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Using a semiclassical approach and input from experiments on the conductivity of graphene, we determine
the electronic density dependence of the electronic transport coefficients—conductivity, thermal conductivity,
and thermopower—of doped graphene. Also, the electronic density dependence of the optical conductivity is
obtained. Finally, we show that the classical Hall effect �low field� in graphene has the same form as for the
independent electron case, characterized by a parabolic dispersion, as long as the relaxation time is propor-
tional to the momentum.
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Since the experimental measurement of an electric field
effect in graphene1 and the observation of the odd integer
quantum Hall effect,2,3 the electronic properties of graphene
have been attracting considerable attention from the commu-
nity. Recent qualitative reviews4–6 on the physics of
graphene give a brief account of both the experimental and
theoretical status of the field.

The measured conductivity of graphene has two distinct
fingerprints: a linear dependence on the gate voltage of the
dc conductivity and a minimum conductivity at the neutrality
point of one electron per carbon atom. The value of the con-
ductivity minimum is of the order of the quantum of conduc-
tance e2 /h. This minimum of conductivity is a quantum me-
chanical effect which comes about as a consequence of
disorder.7 Disorder promotes a finite density of states at the
Dirac point which is responsible for the minimum of conduc-
tivity �min. Unfortunately, there are a number of different
theoretical predictions available for �min in the literature.8–16

Except for the numerical work of Nomura and MacDonald,17

all the calculations for the conductivity minimum are off by
some numerical factor from the experimentally measured
value.

Also interesting by itself is the linear dependence of the
conductivity on the gate potential. Since the gate potential
depends linearly on the electronic density n, one has a con-
ductivity ��n. As shown by Shon and Ando,18 if the scat-
terers are short range, one obtains a dc conductivity that is
independent of the electronic density, at odds with the ex-
perimental result. Nomura and MacDonald17,19 showed that
by considering a scattering mechanics based on screened
charged impurities, it is possible to obtain a conductivity
varying linearly with the density from a Boltzmann equation
approach, in agreement with the experimental result. In this
Brief Report, we address the problem of finding the elec-
tronic density dependence of several transport properties of
graphene. Since the electronic density is easily controlled by
a gate voltage, the expressions we derive here can certainly
be tested experimentally. We therefore present in what fol-
lows a calculation of the electronic density dependences of
the dc conductivity, the thermal conductivity, and the ther-
mopower. In addition, we study how the electronic density
enters in the optical conductivity. Finally, we show that a
certain form of the scattering rate is necessary if the classical

expression for the Hall effect is to be maintained, in agree-
ment with the experiments. A similar semiclassical approach
was used by Falkovsky20 to study the temperature depen-
dence of the Hall conductivity in graphene. The link between
the Kubo-Streda formulation and the semiclassical Boltz-
mann equation approach was discussed, in the context of
massive Dirac fermions, by Sinitsyn et al.21

The Boltzmann equation has the form22

− vk · �rf��k� − e/��E + vk � H� · �kf��k� = − � �fk

�t
�

scatt
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The solution of the Boltzmann equation in its general form is
difficult and one needs, therefore, to rely on some approxi-
mation. The first step in the usual approximation scheme is
to write the distribution as f��k�= f0��k�+g��k� where f0��k�
is the steady state distribution function and g��k� is assumed
to be small. Inserting this ansatz in Eq. �1� and keeping only
terms that are linear in the external fields, one obtains the
linearized Boltzmann equation22 which reads

−
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��rT + e�E −
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e
�r���

= − � �fk

�t
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scatt
+ vk · �rgk +

e

�
�vk � H� · �kgk. �2�

The second approximation has to do with the form of the
scattering term. The simplest approach is to introduce a re-
laxation time into the formalism. This is done by considering
the approximation

− � �fk

�t
�

scatt
→

gk

�k
, �3�

where �k is the relaxation time, assumed to be momentum
dependent. Its momentum dependence will be determined
phenomenologically in such way that the dependence of the
conductivity on the electronic density agrees with the experi-
mental data. The Boltzmann equation is certainly not valid at
the Dirac point, but since many experiments are done at fi-
nite carrier density, controlled by an external gate voltage,
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we expect the Boltzmann equation to give reliable results
when an appropriate form for �k is used.

