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At low temperatures when the phonon modes are effectively frozen, photon transport is the dominating
mechanism of thermal relaxation in metallic systems. Starting from a microscopic many-body Hamiltonian, we
develop a nonequilibrium Green’s function method to study energy transport by photons in nanostructures. A
formally exact expression for the energy current between a metallic island and a one-dimensional electromag-
netic field is obtained. From this expression, we derive the quantized thermal conductance as well as show how
the results can be generalized to nonequilibrium situations. Generally, the frequency-dependent current noise of
the island electrons determines the energy transfer rate.
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General physical and information-theoretic arguments im-
ply that there is a fundamental limit GQ=�2kB

2T /3h to the
thermal conductance of a single channel,1 independent of the
nature of the conduction mechanism. Particularly, GQ should
be independent of the dispersion relation and quantum statis-
tics of carrier particles.2 The few-channel heat conductance
is particularly relevant in low-dimensional nanostructures,
where the channel number is naturally low. The quantized
thermal conductance has been experimentally verified for
electrons, phonons, and recently, in photon transport between
metallic islands.3–5 If electron transport is restricted and the
system is at very low temperature so that the phonon modes
appear frozen, the dominant thermal relaxation process is
photon transport.5,6

In this Brief Report we study energy transport by photons
between a metallic island and a one-dimensional electromag-
netic field supported by a transmission line. The latter mim-
ics the effect of the external leads and connectors on the
island. Our aim is to give the photon transport a microscopic
basis as well as to study nonequilibrium processes. Applying
Green’s function methods to a microscopic model, we obtain
a formally exact expression for the energy current. We show
that frequency-dependent current noise determines the char-
acteristics of the transport process, thus providing a close
connection between the electrons and the photons. We derive
an expression for the heat flow between the field and the
island, and verify that the maximum value of thermal con-
ductance in the system is GQ. This provides a microscopic
description of the recent experiment on electron-photon
coupling.5 We consider also a many-channel case where the
electron system is connected to several transmission lines.
The energy current formula allows us to study situations
where the island is driven to a nonequilibrium state and to
examine how electron shot noise alters the energy transport.
We show that, due to shot noise, part of Joule heat flows to
the photons. Our results have relevance in determining the
electron temperature of driven mesoscopic systems,7 but they
are also important in photon-based solid-state applications,
such as cavity QED and its quantum information
realizations.8,9

The studied model consists of a small metallic island
coupled to a parallel strip transmission line, see Fig. 1. The
transmission line acts as a waveguide supporting a one-

dimensional electromagnetic field. In contrast to three-
dimensional waveguides, the parallel strip line field has only
one allowed field polarization. Therefore, it corresponds
to a single transport channel. There is no direct electrical
connection between the electrons on the island and those in
the transmission line strips, only the field couples to
the electrons. The total Hamiltonian of the system is
H=He+H�+He−�, where

He =� �̂†�r�� p̂2

2m
+ U�r���̂�r�dr

+
1

2
� �̂†�r��̂†�r��V�r,r���̂�r���̂�r�drdr�, �1�

H� = �
j

�� j�âj
†âj +

1

2
� , �2�

He−� = g� �̂†�r�z�̂�r�drV̂TL. �3�

In the following, we do not have to specify the terms in the
electron Hamiltonian He in more detail. The transmission
line is characterized by its length L, the distance between the
parallel strips Lz, and the inductance l and the capacitance c

per unit length. Operator V̂TL=� jTj�âj + âj
†� is the voltage

operator at the end of the line. The integration in He−� is
restricted to the region between the parallel strips in the case
the electron system extends beyond that. The island is as-
sumed to be much smaller than the photon wavelength at the
relevant frequencies, so the position dependence of the volt-
age operator in the interaction term can be neglected. The

field operators �̂�r�, �̂†�r� and creation and annihilation op-

}V̂TL

z
Lz

Ge(ω) l, c

FIG. 1. �Color online� Metallic island �blue� coupled to the elec-
tromagnetic field of a transmission line �lines around the yellow

region�. The voltage between the strips is V̂TL.
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erators âj, âj
† satisfy canonical fermion and boson commuta-

tion relations. Constants � j = j�v /L �j is a positive integer�,
Tj =	�� j /Lc, and g=e /Lz can be found by quantizing the
line field.9 The wave velocity v in the transmission line is
given by v=1/	lc.

