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When solving the Møller-Plesset second order perturbation theory �MP2� equations for periodic systems
using a local-correlation approach �J. Chem. Phys. 122 �2005� 094113�, the computational bottleneck is
represented by the evaluation of the two-electron Coulomb interaction integrals between product distributions,
each involving a Wannier function and a projected atomic orbital. While for distant product distributions a
multipolar approximation performs very efficiently, the four index transformation for close-by distributions,
which by far constitutes the bottleneck of correlated electronic structure calculations of crystals, can be avoided
through the use of density fitting techniques. An adaptation of that scheme to translationally periodic systems
is described, based on Fourier transformation techniques. The formulas and algorithms adopted allow the point
symmetry of the crystal to be exploited. Problems related to the possible divergency of lattice sums of integrals
involving fitting functions are identified and eliminated through the use of Poisson transformed fitting functions
and of dipole-corrected product distributions. The iterative scheme for solving the linear local MP2 �LMP2�
equations is revisited. Prescreening in the evaluation of the residual matrix is introduced, which significantly
lowers the scaling of the LMP2 equations.
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I. INTRODUCTION

We have recently described a local-correlation program
CRYSCOR for the solution of the Møller-Plesset second order
perturbation theory �MP2� equations for periodic systems.1

Essentially, it combines the availability of an accurate
Hartree-Fock �HF� solution of the problem in an atomic-
orbital �AO� Gaussian-type-function �GTF� representation,
as provided by the CRYSTAL code,2,3 with the extension to the
periodic problem of local correlation techniques4 as imple-
mented, in particular, in the MOLPRO program for molecular
systems.5–12 The correlated methods are, in most cases, more
accurate than DFT, and mandatory for systems, where dis-
persive forces play an important role in binding �e.g., mo-
lecular crystals�. These methods allow for a systematical
treatment of the phenomenon of electron Coulomb correla-
tion. The aim of the CRYSCOR project is to provide a power-
ful and general-purpose computational tool, to be used for a
variety of applications of condensed matter physics and
chemistry, since at present correlated methods available for
extended systems like crystals, polymers, or other solid state
materials, are rather scarce.13–18 However, the first imple-
mentation of the local MP2 scheme for crystals1 could only
be used for very small systems �vide infra�. To overcome this
problem such that realistic systems can be studied is the aim
of the present paper.

Special attention has been devoted to the efficient exploi-
tation not only of translational, but also of point-group sym-
metry of the crystal. The computational cost of the local
MP2 method scales as O�n�, n being the “size” of the irre-
ducible part of the unit cell �IUC� of the crystal, at least
asymptotically, i.e., for large n. The reason is that the local
ansatz4,19–21 permits us to consider only pair excitations from
occupied to virtual local functions which are all “close” to
each other. Because of symmetry, one of them can be im-

posed to belong to the IUC. The prefactor depends on the
tolerances that must be adopted in order to achieve accept-
able accuracy �for instance, within 1% of the canonical MP2
energy�. These concern, primarily, �i� the threshold adopted
for truncating the tails of the local functions, which span the
occupied HF manifold �Wannier functions �WFs�� and the
virtual manifold �projected atomic orbitals �PAO��; �ii� the
size of the WF domains, which determines the maximum
distance between the two WFs and the two PAOs involved in
a pair excitation beyond which the corresponding amplitudes
can be taken as negligible; and �iii� the cutoff radius for the
distance between the WFs in an excitation pair, beyond
which the contributions of the corresponding pair energies
can also be regarded as negligible.

Due to the much denser packing of crystalline rather than
molecular structures, it turns out that with reasonable values
of such tolerances, the prefactor is so high that the compu-
tations are very demanding, even for the simplest crystals.
An analysis of the costs shows that the bottleneck is the
evaluation of the four-index electron repulsion integrals. We
shall indicate briefly as PD the product distribution of a WF
times a PAO. An essential reduction of the costs is obtained
from the use of a multipolar approximation for the Coulomb
interaction between distant PDs, which permits us to evalu-
ate the largest part of the integrals with high accuracy and at
a relatively small cost.1 Evaluating the remaining “close-by”
integrals which involve overlapping PDs still takes most of
the time, if the standard procedure is followed. These inte-
grals are obtained by computing analytically four-index inte-
grals in AO basis, followed by a four-index transformation of
those from AO to WF-PAO basis. For each integral in the
WF-PAO basis the number of basic integrals to be evaluated
scales as the fourth power both of the basis set size, and of
the support of WFs and PAOs, which depend in turn on the
truncation parameters indicated in items �i� and �ii� in the list
above. Suitable algorithms can be used in order to reduce the
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burden of the other most time-consuming step, namely, the
four-index transformation, and to optimally attribute the con-
tribution of each given AO integral to the various WF-PAO
integrals which may need it.1 Nevertheless, the extremely
steep scaling of the cost of this integral step with the strict-
ness of the truncation parameters prevents CRYSCOR from
performing very high quality computations with simple sys-
tems, or even fair quality ones with complex crystalline
structures.

