained by kinematics. If
there are enough supersymmetries, there is no quantum cor-
rection at all �nonrenormalization� for some quantities. Due
to the nonrenormalization property, supersymmetry has been
proposed as a way of stabilizing the hierarchy of vastly dif-
ferent mass scales present in the standard model. It may also
play an important role in the unification of the gauge inter-
actions. On the other hand, many supersymmetric theories
have been studied as toy models where a supersymmetry
enables one to understand strong coupling physics
rigorously.2,3

Despite the unique mathematical consistency and beauti-
ful properties of supersymmetry, nature does not exhibit su-
persymmetry at low-energy scales. If nature is supersymmet-
ric, it should be spontaneously broken. If that is the case,
supersymmetry will become manifest at a high-energy scale.
An alternative way of finding supersymmetry in nature may
be to go to a low energy in condensed matter systems, rely-
ing on the principle of emergence.

A new symmetry can emerge in the low-energy limit al-
though a microscopic model does not respect the symmetry.
For example, a low-energy effective theory can have the full
Poincare invariance although the underlying lattice explicitly
breaks rotational symmetry in a condensed matter system.
Even a gauge symmetry4 and a general covariance5,6 can be
emergent. The emergence of a new symmetry can be a char-
acteristic of a new state of many-body systems.7 Searching
for new states of matter in condensed matter systems is be-
coming an important research avenue as new materials which
cannot be understood in conventional theories are synthe-
sized8,9 and highly controllable correlated many-body sys-
tems can be fabricated in cold atom systems.10,11 Therefore,
it would be of interest to find a condensed matter system
which shows an emergent supersymmetry.

It has been suggested that supersymmetry can emerge in
the low-energy limit of a nonsupersymmetric theory.12–14 In
�1+1� dimensions, supersymmetry emerges at the tricritical
point of the dilute Ising model.15 Emergent supersymmetries
play important roles in realizing lattice versions of super-
symmetric field theories in various dimensions.16 For ex-
ample, the N=1 �3+1�-dimensional super Yang-Mills theory
can emerge without an underlying supersymmetry although
the notion of the emergent supersymmetry is rather obscure
in this case due to the opening of a mass gap caused by
confinement. Supersymmetric field theories can also be real-
ized in lattices by fine tunings of bare parameters17 or by a
dynamical mechanism where some supersymmetries which
are already present in lattices guarantee the emergence of
continuum supersymmetries without fine tuning.18 In this pa-
per, we construct a �2+1�-dimensional ��2+1�D� lattice
model where supersymmetry may dynamically emerge at a
quantum critical point without any lattice supersymmetry.
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It is noted that nonrelativistic supersymmetries have been
considered in condensed matter systems.19,20 In nonrelativis-
tic systems, supercharges are scalars �not spinors� and the
anticommutator of supercharges generates only energy �not
momentum�, that is, �Q ,Q†�=H, where H is a Hamiltonian.
In such systems, supersymmetries play the roles as in
�0+1�-dimensional quantum mechanical systems.21 The
present work concerns an emergence of a full space-time
supersymmetry in a �2+1�D relativistic system where the
relativity is also emergent out of a nonrelativistic micro-
scopic system. In this case, the algebra of supercharges gen-
erates the translations in both time and space through the
energy-momentum operator as in Eq. �1�.

II. MICROSCOPIC MODEL AND LOW-ENERGY
EFFECTIVE THEORY

The microscopic system is a mixture of fermions and
bosons. The Hamiltonian is composed of three parts,

H = Hf + Hb + Hfb, �2�

where

Hf = − tf�
�i,j	

�f i
†f j + H.c.� ,

Hb = tb�
�I,J	

�ei��I−�J� + H.c.� +
U

2 �
I

nI
2,

Hfb = h0�
I

ei�I�f I+b1
f I−b1

+ f I−b2
f I+b2

+ f I−b1+b2
f I+b1−b2

� + H.c.