The electron Hamiltonian He does not commute with the
total Hamiltonian H, thus there is an energy flow between the
island and the field. This energy flow into the island is char-
acterized by a current JQ defined as

JQ 
 �Ḣe� = −
g

m

� �̂†�r�p̂z�̂�r�drV̂TL� . �4�

The notation �·� stands for averaging over a density matrix of
the total system. We calculate averages over nonequilibrium
states, where subsystems have a temperature gradient or
electron system is subjected to a finite voltage. To simplify
expressions, the following shorthand notations are intro-

duced: P̂=��̂†�r�p̂z�̂�r�dr, Ẑ=��̂†�r�z�̂�r�dr, and Î= e
mLz

P̂.

The quantities are related by Ẑ= P̂ /m. The current �4� can be
written as

JQ�t� = −
2g

m
Re �

j

TjGj
��t,t� ,

Gj
��t,t�� 
 �P̂�t�âj�t��� . �5�

The energy transport problem is reduced to finding the lesser
Green’s function Gj

��t , t��. We will concentrate on a steady-
state situation where Gj

��t , t��=Gj
��t− t��.

The contour-ordered Green’s function Gj�	 ,	�� can be de-
rived by the equation-of-motion technique.10 Let us first con-
sider the time-ordered Green’s function Gj

t�t− t�� at T=0. By
differentiation and applying Heisenberg’s equation of mo-
tion, we obtain

�i�t� − � j�Gj
t�t − t�� =

g

�
Tj�P̂�t�Ẑ�t���t. �6�

The expression in parentheses on the left hand side of Eq. �6�
can be interpreted as an inverse Green’s function Dj

t−1 of a
free photon field. Thus, Eq. �6� can be solved by integration,
yielding

Gj
t�t − t�� =

g

�
Tj� dt1�P̂�t�Ẑ�t1��tDj

t�t1 − t�� .

Using analytical continuation rules known as Langreth’s
theorem,10 we obtain

Gj
��t − t�� =

g

�
Tj� dt1��P̂�t�Ẑ�t1��rDj

��t1 − t��

+ �P̂�t�Ẑ�t1���Dj
a�t1 − t��� .

Superscripts r, a, and � stand for “retarded,” “advanced,”
and “lesser.” For purposes of the latter, it is convenient to
define the Fourier transform

Gj
���� =

1

�
gTj��P̂Ẑ�r���Dj

���� + �P̂Ẑ�����Dj
a����

= −
gLz

2m

�e2 Tj� i

�
�ÎÎ�r���Dj

���� +
i

�
�ÎÎ�����Dj

a���� .

Now Eq. �5� yields for the steady-state current

JQ =
2

�
Re �

j

Tj
2�

−



 d�

2�
� i�ÎÎ�r���

�
Dj

����

+
i�ÎÎ�����

�
Dj

a���� . �7�

For a transmission line much longer than ��v /kBT, the sum
over the field modes can be replaced by integration accord-
ing to � j =

L
��0


dk= L
�v�0


dw. The current takes the form

JQ =
2Z0

�
Re � d� j�� j� d�

2�
� i�ÎÎ�r���

��
Dj

����

+
i�ÎÎ�����

��
Dj

a���� , �8�

where Z0=	l /c is the characteristic impedance of the trans-
mission line.

The photon Green’s functions at a finite temperature can
be written as Dj

�=−2�in�������−� j� and Dj
a= 1

�−� j−i�

=�i���−� j�+ P 1
�−� j

, where n���� is the Bose distribution.
Inserting these expressions into Eq. �8� gives

JQ = 2Z0�
0


 d�

2�
�2 Re�ÎÎ�r���n���� − �ÎÎ������ . �9�

The correlators on the right hand side of Eq. �9� can be
expressed in terms of the noise power SI

=�−


 ei�t�Î�t�Î�0��dt as �ÎÎ�����=SI�−�� and Re�ÎÎ�r���

= 1
2 �SI���−SI�−���. Expression �9� is an exact formula for

the energy flow and is valid even when the electron system is
out of equilibrium. However, it contains the exact current-
current correlation functions of the metallic island in the
presence of the field. In equilibrium, these are related to con-
ductance through the fluctuation-dissipation theorem and the
Kubo formula. From a formal point of view, the exact ex-
pression for noise power determines the energy exchange
process completely. In the weak-coupling limit �the lowest
order in electron-photon coupling�, one can neglect the field
and use the bare island correlators. On physical grounds, one
expects that the maximum energy transport is achieved when
the coupling is strong, thus a more accurate treatment of the
electron-photon interaction is desirable.