A way out of this difficulty is provided by density fitting
�DF� techniques, which have proved to be very powerful in
the context of local-correlation calculations for
molecules..22–25 Essentially, after expressing each PD as a
linear combination of a suitable set of AO-like fitting func-
tions �FF� �P�r�, the four-index integrals are advantageously
expressed in terms of two- and three-index integrals involv-
ing PDs and FFs. In order to fully exploit the benefits of this
technique some problems must be solved, however. Most
importantly, the O�N3� scaling associated with the inversion
of the interaction matrix between FFs can be avoided by
introducing specific “fitting domains” for the different PDs,
and performing the inversion within each of them.22,23 This
in turn requires using a robust formulation of the DF
equations,26 as proposed by some of us.23

On the contrary to molecular methods, where DF has be-
come a routine approach,26–39 implementations of DF for
crystals are rather rare and cover only cases of density func-
tional theory40,41 and the Hartree-Fock method.42,43 For infi-
nite periodic systems the DF scheme is essentially more
complicated than for molecules, especially when local ap-
proximations are involved. Introduction of fitting domains22

in the case of a crystal would not be efficient because such
domains are inconsistent with the translational symmetry. On
the other hand, a DF scheme with the fitting basis set cover-
ing the whole direct space42,43 is not attractive either, due to
�i� convergence problems of lattice summations and �ii� in-
efficiency of an infinite support for representing localized
functions. Therefore, an approach for applying the DF
scheme for periodic local correlation calculations has been
devised.

Such adaptation of DF to a periodic context for use in
local-MP2 calculations is the subject of this paper. The peri-
odic character of the system entails that we have to deal here
with functions �FFs and PDs� which transform into one an-
other through lattice translations. This fact permits important
simplifications in the computational procedure through the
use of Fourier transform �FT� techniques. This is true in
particular for the inversion step, where specific fitting do-
mains are no longer needed. On the other hand, we are faced
with lattice sums �infinite, in principle� which have been rec-
ognized as a possible source of convergence problems in DF
techniques.43 It is shown below that it is feasible to get rid of
such problems through the use of Poisson-type functions,44

which has proved being beneficial in the molecular
context.45–47

In this work we present the theory, while the calibration of
the technique and the analysis of its performance in a num-
ber of applications is discussed in a companion paper �paper
II�.48 The outline of this article is as follows.

After briefly reviewing molecular DF, its reformulation
for use in MP2 periodic calculations is presented in Sec. II.

For enforcing convergence of lattice sums, the scheme is
applied to dipole-corrected PDs, that is, distributions whose
lowest nonzero electric moments are quadrupoles. The prob-
lem of the density of the sampling k-net in reciprocal space
is next addressed, and relationships are derived which allow
point-group symmetry to be exploited. The appendixes
present general aspects of the implementation, which are im-
portant for the efficiency of the method. A detailed discus-
sion of the algorithms for the method will be published else-
where.

II. THEORY

A. Density fitting for molecular systems

Let us briefly summarize, for ease of reference, the DF
technique26–39 as used in the framework of local-correlation
treatments of molecular systems, for evaluating the electron
repulsion integrals

Kab
ij = �ia�jb� =� dr1� dr2�ia�r1�r12

−1� jb�r2� . �1�

Here and in the following, the indices �i , j , . . . �, �a ,b , . . . �
denote WFs and PAOs, respectively, and �ia denotes the cor-
responding PDs. It consists in substituting the exact PDs �ia
by approximated ones �̃ia which are expanded in an auxiliary
fitting basis ��P�r�� as

�ia�r� 	 �i�r��a�r� 
 �̃ia�r� = �
P

dP
ia�P�r� . �2�

Upper case Latin letters will be used to identify FFs, for
consistency with the notation adopted in the molecular DF.22

The optimal fitting coefficients dP
ia are determined by mini-

mizing the error functional

�w = ��ia − �̃ia�ŵ12��ia − �̃ia� , �3�

where ŵ12 is a suitable two-electron weight operator, which
must be positive definite. The fitting coefficients can then be
obtained as

dP
ia = �

Q

WQ
ia�W−1�QP. �4�

The matrix elements in this equation are the two- and three-
index integrals

WPQ =� dr1� dr2�P�r1�ŵ12�Q�r2� ,

WP
ia =� dr1� dr2�P�r1�ŵ12�ia�r2� . �5�

The robust formula proposed by Dunlap26 can be em-
ployed for expressing the approximated electron repulsion
integrals, which guarantees that the error is second order
with respect to the fitting error in densities, regardless of the
choice of the operator ŵ12:
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K̃ab
ij = ��̃ia�� jb� + ��ia��̃ jb� − ��̃ia��̃ jb�

= �
Q

dQ
iaJQ

jb + �
P

JP
iadP

jb − �
RT

dR
iaJRTdT

jb. �6�

We are therefore allowed to adopt the most convenient
choice; two main possibilities are usually considered. If
ŵ12=r12

−1, W become Coulomb repulsion integrals, to be indi-
cated as J and; if ŵ12=�12, they reduce to overlap integrals,
S. A further possibility would be the attenuated Coulomb
operator discussed in Ref. 49.

In case of the Coulomb metric �ŵ12=r12
−1� and if the fitting

domain is identical for all PDs �Ref. 23� the robust formula
simplifies to

K̃ab
ij = �

PQ

JP
ia�J−1�PQJQ

jb. �7�

If instead the overlap metric �ŵ12=�12� is used there is no
simplification and we always have

K̃ab
ij = �

PQ

�SP
ia�S−1�PQJQ

jb + JP
ia�S−1�PQSQ

jb�

− �
PQRT

SP
ia�S−1�PRJRT�S−1�TQSQ

jb. �8�

In the following any integrals involving FFs will be de-
noted as FF integrals. Two- and three-index FF integrals of
Coulomb type appear in both Eqs. �7� and �8�. Due to the
long-range character of the r12

−1 operator, they have normally
non-negligible values over the whole molecule.