�3�

Here, Hf describes spinless fermions with nearest neighbor
hopping on the honeycomb lattice, Hb describes bosons with
nearest neighbor hopping and an on-site repulsion on the
triangular lattice which is dual to the honeycomb lattice, and
Hfb couples the fermions and bosons. The lattice structure is
shown in Fig. 1�a�. f i is the fermion annihilation operator and
e−i�I the lowering operator of nI which is conjugate to the
angular variable �I. i , j and I ,J are site indices for the hon-
eycomb and triangular lattices, respectively. tf , tb�0 are the
hopping energies for the fermions and bosons, respectively,
and U is the on-site boson repulsion energy. Note that the
boson hopping is frustrated. This will play a crucial role for
the emergent supersymmetry as will be shown later. b1 and
b2 are vectors which connect a site on the triangular lattice to
the neighboring honeycomb lattice sites, as is shown in Fig.
1�a�. h0 is the pairing interaction strength associated with the
process where two fermions in the f-wave channel around a
hexagon are paired and become a boson at the center of the
hexagon, and vice versa. In this sense, the boson can be
regarded as a Cooper pair made of two spinless fermions in
the f-wave function, as is shown in Fig. 1�b�. This model has
a global U�1� symmetry under which the fields transform as
f i→ f ie

i	 and e−i�I→e−i�Iei2	.
First, we identify low-energy modes of the fermions

and bosons in the absence of the coupling Hfb. At

zero chemical potential, the fermions are half filled
and their energy spectrum is given by ek

f

= ± tf
�1+cos k1+cos k2�2+ �sin k1−sin k2�2, where k1=akx,

k2=a
−kx+
3ky

2 with a the lattice spacing. There exist two Fermi
points at kA= 2


a
� 1

3 , 1

3

� and kB= 2

a

� 2
3 ,0� as shown in Fig.

1�c�. Since the energy dispersion is linear near the Fermi
points, the low-energy excitations are described by two Dirac
fermions,

L f = i�
n=1

2

�̄n��0� + cf�
i=1

2

�i�i��n. �4�

Here, �1 ��2� denotes the two-component complex fermion
at momentum kA �kB�. ��= �� ,�x ,�y� are the derivatives in
imaginary time and the spatial directions. �0�3, �1�1,

and �2�2 with �� the Pauli matrices. �̄n−i�n
†�0 and cf

� tfa is the Fermi velocity.
To obtain a low-energy theory for the bosons, we intro-

duce a soft boson field �I= ��I�e−i�I and the potential V���
=u2���2+u4���4 which gives a finite amplitude to the soft
boson field. In energy-momentum space, the boson action
becomes

Sb =� dk� 1

2U
k0

2 + ek
b + u2���k�2

+ u4� dk1dk2dq�k2−q
* �k1+q

* �k1
�k2

, �5�

where �dk�
dk0dkxdky

�2
�3 is the energy-momentum integration

1

2

x

y

(a)
a

a

k

k
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y
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A

FIG. 1. �Color online� �a� The lattice structure in the real space.
Fermions are defined on the honeycomb lattice, while bosons live
on the dual triangular lattice. a1 and a2 are the lattice vectors with
length a, and b1 and b2 are two independent vectors which connect
a site on the triangular lattice to the nearest neighbor sites on the
honeycomb lattice. �b� The phases of a fermion pair in real space.
�c� The first Brillouin zone in momentum space. A and B indicate
two inequivalent points with momenta kA= 2


a
� 1

3 , 1

3

� and kB

= 2

a

� 2
3 ,0� where the low-energy modes are located. �1, �2 are lo-

cated at kA and �2, �1 at kB.
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and ek
b =2tb�cos k1+cos k2+cos�k1+k2��. Since the boson

hopping has the wrong sign, k= �0,0� is not the minimum of
ek

b; rather, two minima occur at kA and kB where the nodal
points of the fermions are located. Therefore, we have two
low-energy boson modes. We introduce �1 and �2 to repre-
sent the low-energy modes near the kB and kA points, respec-
tively. Note that the �1 ��2� boson carries the same momen-
tum as the �2 ��1� fermion. With this convention, we will see
that only those bosons and fermions which carry the same
index �n=1,2� interact with each other at low energies. Ex-
panding ek

b near the two minima, we obtain the effective
Lagrangian for the low-energy bosons,

Lb = �
n=1

2 ����n�2 + cb
2�

i=1

2

��i�n�2 + m2��n�2�
+ �1��

n=1

2

��n�4 + �2���1�2��2�2, �6�

where cb�
tbUa is the boson velocity which is, in general,
different from the fermion velocity cf. Although both the
fermions and bosons have the “relativistic” energy spectra,
there is no Lorentz symmetry if the velocities are different.
The Lorentz symmetry requires the velocities of all massless
particles to be identical. As will be shown later, the Lorentz
symmetry will emerge in the low-energy limit through quan-
tum corrections. m is the boson mass and the coupling con-
stants �1 and �2 are made dimensionless by introducing a
mass scale �. Note that momentum conservation does not
allow an interaction such as �2

*�2
*�1�1.