The quadratic form of H� and the linear coupling term
He-ph, together with the density of states of a long transmis-
sion line, are precisely Caldeira-Leggett representations of an
Ohmic loss.11 The solution to the equation of motion of the

voltage operator is V̂TL�t�= V̂TL
0 �t�+Z0Î�t�, where V̂TL

0 �t� is the

solution in the absence of the island and Î�t� is the current
flowing in the electron system. This notion microscopically
motivates the circuit approximation, where the transmission
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line can be thought of as a resistor in series with the metallic
island, see Fig. 2�a�.

In the circuit description, correlation functions can be cal-
culated by the Langevin approach, which allows us to relate
the current fluctuations in the presence of the environment to
bare quantities.12 This yields

�ÎÎ���� =
�ÎÎ�e���

�1 + Ge���Z0�2
, �10�

where �ÎÎ�e��� and Ge��� are the current-current correlation
function and conductance of the island, respectively, in the
absence of the electromagnetic field. According to the Kubo
formula for conductance, the real part of the retarded func-
tion appearing in Eq. �9� is related to the conductance as

Re�Ge����=Re��ÎÎ�e
r���� / ����. With approximation �10�, we

then get

JQ = �
0


 d�

2�

2Z0

�1 + Ge���Z0�2


��SI
e��� − SI

e�− ���n���� − SI
e�− ��� , �11�

where SI
e��� is the noise power for the isolated electron sys-

tem.
In �quasi�equilibrium, the correlation functions are related

through a variant of fluctuation-dissipation formula SI
e���

=2 Re�Ge������ne���, where ne��� is the Bose distribution
function at the electron temperature. Thus, for this case,

JQ =
4Z0Re

�Re + Z0�2�
0


 d���

2�
�n���� − ne���� , �12�

when the island is assumed resistive Re
1/Ge. Result �12�
agrees with the one stated in Ref. 6 for heat flow between
two resistors. After integration, Eq. �12� gives

JQ = r
�2kB

2

6h
�T�

2 − Te
2�, r 


4Z0Re

�Re + Z0�2 . �13�

At small temperature difference, this is just

JQ = rGQ�T , �14�

where GQ=�2kB
2T /3h is the universal quantum of heat

conductance.1 Thus, when Re=Z0 and thus r=1, the maxi-
mum one-channel heat transfer is achieved. In the weak-
coupling limit, where the exact correlation functions in Eq.

�9� are replaced by bare correlators �ÎÎ�0���, one recovers
Eq. �14�, with the prefactor Z0Re / �Re+Z0�2 replaced with
Z0 /Re. Physically, the weak-coupling result follows from the
impedance mismatch Z0�Re.

The above discussion can be generalized to incorporate
several photon channels realized by coupling the electron
system to, say, N transmission lines, as in Fig. 2. Suppose
that each transmission line is described by a Hamiltonian of
the form �2� with the coupling �3�, corresponding to the situ-
ation in Fig. 2�b�. The theoretical maximum heat conduc-
tance for N independent channels is N
GQ, but it is not
achieved in this case. An added transmission line does not
simply add an independent photon channel because it also
effectively acts as a series resistor in the coupling direction.
Thus, it suppresses current fluctuations and affects the emit-
ted energy in all channels. The heat flow �14� for multiple
channels is

JQ = �
i

GQ
i 4RiZi

�Ri + �
i

Zi�2�Ti, �15�

where Zi is the characteristic impedance, �Ti the temperature
difference, and Ri the electron resistance associated with line
i. When all the transmission line fields are at the same tem-
perature, the maximum heat conductance given by Eq. �15�
is still GQ. Thus, adding parallel lines does not increase this
maximum. However, coupling the island to perpendicular
transmission lines, as in Fig. 2�c�, opens up an independent
transport channel. The difference in Figs. 2�b� and 2�c� is
that the lines in perpendicular directions couple to different
current components. The flow JQ is then a sum of two terms
of the form �15�, and the maximum heat conductance is 2GQ.
Similarly, coupling to the remaining orthogonal direction
yields the maximum heat conductance 3GQ.