This problem can be considerably alleviated using
Poisson-type functions �PTFs� for the large majority of
FFs.46 For a given GTF ��Q�, the corresponding PTF ��Q� , to
be labeled as Q�� is defined as follows:

�Q� �r� = P̂�Q�r� 	
− �2

4�
�Q�r� . �9�

By exploiting the identity �which holds for any f�r� which
vanishes more quickly than r−1 as r→��

� dr2
P̂f�r2�

r12
= f�r1� �10�

it can be seen that the Coulomb FF-integrals involving PTFs
are reduced to overlap integrals involving the associated
GTFs:

JQ�
jb = SQ

jb, JP�Q� = SP�Q = SPQ�. �11�

These integrals are not only easier to calculate �the second is
simply proportional to a kinetic integral between GTFs�, but
have also a much quicker decay. However, due to the fact
that multipoles of PTFs are zero, it is necessary to include in
the fitting set a small number of GTFs: their purpose is to
describe the total charge and higher multipoles of the PD,
while the PTFs move the charge around and produce an ac-
curate description of the PD. In an MP2 application, where
all PDs have zero charge because local occupied and virtual
orbitals are mutually orthogonal, there is no need for the use
of s-type GTFs.

B. Density fitting in periodic systems

Let us reformulate the expressions of Sec. II A for the
case of a periodic system. We shall derive the equations in
the simpler case where the ŵ12=r12

−1 metric is adopted, and
generalize them finally to the other case.

Each WF or PAO or FF is identified by a double index:
j	 jJ ;a	aA ;P	 PP ; . . ., the former identifying the type of
the function in a finite set, the latter �calligraphic font� the
lattice vector of the crystalline cell where the function is
located: �j�r�	� jJ�r�	� j0�r−RJ�, and so on. This nota-
tion has been chosen in order to be consistent with that used
in Ref. 1. In the following, the WF index i is always associ-
ated to the zero reference cell, and we shall write i instead of
i0. Equation �7� becomes �MF is the number of FFs per cell�:

K̃aA,bB
i,jJ = �

P=1

MF

�
P

dPP
iaAJPP

jJbB, �12�

dPP
iaA = �

Q=1

MF

�
Q

JQQ
iaA�J−1�QQPP. �13�

In fact, these formulas cannot be used without careful analy-
sis, because they imply, in principle, infinite sums over the
lattice vectors. The inversion of the infinite J matrix is espe-
cially delicate.43

The above scheme can be conveniently reformulated in
reciprocal space. Consider a set of Nk=N1	N2	N3 regu-
larly spaced reciprocal-space sampling points k �forming a
Monkhorst net50�:

k = �
t=1

3
Kt

Nt
bt. �14�

The three integers Nt are known as shrinking factors, Kt are
integers from 0 to Nt−1, and bt are basis vectors of the
reciprocal lattice. In fact, it is convenient to bring each sam-
pling point as close as possible to the origin through a
reciprocal-lattice translation so as to make it to belong to the
first Brillouin Zone �BZ�, whereby all point group operations
transform a sampling point into another.51 The resulting set
of k points will be indicated as M. For each sampling point
the FT of the J quantities can be obtained with respect to the
lattice vectors labeling the FFs:

JPQ�k� = �
Q

JP0QQ exp�ık · RQ� ,

JP
iaA�k� = �

P
JPP

iaA exp�ık · RP� . �15�

The fitting coefficients at each k can be defined in the recip-
rocal space

dP
iaA�k� 	 �

Q

JQ
iaA�k���J�k��−1�QP

= �
Q

�
Q

JQQ
iaA�

P
�J−1�QQPP exp�ık · RP�

= �
P

dPP
iaA exp�ık · RP� , �16�

FAST LOCAL-MP2…. I. THEORY AND ALGORITHMS PHYSICAL REVIEW B 76, 075101 �2007�

075101-3



and these are the FT of the direct-space counterparts given in
Eq. �13�. In Eq. �16� it is assumed that the lattice sums of the
matrices JQQ

iaA, JP0QQ, and �J−1�P0QQ converge �see Sec. II C
and the discussion in paper II concerning the possible singu-
larity of the inverse FF overlap matrices�, so that the order of
the summation in the double sums over the lattice indices
can be interchanged, and that the inverse of the J�k�QP ma-
trix in the reciprocal space is the FT of the inverse of the
JPPQQ matrix:

�
Q

��
Q

�J−1�P0QQ exp�ık · RQ�
JQP��k�

= �
Q

�
Q

�J−1�P0QQ�
P�

JQQP�P� exp�ık · RP��

= �
P�

exp�ık · RP���
QQ

�J−1�P0QQJQQP�P� = �PP�.

�17�

It is worth noting here that the fitting coefficients in the
reciprocal space are obtained by just multiplying a vector of
length MF by the inverse of an MF	MF matrix.