We can obtain the interaction between the low-energy fer-
mions and bosons by rewriting Hfb in energy-momentum
space and keeping only the low-energy modes. The resulting
interaction Lagrangian is

L fb = h�1/2�
n=1

2

��n
*�n

T��n + c.c.� , �7�

where � is the 2�2 antisymmetric matrix with �12=−�21
=1. Terms such as �2

*�1
T��1 or �2

*�1
T��2 are not allowed

because they do not satisfy momentum conservation.

III. RENORMALIZATION GROUP ANALYSIS

Now, we perform a one-loop renormalization group �RG�
analysis in 4−� dimensions for the low-energy effective
theory given by

L = L f + Lb + L fb. �8�

We use the dimensional regularization scheme where the
number of fermion components and the traces of gamma
matrices are fixed.23 Maintaining the same number of fermi-
onic and bosonic modes in 4−� dimension is important be-
cause supersymmetry requires that the number of modes is
the same for the bosons and fermions. If there is a gauge
symmetry, more sophisticated regularization scheme is nec-
essary to preserve both gauge symmetry and supersymmetry
because the number of components of gauge boson should

depend on the dimension of space-time.24 Since there is no
gauge symmetry in the present model, the simple dimen-
sional regularization scheme can maintain supersymmetry.25

Of course, the present model has no supersymmetry. The
point is that it is convenient to use a regularization scheme
which can maintain supersymmetry in probing an emergent
supersymmetry in the low-energy limit.

In the � expansion, the above Lagrangian contains all the
relevant and marginal terms. A four fermion interaction has
the scaling dimension D=6−2�+O��2� and can be ignored
for a small �. In the following, we do not consider the four
fermion interaction. However, in principle, the four fermion
interaction can become important in �2+1�D due to a strong
interaction, in which case one needs to tune a microscopic
four fermion interaction term to reach the fixed points we
will discuss in the following. The boson mass is always a
relevant perturbation and we tune it to zero in order to ex-
amine the RG flow of the other couplings in the massless
subspace. At the one loop level, there are eight diagrams
which are shown in Fig. 2. Each diagram contributes to the
quantum effective action as follows:

�L�a� =
4h2

�4
�2cf
2�

�
n=1

2

i�̄n� f0�0� + cf f1�
i=1

2

�i�i��n,

�L�b� =
4h2

�4
�2cf
2�

�
n=1

2 ����n�2 + cf
2�

i=1

2

��i�n�2� ,

(d)

h

h h

h

(c)

h h

h h

(b)

λ1

λ1

(e)

λ2λ2

(f)

λ2

λ2

(h)

λ1 λ2

(g)

λ1 λ1

(a)

FIG. 2. One-loop diagrams. �a� and �b� are the self-energy cor-
rections of fermions and bosons respectively. �c�–�f� contribute to
the vertex correction of �1, while �f�, �g�, and �h� contribute to �2.
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�L�c� =
16h4

�4
�2cf
2�

�
n=1

2

��n�4,

�L�d� = −
16�1

2

�4
�2cb
2�

�
n=1

2

��n�4,

�L�e� = −
4�1

2

�4
�2cb
2�

�
n=1

2

��n�4,

�L�f� = −
�2

2

�4
�2cb
2�

�
n=1

2

��n�4 −
2�2

2

�4
�2cb
2�

��1�2��2�2,

�L�g� = −
16�1�2

�4
�2cb
2�

��1�2��2�2,

�L�h� = −
2�2

2

�4
�2cb
2�

��1�2��2�2, �9�

where f0= 4
���+1�2 and f1=

4�2�+1�

3���+1�2 with �=cb /cf. From the

renormalized quantum effective action, the beta functions are
obtained to be

dh

dl
=

�

2
h −

1

�4
cf�2�2 +
16cf

3

cb�cf + cb�2�h3,

d�1

dl
= ��1 −

1

�4
�2�20�1
2 + �2

2

cb
2 +

8h2�1

cf
2 −

16h4

cf
2 � ,

d�2

dl
= ��2 −

1

�4
�2�4�2
2 + 16�1�2

cb
2 +

8h2�2

cf
2 � ,

dcf

dl
=

32h2cf�cb − cf�
3�4
�2cb�cb + cf�2 ,

dcb

dl
= −

2h2cb�cb
2 − cf

2�
�4
cbcf�2 ,

�10�

where the scaling parameter l increases in the infrared.
There are two solutions for �h=0. One is the unstable

solution with h=0 and the other, the stable one with a finite
h. At h=0, the bosons and fermions are decoupled. The fer-
mion system consists of noninteracting Dirac fermions. The
RG flow of the boson couplings in the subspace of m=h=0
is shown in Fig. 3. In the subspace of m=h=0, there are
three fixed points, that is, the Gaussian �GA� fixed point with
�h* ,�1