Next we consider a case where the island contains a short
contact which is externally biased by potential difference,
see Fig. 2�d�. Supposing that the electron transport is coher-
ent and neglecting interaction effects, current noise contains
both the equilibrium and shot noise and can be written as13

SI��� = G0�
m

Tm�1 − Tm�� eV + ��

1 − e��−��−eV� +
− eV + ��

1 − e��−��+eV��
+ G0�

m

Tm
2 2��

1 − e−��� , �16�

where G0=e2 /h, V is the bias voltage, and Tm is the trans-
mission eigenvalue of channel m. The sums of transmission
eigenvalues extend over the channel index and the spin. In-
serting expression �16� to the general formula �9�, we dis-
cover

a)

b) c)

d)

Z0

FIG. 2. �Color online� �a� Circuit picture corresponding to the
studied system. Transmission line acts as a series resistor to the
island. In �b�, the parallel transmission lines couple to vertical cur-
rent noise, and in �c�, the lines couple to vertical and horizontal
noise. The maximum heat conductance in �b� is GQ and in �c� is
2GQ. The number of parallel transmission lines is irrelevant for the
maximum heat conductance. In �d�, the island contains a short con-
ductor and is externally biased.
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JQ
� = r�1

2
G0L0�T�

2 − Te
2� −

1

2
F2GV2� , �17�

where G=G0�mTm=1/Re is the island conductance, F2
=�mTm�1−Tm� /�mTm the Fano factor, and L0=�2kB

2 /3e2 the
Lorenz number. The last term in JQ

� corresponds to the in-
creased emission by shot noise. The frequency dependence
in Eq. �16� is solely due to the Fermi distribution, and the
emitted energy due to shot noise shows only the dependence
on the bias voltage. Expression �16� is valid only for low
frequencies; generally, SI��� probes the intrinsic �inverse�
time scales of the conductor such as the time of flight and the
charge relaxation time. This is shown in Fig. 3, where we
have used the noise and conductance of an interacting cha-
otic cavity14 to numerically compute the energy flow.

Assume that the island is biased using superconducting

wires with contact conductances much higher than G. Such a
setup provides thermal insulation of the island5 while the
voltage still drops across the contact. The final temperature
Te of the island can be obtained from a heat balance
equation, where the Joule heating JQ

J from the voltage source
is balanced by heat flow to photons and phonons as
JQ

J +JQ
� +JQ

ph=GV2+JQ
� +���Tph

5 −Te
5�=0, where � is the

electron-phonon coupling constant7 and � is the volume of
the island. There is a crossover temperature Tcr
= �rG0L0 /2���1/3, below which the photon transport is the
dominant process. For example, with the parameters of Ref.
5, Tcr would be roughly 140 mK; for smaller objects such as
carbon nanotubes, it could be made larger at least by 1 order
of magnitude. Far below Tcr, the final electron temperature is

Te =	T�
2 +

Tph
5

Tcr
3 +

2G

G0r
�1 −

F2r

2
�V2

L0
, �18�

and above the crossover, it is

Te = �Tph
5 + Tcr

3 T�
2 + G�1 −

F2r

2
� V2

��
�1/5

. �19�

In both limits, the Joule heating is reduced by the factor
1−F2r /2 because a fraction of it flows to photons. In the
case of an ideally matched �r=1� tunnel junction �F2=1�,
exactly half of the Joule heat goes to photons. In experi-
ments, the parameters V, Tph, T�, and r can be varied in situ
to investigate the photon transport contribution, as demon-
strated in Ref. 5 for r, Tph, and T�.

In conclusion, we studied a microscopic model of photon
transport in nanostructures using a Green’s-function method
and derived a general expression for the energy flow between
a metallic island and a transmission line field. We showed
how electron and photon transport are related through
frequency-dependent current noise. We demonstrated the ef-
ficiency of the energy flow formula by deriving quantized
photon heat conductance and studying the effects of electron
shot noise on photon transport. We propose to measure the
shot-noise effect, illustrated as the voltage-dependent term in
Eq. �17�, by modifying the setup in Ref. 5 to include a small
mesoscopic junction.
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FIG. 3. �Color online� Energy flow from a symmetric chaotic
cavity �NL=NR=1� as a function of voltage. We assumed that the
cavity conductance at zero frequency Ge�0� is matched to Z0

−1. The
different curves correspond to different cavity charge relaxation
times 	: 	=0 �solid�, 	=0.1�� �dashed�, 	=�� �dotted�, and 	
=10�� �dash dotted�. The inset shows the 	 /�� dependence of the
heat flow from the cavity �V=0�; the horizontal dashed line corre-
sponds to the heat flow from an ideally matched Ohmic resistor
without frequency dependence. When 	 /���1, the heat flow is
close to the theoretical maximum and settles to a lower value as the
fraction increases.
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