We now define B=L � J, where L labels the relative po-
sition of the PAO �bB�r� with respect to the WF � jJ�r� in the
second PD. All the PDs � jJ,b�L�J��r� are identical apart from

a rigid translation by RJ. The FT of the K̃ integrals at each k
with respect to RJ becomes

K̃aA,bL
i,j �k� = �

J
K̃aA,b�L�J�

i,jJ exp�ık · RJ� = �
P

dP
iaA�k�JP

jbL�k� .

�18�

Following a similar pattern, the robust expression for K̃�k�
corresponding to the choice ŵ12=�12 is obtained as

K̃aA,bL
i,j �k� = �

Q

dQ
iaA�k�JQ

jbL�k� + �
P

JP
iaA�k�dP

jbL�k�

− �
RT

dR
iaA�k�JRT�k�dT

jbL�k�, with

dQ
iaA�k� = �

P

SP
iaA�k���S�k��−1�PQ. �19�

Note the similarity of Eq. �19� with the robust expressions
for the molecular case, Eqs. �7� and �8�. Here, however, the
sums are restricted to the short list of the MF FFs belonging
to a given cell. If the Monkhorst net is suitably dense �see
Sec. II D� the approximated electron repulsion integrals can
finally be obtained by back-Fourier transform �BFT�

K̃aA,bB
i0,jJ =

1

Nk
�
k

K̃aA,b�B�J�
i,j �k�exp�− ık · RJ� . �20�

Four essential simplifications have been achieved: �i� only
FF integrals of quantities with their first index in the zero cell
need to be calculated; �ii� the only lattice sums needed are
those implied by the FT of the FF integrals �Eq. �15��; �iii�
the time required for the inversion of the J or S matrix is of
order Nk	 �MF�3 and is usually negligible; �iv� each k point

is treated independently, which is amenable for an easy and
efficient parallelization of this step �this will be addressed in
future work�.

To make this approach accurate and efficient, some as-
pects must be carefully considered, however. First, one must
make sure that the lattice sums in the FT of FF integrals are
convergent; secondly, an appropriate density of the
Monkhorst net must be selected; thirdly, all simplifications
related to the presence of a local symmetry must be ex-
ploited; finally, a convenient prescreening technique must be
employed, related to the LMP2 equations to be solved. Let
us discuss the four problems separately.

C. Convergence of lattice sums

Serious problems can arise in the implementation of the
reciprocal space approach due to the fact that the lattice se-
ries implicit in the FT of the Coulomb matrices J may di-
verge or converge slowly. The strategy outlined below is
based on the use of PTFs as a fitting basis set, augmented by
a relatively small set of GTFs, and on the restriction of the
FT technique to dipole-corrected PDs. As in the molecular
case �see Sec. II A�, PTFs enormously simplify the evalua-
tion of FF integrals, because they vanish exponentially and
all of their multipoles are zero. The few GTFs which must be
included in the fitting set at each crystal cell, are needed to
describe the multipoles of the PDs.

In the present case, no GTFs of s type need to be in-
cluded, because all PDs have zero charge. Moreover, the use
of only PTFs as s-type fitting functions preserves the zero
charge of PDs in the fitting. Otherwise, a fictitious charge
could appear due to imperfectness of the fit and thus an ad-
ditional constraint on the fitting coefficients in the functional
�3� would have to be imposed.28 This nice property of the
PTF fitting basis is especially important in case of periodic
systems, since an error in the Coulomb integrals, induced by
this nonzero charge, will not vanish with the distance be-
tween the fitted densities and might affect the convergence of
the lattice summations.

Still, p-type GTFs are required which must account for
the dipoles of PDs, but they give rise to Coulomb series
which are only conditionally convergent. This inconvenience
may be circumvented by virtue of dipole-corrected PDs.

To each PD �aA
i �r� a p-type function is associated 
aA

i �r�,
which has the same dipole. The dipole-corrected PD

�aA�
i �r� = ��aA

i �r� − 
aA
i �r�� �21�

has zero charge and dipole, and can therefore be described
without use of s- and p-type GTFs, so avoiding abovemen-
tioned convergence problems. Dunlap’s robust formula, with
implicitly defined symbolism, then takes the form

K̃aA,bB
i,jJ = ��aA�

i + 
aA
i ���̃bB

jJ + 
bB
jJ � + ���̃aA

i + 
aA
i ��bB�

jJ + 
bB
jJ �

− ���̃aA
i + 
aA

i ���̃bB
jJ + 
bB

jJ �

= K�˜ aA,bB
i,jJ + ��aA

i �
bB
jJ � + �
aA

i ��bB
jJ � − �
aA

i �
bB
jJ � .

�22�

To make this expression more explicit let us associate to each
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atom AA a shell �set of AOs with same exponent and angular
momentum� of p-type GTFs, the same on all atoms, with
dipole moments m along the three axes

�AA 	 ��x,�y,�z�AA,

m =� drx�x�r� =� dry�y�r� � drz�z�r� . �23�

If �aA
i is the dipole moment of the PD �aA

i �r�, we can define


aA
i �r� =

�aA
i

m
�AA�r� = �

t=1

3
��t�aA

i

m
�t,AA�r� , �24�

where A is the atom to which the PAO a belongs. With this
convention the symmetry properties of �aA

i �r� and ��aA
i �r�

and the spatial region they occupy are the same. Equation
�22� simplifies to

K̃aA,bB
i,jJ = K̃aA,bB�i,jJ +

�bB�J
j

m
��aA

i ��BB� +
�aA

i

m
��b�B�J�

j ��A�A�J��

− �
t,t�=1

3 ��t�aA
i ��t��bB�J

j

m2 ��t,A0��t�,B�B�A�� . �25�

All integrals in this expression, being just of two- and three-
index type, are easily calculated. The “primed” dipole cor-

rected exchange integrals in Eq. �25�, K̃aA,bB�i,jJ , are calculated
exactly as in Eqs. �18� and �19�, after subtracting from each
PD �aA

i �r� the three GTFs �t,AA �24� with the appropriate
coefficients.