* ,�2
*�= �0,0 ,0�, the Wilson-Fisher �WF� fixed point

with �h* ,�1
* ,�2

*�= �0,
�4
cb�2�

20 ,0�, and the O�4� fixed point

with �h* ,�1
* ,�2

*�= �0,
�4
cb�2�

24 ,
�4
cb�2�

12
�. Because the linear

term of the beta function at the O�4� fixed point accidentally
vanishes along a direction, at higher order in �, there occurs
a stable fourth fixed point between the WF fixed point and
the O�4� fixed point.22 However, the fixed points in the m
=h=0 plane are all unstable because the pairing interaction h
is relevant.

Once we turn on the pairing interaction, h flows to a finite

value with h2=
�4
cf�2�

2 �2+
16cf

3

cb�cf+cb�2�−1
, and the boson and fer-

mion velocities begin to flow as can be seen from the last
two equations in Eq. �10�. Because the pairing interaction
mixes the velocities of the boson and fermion, the difference
of the velocities exponentially flows to zero in the low-
energy limit as is shown in Fig. 4�a�. The line of cb=cf is
critical, and the value of the velocity in the infrared limit is a
nonuniversal value. This implies that the bosons and fermi-
ons have the same energy dispersion and Lorentz symmetry
emerges at low energies due to quantum fluctuations. Now,
we consider the flow of h, �1, and �2 with a fixed cb=cf =c.
The RG flow is displayed in Fig. 4�b�. In the following, we
will use units where c=1. With a nonzero h, the system flows
to a stable fixed point,

O(4)

λ

λ1WFGA

2

FIG. 3. The schematic RG flow of the bosonic couplings in the
subspace of m=h=0.

(a)

b

cf

cb cf

h

λ

λ

SUSY

2

1
WFGA

=

(b)

c

FIG. 4. �Color online� Schematic RG flows of �a� the velocities
with h�0 and �b� �1, �2, and h in the subspace of m=0. In �b�, the
solid lines represent the flow in the plane of �h ,�1� and the dashed
lines, the flow outside the plane.
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�h*,�1
*,�2

*� = �
�4
�2�

12
,
�4
�2�

12
,0� . �11�

The nonzero h is a consequence of strong pairing fluctuations
at the critical point. This is crucial in obtaining Lorentz sym-
metry and supersymmetry as will be discussed in the follow-
ing. At the fixed point, �2 vanishes and there is no coupling
between the two sets of low-energy modes, ��n ,�n� with n
=1,2. Physically, this implies that the Bose condensates
which carry the different momenta kA and kB develop inde-
pendently in the condensed phase. At the critical point, �1
=h2 and the theory becomes invariant under the transforma-
tion,

��n
�n = − �̄n�n, ��n

�n
* = �̄n�n,

��n
�n = i ”��n

*�n −
h

2
�n

2��̄n
T,

��n
�̄n = i�̄n ”��n −

h

2
�n

*2�n
T� , �12�

where ”�=���� and �n is a two-component spinor of Grass-
mann variables which parametrizes the transformation. This
is a supersymmetry because the bosons and fermions are
mixed under the transformation. Since the two sets of modes
��n ,�n� are decoupled at the critical point, the supersym-
metry transformations are independent for n=1 and 2. That
is why the spinor �n has the index n. Here, ��n

�̄n

�−i���n
�n�†�0 because we are using the imaginary time for-

malism. The supersymmetry leads to conserved supercur-
rents,

J�
n = ”��n���n + i

h

2
�n

2����̄n
T,

J̄�
n = �̄n�� ”��n

* + i
h

2
�n

*2�n
T���. �13�

Here, the spinor indices in J�
n and J̄�

n are suppressed. For
each n, there are four independent supercharges, Q�

n

=�dx2J0�
n and Q̄�

n =�dx2J̄0�
n , in �2+1�D. The supercharges

satisfy the commutation relations such as Eq. �1�. This cor-
responds to N=2 supersymmetry in each sector of n, that is,
there are twice as much supercharges as the minimum num-
ber of supercharges in �2+1�D. The resulting super-Poincare
invariance is an emergent symmetry because the microscopic
model has neither Poincare symmetry nor supersymmetry.
Each set made of one complex boson and one two-
component fermion forms a chiral multiplet of the supersym-
metry. This critical theory is the N=2 Wess-Zumino theory26

with two copies of chiral multiplets.27 The critical exponents
calculated in the one-loop level,

�� = �� = �/3, �14�

match those of the Wess-Zumino theory in the leading order
of �. In the supersymmetric theory, the one-loop result is
exact as will be explained later. It is of note that the critical

exponent is independent of regularization scheme although
the values of the couplings depend on regularization scheme.