Apart from the p-type-GTF integrals, which are elimi-
nated by the dipole correction, the three-index Coulomb in-
tegrals involving higher angular momentum GTFs still need
to be Fourier transformed. However, their number is rela-
tively small and, furthermore, the corresponding lattice sums
do converge, though slowly. It is important to mention here
that all fitting functions have finite ranges in the direct space,
which are at the same time consistent with the translational
symmetry and subsequent FT. To underline the locality of
fitting in the above sense we introduce for further reference
the term “Fourier-directed local fitting.”

D. k sampling

The density of the Monkhorst net is a critical issue. The
computational cost of the FT and BFT steps expressed in
Eqs. �15�–�20� is proportional to the number of sampling
points Nk. Too dense nets would unnecessarily increase the
cost of the calculation, while inaccurate or wrong K values
can result from the use of too small shrinking factors.

To analyze this problem, let us define a superlattice in
direct space whose super-translation vectors At are propor-
tional to the original translation vectors at through the
shrinking factors of the Monkhorst net:

A1 = N1a1, A2 = N2a2, A3 = N3a3.

A general vector of the super-lattice, labeled by Ā, is

RĀ = �1A1 + �2A2 + �3A3,

where �i is an arbitrary integer.
The vectors Ai define the super-Wigner-Seitz cell �SWSC�

of the superlattice, which contains the Nk translation vectors
of the original lattice RP, which are either inside the SWSC
or at its surface. This set of translations within the SWSC
form a finite translation group with the multiplication law

modulo Ā. The irreducible representations of this group will
be marked by vectors k forming a set M. The second or-
thogonality relation for this group reads

1

Nk
�

k�M
exp�ık · �RQ − RP�� = �

RĀ

�Q,�P�Ā�. �26�

Consider a matrix A whose row and column indices corre-
spond to direct lattice vectors and possess translational in-
variance �APQ=A�P�R��Q�R��. Additionally, we assume that
the elements of the matrix A decay with the distance between
the vectors P and Q sufficiently fast. Taking into account the
FT of the matrix A

A�k� = �
RP

A0P exp�ık · RP� �27�

and Eq. �26�, for the BFT of A�k�, A0P, on the set M of the
k vectors one obtains

A0P =
1

Nk
�

k�M
A�k�exp�− ık · RP�

=
1

Nk
�
RQ

A0Q �
k�M

exp�ık · �RQ − RP��

= �
RĀ

A0�P�Ā�. �28�

Thus, the resulting matrix A0P, obtained in the FT-BFT pro-
cedure, has the periodicity of the superlattice with respect to
index P. The essential point is that the matrix A0P replicates
the initial matrix A0P within the SWSC if the values A0P
outside the SWSC are negligibly small. In other words, if the
SWSC defined by the three integers N1 ,N2 ,N3 is such that it
contains all non-negligible elements of the direct space A0Q
matrix, the FT-BFT procedure on the corresponding set M of
the k vectors reconstructs the elements APQ, which have the
vector RQ�P inside this SWSC, or on its border.

Hence, the number of k points in the FT-BFT scheme
described in Sec. II B should be chosen such that the BFT

�Eq. �20�� of the four-index integrals K̃aA,b�B�J��i,j �k� correctly

reproduces the integrals K̃aA,bB�i,jJ . An adequate k-net would
define a SWSC with a set of translational J vectors, contain-
ing all the non-negligible direct-space four-index integrals.

The PD �aA�
i �r� is a localized function which is concen-

trated around the WF �i, since, according to the LMP2 ap-

proach, the PAO �a is “close” to �i. The integrals K̃aA,bB
i,jJ

decay with respect to the distance Rij between the WFs �i
and � jJ as 1/RijJ

3 , which corresponds to the dipole-dipole
interaction between the PDs �aA�

i �r� and �bB�
jJ�r� �the PDs

hold no charge due to WF-PAO orthogonality�. But the back-
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Fourier transform is applied not to the integrals K̃aA,bB
i,jJ but

rather to the dipole corrected ones K̃aA,bB�i,jJ �see Sec. II C�, and
these decay as 1/RijJ

5 according to the quadrupole-
quadrupole interaction. Taking into account the fact that the
WF �i is always anchored in the reference cell, one can
conclude that the integrals K̃aA,bB�i,jJ with an absolute value
larger than a chosen threshold span a finite and not exceed-
ingly large number of unit cells J, surrounding the reference
cell. This set of unit cells forms the SWSC, which in turn
dictates the density of the adequate Monkhorst net.

Moreover, since the integrals related to “distant” ij pairs
are calculated by multipole expansion,1 the Fourier back-
transformed integrals have the index J corresponding to the
reference unit cell or to one near it. This means that the
number of k points which are really needed is even smaller,
as follows from formula �28�: when all indices P are close to
0, shorter vectors Ai can be chosen.

The non-negligible integrals K̃aA,bB�i,jJ and the corresponding
set of J vectors can be prescreened by using the multipole-
based integral estimates method of Lambrecht
et al.52,53 But if the DF technique is used to only obtain a
relatively small fraction of the non-negligible integrals, such
a prescreening would significantly overestimate the density
of the k meshes needed for the calculations. Presently, the
Monkhorst shrinking factors are an input parameter in the
code. The actual k meshes giving accurate results for differ-
ent structures are discussed in paper II. Here we just mention
that for crystals with small unit cells �diamond, BeS, etc.� an
8	8	8 Monkhorst net is sufficient. For systems with larger
unit cells, sparser k meshes can be used.

E. Exploitation of local symmetry

In this section we generalize the considerations intro-
duced in our previous papers and concerning the exploitation
of the point symmetry of the crystal1 by considering the ef-
fect of each point group operator on the basic “objects” in
our expressions: AOs, PAOs, symmetry adapted WFs,54 PDs
and, in the present instance, FFs. Here we use a Greek letter:

 ,� , . . ., as a general label of these objects and, as usual:
A ,B , . . ., to denote the crystal cell to which they belong.

The general space group operator of the crystal can be

expressed as the product of a “local” operator V0
ˆ and a pure

translational operator T̂,

�V0,T�̂ = V0
ˆ T̂; V0

ˆ = �SV�fV� . �29�

Each operator V0
ˆ comprises a 3	3 matrix, SV, and a frac-

tional translation fV, which rotate and translate the r
= �x ,y ,z� coordinate, correspondingly.

The local symmetry embodied in the h local operators can
be exploited as follows. All primary quantities implied in
periodic DF have the form �see Eq. �5��

C
A,��B�A� =� dr1� dr2g
A�r1�ŵ12h��B�A��r2� = C
0,�B.

�30�

Here, g
A�r� �and analogously, h��B�A�� is a “shell” of l
functions �g
m

�r−RA�� “belonging” to cell A, which are

equivalent to the parent ones in the reference cell zero
�g
�r�� except for the lattice translation RA.

Under V0
ˆ , these functions transform into a linear combi-

nation of the functions of a symmetry related shell g
VAV

,

generally belonging to another crystalline cell AV

. For in-

stance, under inversion, the three 2p functions on a carbon
atom �CA� in diamond transform into a combination of the
three 2p functions on the other carbon atom in the primitive
cell �CB�, generally centered in a different crystal cell. This
can be written in formulas,

V0
ˆ g
m

�r − RA� = �
m�=1

l

XV,mm�

 g
V,m�

�r − RAV

� �31�

or, more compactly,

V0
ˆ g
A = XV


 · g
VAV

. �32�

Here, RAV

 =SVRA+R0V


 is the sum of two lattice vectors. The
former simply results from the rotation of RA, while the
latter, being independent of A, specifies the crystal cell

where g
V
is located when V0

ˆ acts on the parent g
 shell. The
l	 l transformation matrix XV


 and the R0V

 vectors are auto-

matically constructed by the program for each “type” of ob-
ject and each operator. Since ŵ12 is a totally symmetric op-

erator, acting with V0
ˆ on Eq. �30� �exploiting its invariance

with respect to any rotation� yields

C
0,�B =� dr1� dr2V0
ˆ �g
�r1�ŵ12h��r2 − RB��

= �XV

 	 XV

�� · C
V0,�VBV

,�, where

RBV

,� = RBV

� − R0V

 . �33�

This expression concisely describes how all integrals can be
obtained from an irreducible set in direct space. It also al-
lows us to connect C
,��k� to the symmetry related set of
integrals at another sampling point kV=SVk, by exploiting
the fact that �SVk� · �SVR�=k ·R. With simple manipulations
one obtains

C
V,�V
�kV� = ��XV


�−1 	 �XV
��−1� · C
,��k�

	exp�ıkV · �R0V
� − R0V


 �� . �34�

Two schemes can be followed for exploiting local symmetry
by using this expression. Either from the knowledge of all
C�k�’s in the irreducible wedge of the BZ �IBZ� their value
is obtained in the whole BZ, or from the knowledge of the
irreducible set of integrals �C�k��irred in the whole BZ all
C�k�’s are obtained. According to convenience, either
scheme can be adopted, as illustrated in Appendix C. Note,
finally, that the so-called time-reversal symmetry can be used
to restrict in all cases the calculation to one half of the BZ,
i.e.,

C
,��k� = C
,�
� �− k� . �35�
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F. LMP2 equations

The contribution from a WF pair to the total correlation
energy decays asymptotically with the inverse sixth power of
the distance between the two WFs. Since in 3D crystals the
average number of pairs at distance R increases as R2, the
actual decay rate of the correlation energy in crystals is 1 /R4.
So the saturation of the energy with the increase of the cutoff
distance occurs at much larger distances than in molecules
�see paper II for a detailed analysis of this problem�. The
number of �i , jJ� pairs to include in the calculation may then
be fairly large which makes solving the LMP2 equations an
expensive task.