The schematic phase diagram of the Hamiltonian �Eq. �2��
for a generic value of h0 is shown in Fig. 5 in the parameter
space of tb /U. There is a second order phase transition be-
tween the normal phase for small tb /U and the Bose con-
densed phase for large tb /U. In the normal phase, the fermi-
ons are gapless, while a gap opens in the Bose condensed
phase. The critical point is described by the supersymmetric
Wess-Zumino theory although both the normal and the Bose
condensed phases are nonsupersymmetric.

Although the evidences for the emergent supersymmetry,
that is, the supersymmetric relation of the couplings and the
scaling dimensions, are obtained based on the calculation to
leading order in �, we expect that the same conclusion holds
to all orders in �, at least for small � for the following reason.
The present model contains the supersymmetric Wess-
Zumino theory in the sense that the supersymmetric Wess-
Zumino theory can be reached at least by fine tunings of the
bare parameters. Therefore, the Wess-Zumino theory should
appear as a fixed point of this model in any case in the
parameter region of �1�h2��, although we do not know a
priori whether it is a stable or unstable fixed point. Since the
fixed point which was identified as the Wess-Zumino theory
at leading order in � is the only fixed point which exists in
that parameter range, and the higher-order terms in the �
expansion cannot generate a new fixed point near the generic
stable fixed point, the fixed point obtained to leading order in
� should correspond to the Wess-Zumino fixed point to all
orders in �. In other words, if the fixed point obtained to
leading order in � were not the supersymmetric Wess-
Zumino fixed point, another fixed point which corresponds to
the Wess-Zumino theory should have appeared to leading
order in �.

Note that the supersymmetry transformations in Eq. �12�
mix bosons and fermions which carry different global U�1�
charges, where the U�1� charges of the fermions and bosons
are given by Q�=1 and Q�=2, respectively. Therefore, the
supercharges should carry a non-trivial U�1� charge which is
called R charge. At the supersymmetric critical point, the
super-Poincare symmetry is enlarged to an even bigger sym-
metry, that is, the superconformal symmetry which includes
the generators of the super-Poincare group, and additional
fermionic generators and the R charge.28 The additional fer-
mionic generators arise from the commutator of the super-
charges and the conformal generators. The R charge which
enters in the superconformal algebra is related to the global
U�1� charge as R=− Q

3 . The factor of 3 in the definition of the
R charge is due to the cubic superpotential of the Wess-

Normal phase

Supersymmetric
critical point

bt /U
Bose condensed phase

FIG. 5. The schematic phase diagram as a function of the ratio
of the boson hopping tb to the on-site boson repulsion energy U for
a generic value of h0.
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Zumino theory.29 Due to unitarity, there exists a constraint on
the R charge and scaling dimension of an operator. In �2
+1� dimensional, the superconformal symmetry puts a lower
bound on a scaling dimension as DO� �RO�, where DO and
RO are the scaling dimension and the R charge of an operator
O, respectively. The equality is saturated for a chiral primary
field, and gives the exact anomalous dimensions for the fun-
damental fields with ��=��=1/3.30 Note that these coincide
with the values obtained by putting �=1 in the one-loop
results of Eq. �14�. Nonchiral primary fields generally re-
ceive radiative corrections, and the critical exponent for the
order parameter is calculated to be ��= 1

2 + �
4 +O��2� at lead-

ing order in �.14

IV. CONCLUSION

In conclusion, we found a �2+1�D nonsupersymmetric
lattice model whose quantum critical point is described by
the supersymmetric Wess-Zumino theory in an � expansion.
The supersymmetric critical point describes the generic sec-
ond order phase transition between a normal phase and a
Bose condensed phase of the Bose-Fermi mixed system. The
exact anomalous scaling dimensions are predicted. In prin-

ciple, the boson can dynamically arise as a Cooper pair in a
system which has only fermions as microscopic degrees of
freedom. In such a case, the critical point describes a super-
conducting phase transition. Therefore, supersymmetry can
emerge at a critical point of a pure fermionic system. It is of
interest to examine such possibility in the future. Finally,
although the supersymmetric theory describes the generic
second order phase transition in 4−� dimension for a small
�, in �2+1� dimensional, we cannot exclude other possibili-
ties. For example, the supersymmetric critical point may
arise only as a multicritical point due to an occurrence of
other supersymmetry-breaking relevant perturbation, or the
critical point itself may disappear due to a first order phase
transition.
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