In the present work, the approach employed for solving
the LMP2 equations and presented in the previous paper1

was significantly revised. The modifications mainly concern
the techniques adopted for the evaluation of the residuals
�RaA,bB

i,jJ =KaA,bB
i,jJ +AaA,bB

i,jJ +BaA,bB
i,jJ �. The presently adopted

prescriptions are as follows:

AaA,bB
i,jJ = �

cC,dD�Di,jJ

�fac
C�ATcC,dD

i,jJ Sdb
B�D + Sac

C�ATcC,dD
i,jJ fdb

B�D� ,

�36�

BaA,bB
i,jJ = − �

cC,dD�Di

Sac
C�A��cC,dD

i,jJ Sdb
B�D

− �
cC,dD�DjJ

Sac
C�A��cC,dD

i,jJ Sdb
B�D, �37�

��cC,dD
i,jJ = �

kK�Pi

TcC,dD
i,kK fkj

J�K, �38�

��cC,dD
i,jJ = �

kK�PjJ

f ik
KTcC,dD

kK,jJ . �39�

Here S and f denote the overlap and Fock matrices, respec-
tively, and T are the excitation amplitudes. The sum in Eq.
�36� runs over all PAOs in the WF pair domain Di,jJ. In Eq.
�37� the sums are running over the “united domains” of i or
jJ, that is,

DjJ = �
kK

DjJ,kK, �40�

with the union comprising not only symmetry-unique pairs
of the pair list, but rather all close-by pairs of WF jJ. Fi-
nally, the sums in Eqs. �38� and �39� run consequently over
the kK WFs which can form close-by pairs with WF i �Pi� or
jJ �PjJ�, respectively. The solution of the LMP2 equations is
found when all the residuals RaA,bB

i,jJ become zero.1

In periodic systems, the computational cost for computing
the residual scales nominally as O�N2�, where N is the num-
ber of pairs or, in 3D crystals, as Rcut

6 �Rcut is the cutoff
distance for the pairs included in the calculation�, since the
number of pairs increases cubically with the cutoff distance.
Moreover, although the number of different i , jJ pairs can be
reduced by considering only symmetry irreducible ones,1 in
the sums of Eqs. �38� and �39� one has to take into account
all possible WFs kK forming pairs with i or jJ.

Advantage can be taken, however, of the sparsity of the
f ,S ,T matrices. Due to the exponential decay of WFs and
PAOs, the elements of the Fock and overlap matrices also
decay exponentially with respect to the distance between the
corresponding functions. The amplitudes TaA,bB

i,jJ decay as
Ri,jJ

−6 with the distance between the WFs i and jJ. Exploiting
this sparsity is very important and leads to a reduction of the
overall scaling for the equation solver. The scaling of the
most expensive B term �Eqs. �37�–�39�� then reduces from
O�NirrN� to just O�Nirr�, where Nirr is the number of symme-
try unique pairs. In 3D crystals this corresponds to the Rcut

3

scaling rather than Rcut
6 .

III. FINAL REMARKS

The approach described in this paper has been imple-
mented in the CRYSCOR code. The performance of the
method is demonstrated in companion paper II, where test
calculations were carried out for diamond, a three-layer MgO
slab, and two molecular crystals, proton ordered ice, and
carbon dioxide. The intention here is to demonstrate that our
ab initio post-HF method makes it feasible to routinely ac-
count for electron correlation also in cases of relatively com-
plex periodic systems.

Work is going on to make the code more efficient and
powerful. One of the parameters which influence the compu-
tational resources in periodic-density-fitting-LMP2 �though
not as severe as in LMP2� calculations is the spread of the
WFs. In molecular crystals, where the inclusion of electron
correlation is vital for providing reliable results, WFs are
usually quite well localized within the molecules forming the
crystal. This makes CRYSCOR especially efficient in the very
important case of molecular crystals. However, even if WFs
are not that well localized, there are ways to increase their
compactness, by, first, dropping the mutual orthogonality
condition and, second, by chopping the Wannier function
tails �in this case one has to reformulate the MP2 method for
a non-HF reference by including also singles in the MP2
equations�.55 Implementation of this technique into the
CRYSCOR code is planned for the near future.

Another important advancement for the CRYSCOR code is
the introduction of a dual basis set in order to augment the
virtual manifold for the LMP2 calculation by additional
functions without interfering with the periodic HF calcula-
tion, which does not allow for the use of diffuse GTFs. Fur-
thermore, we plan to develop explicitely correlated methods
for crystals: the F12 technique,56 which for molecules proved
to be a very efficient way to rectify the slow basis set con-
vergence of orbital product based methods, once available
for periodic systems, will allow to perform DF-LMP2 calcu-
lations close to the basis set limit. The effect of the correla-
tion correction on the density matrix, and thus on such
ground state observables as x-ray structure factors and direc-
tional Compton profiles is presently being explored.57
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APPENDIX A: CALCULATION OF THE INTEGRALS

For the DF procedure with the overlap metric �equation
�19�� the following integrals are computed.

�1� Two-index overlap SPQQ and Coulomb JPQQ
= �P �QQ� integrals between all pairs of FF shells �either
GTFs or PTFs�.

�2�. Three-index overlap SPP�iaA and Coulomb JPP�iaA

= ��iaA�� � PP� integrals between the reducible set of dipole-
corrected PDs, and symmetry irreducible FF shells.

In the case of the Coulomb metric the overlap integrals
are not needed and thus not calculated. The ranges for the P
�or Q� indices of the FF, needed to be taken into account for
DF in an infinite periodic system are discussed in Appendix
B.

In order to obtain the three-index integrals with the dipole
corrected PDs JPP�iaA and SPP�iaA �see Eq. �24��, additional two-
index integrals JPP,
aA

i and SPP,
aA
i �the latter only for the

overlap metric� are calculated, so that

JPP�iaA = JPP
iaA − JPP,
aA

i . �A1�

The range for the index P in the integrals JPP,
aA
i coincides

with the one of their three-index counterparts.
For obtaining the true four-index integrals from the “di-

pole corrected” ones �Eq. �22�� one additionally needs the
following sets of integrals to be calculated.

�1� Two-index integrals J�ABB
= ��A ��BB� between the

p-type shell of functions centered on atoms A and BB.
�2� Three-index integrals J�BB

iaA = �iaA ��BB� between PDs
and the p-type shell of functions for the reconstruction of the
four-index integrals.

The function �BB is centered on the same site as the cor-
responding PAO BB, thus the amount of such integrals to be
computed is known a priori and usually not large.

Owing to translational symmetry all the integrals are cal-
culated having the first index in the reference cell. The AO
two-electron integrals are evaluated according to the Obara-
Saika scheme.58

APPENDIX B: FITTING RANGE AND SYMMETRY

At first the “fitting radius” RF is estimated, which is the
maximum among the lengths of the direct lattice vectors RP.
To obtain this estimate a trial evaluation of the three-index
overlap integrals involving AOs and FFs with the most dif-
fuse exponents is performed. The radius RF is such that none
of these integrals with RP�RF is above a certain threshold.
All the three-index integrals with RP�RF are evaluated ex-
plicitly �see Appendix A�. However, the slowly decaying
three-index Coulomb integrals with the GTFs have signifi-
cant values even if RF�RP�Rmax. But since for these inte-
grals the overlap between the WF-PAO PDs and FFs is neg-

ligible, it is possible to evaluate accurately the corresponding
long-range contribution by multipole expansion �see Appen-
dix C�.

Next, for each WF in the pair list, say jJ, a codomain
��jJ� is defined which includes PAOs either in the domain
jJ or of any other WF from the symmetry-unique pair list,
forming a pair with jJ. Then each WF from a nonzero cell is
translated to the reference cell together with its codomain. In
the set of all PDs, iAA�AA���i��, a symmetry irreducible
subset �PD�irr= �iAA�irr is identified, according to Eq. �33�.

To further improve the efficiency of the method it is con-
venient to convert this list into an equivalent one, containing
all needed iAA objects, but only irreducible FFs, to be pro-
vided to the routines for the calculation of FF integrals. In
order to do that the correspondence

�iAA�PP�irr� ↔ ��iAA�irrPP� �B1�

is established. This procedure allows one to adapt the point
symmetry also for the AO-based three-index untransformed
integrals and to treat them on the same symmetry footing as
the transformed ones �see Appendix A�. Inclusion of the
point symmetry at the level of AO-based integrals consider-
ably reduces the number of such integrals to be calculated
and transformed, improving so the performance of the DF
routines and reducing the memory resources needed.

APPENDIX C: FOURIER TRANSFORM

The FT of two-index matrices �S ,J� is performed in a
straightforward way once and for all. The transformed ma-
trices are obtained only for k points belonging to IBZ. Then
the metric matrix �the matrix of two-index overlap or Cou-
lomb integrals� is inverted for each of these k points. Finally
the two-index matrices, corresponding to the rest of the BZ,
are obtained using symmetry relations �Eq. �34��. The FT of
three-index objects, on the other hand, must be performed for
all k points in the BZ �but still taking advantage of the time-
reversal symmetry, Eq. �35��, since only the symmetry-
irreducible iaA objects are considered �see Sec. II E�.

At this stage the long-range contribution to the FT of
Coulomb integrals involving a GTF PP with RF�RP
�Rmax �where Rmax is prescreened according to a given tol-
erance� is evaluated via multipolar expansion. Each PD
�aA�

i �r� is represented by a set �Xl
m�iaA�� of electric multi-

poles with angular momentum l� lmax and centered in the
centroid Ci of WF i. Similarly, the general GTF PP �charac-

terized by angular quantum numbers l̄ , m̄� has just one non-
zero electric multipole moment X

l̄

m̄�P� centered in CP+RP,
which is the position in the reference cell of the atom to
which P belongs, plus the lattice vector P.

The long-range �LR� contribution to the FT of these inte-
grals is then approximated by

�JP
iaA�k��LR 
 X

l̄

m̄�P�

	 �
l,m
�Xl

m�iaA��
P

��exp�ık · RP�V
l̄l

m̄m�r��� .

�C1�

Here, V
l̄l

m̄m�r� is the Coulomb interaction operator between
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the two multipoles at the relative position r=CP+RP−Ci,
and �P� is restricted to the long-range lattice vectors. After
performing this sum, we can finally express the required
long-range contribution in terms of the long-range FT of the
interaction operator for each different pair of centers Ci, CP
in the reference cell,

�JP
iaA�k��LR 
 X

l̄

m̄�P��
l,m

Xl
m�iaA�V

l̄l

m̄m�k;Ci,CP� . �C2�

The interaction between multipole sets is then evaluated
separately for each k point and summed to the previously
transformed matrices.
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