Let us compute the Boltzmann relaxation time �k, for two
different scattering potentials: �i� a delta function potential,
and �ii� a screened Coulomb potential. The relaxation time �k
is defined as �k is the momentum�

1

�k
= NiA� d	� k�dk�

�2
�2S�k,k���1 − cos 	� , �4�

where Ni is the total number of impurities in the sample, A is
the area of the graphene sheet, and the transition rate S�k ,k��
is given by

S�k,k�� =
2


�
	Hk�,k	2

1

vF�
��k� − k� , �5�

where the vF�k is the dispersion of Dirac fermions in
graphene and Hk�,k is defined as

Hk�,k =� d2r�k�
* �r�US�r��k�r� , �6�

with US�r� the scattering potential and �k�r� the electronic
spinor wave function of a clean graphene sheet. If the poten-
tial is short range,18 of the form US=v0��r�, the Boltzmann
relaxation time turns out to be

�k =
4�2vF

niv0
2

1

k
, �7�

where ni is the impurity concentration per unit area. On the
other hand, if the potential is the screened Coulomb poten-
tial, given by US�r�=eQe−r/LD / �4
�0�r� for charged impuri-
ties of charge Q, the relaxation time is given by

1

�k
=

u0
2

vF�2k
�1 −


1 + 4k2LD
2 − 1

2k2LD
2 � , �8�

where u0
2=niQ

2e2 / �16�0
2�2�. In the limit LD→, one obtains

�k =
vF�2

u0
2 k . �9�

As we argue below, the phenomenology of Dirac fermions
implies that the scattering in graphene must be of the form in
Eq. �9�. In what follows, we explore the consequences of this
type of relaxation time.

At zero temperature, the chemical potential � �Fermi en-
ergy� is related to the density of charge carriers �see Fig. 1�
in the conduction band by n=
−1�� /vF��2. In what follows,
we give the expressions for the transport coefficients in terms
of �.

Within the relaxation time approximation, the solution of
the linearized Boltzmann equation when an electric field is
applied to the sample is

gk = −
�f0��k�

��k
e�kvk · E , �10�

and the electric current reads

J =
4

A
�

k
evkgk. �11�

Since, at low temperature, the relation −f0��k� /��k

→���−vF�k� holds, one can easily see that, assuming
Eq. �9� where k is measured relative to the Dirac point, the
electronic conductivity turns out to be

�xx = 2
e2

h

�2

u0
2 = 2

e2

h


��vF�2

u0
2 n , �12�

where u0 is the strength of the scattering potential �with di-
mensions of energy�. The electronic conductivity depends
linearly on the particle density, in agreement with the experi-
mental data,1,2 and as was first noted by Nomura and Mac-
Donald in Ref. 19. The form used for �k is thus imposed both
by dimensional analysis and by phenomenology. We note
that for short range scatterers,17,18 �k�k−1, leading to a dc
conductivity that is independent of the density and therefore
in disagreement with the experiments.

Having settled the need for Eq. �9�, we now proceed to
determine the density dependence of the other transport co-
efficients. We stress that the Coulomb potential is one pos-
sible mechanism of producing a scattering rate of the form in
Eq. �9� but we do not exclude that other mechanisms may
exist.

Now, we want to obtain the electronic density dependence
of the optical conductivity of a doped graphene plane. Since
the Boltzmann approach does not include interband transi-
tions, the expressions obtained below are only valid as long
as ����, where the above-mentioned transitions are
blocked by the Pauli principle.

Our aim is to obtain the response of the electronic system
to an external electric field of the form

ζ

Filled
band

Energy

FIG. 1. �Color online� Dirac cones in graphene in a situation of
finite electronic density. The valence band is inert as long as the
energy excitation processes are smaller than � �the Fermi energy�.
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E = E0ei�q·r−�t�. �13�

The Boltzmann equation has, for this problem, the form

−
�f0��k�

��k
evk · E =

gk

�k
+ vk · �rgk +

�gk

�t
. �14�

The solution of the linearized Boltzmann equation �Eq. �14�
is well known,22 reading

gk = −
�f0��k�

��k
�q��,k�ei�q·r−�t�, �15�

with

�q��,k� =
e�kvk · E0

1 − i��k + i�kq · vk
. �16�

The Fourier component J�� ,q� of the current is given by

J��,q� =
1


2 � d2kevk�q��,k��−
�f0��k�

��k
� , �17�

leading in the long-wavelength limit to an optical conductiv-
ity of the form

�xx��� = 2
e2

h

�2

u0
2

1 + i���/u0
2

1 + ����/u0
2�2 . �18�

What should be stressed about Eq. �18� is its density depen-
dence. Since the electronic density is proportional to �2, it
should be possible to collapse the optical conductivity curves
for different densities in a representation of �xx��� /n versus
�
n. This prediction can be easily confirmed by reflectance
measurements in graphene for frequencies below �. More-
over, since the electronic density induced by a gate voltage
Vg is proportional to the gate voltage by the relation n

=
��0

te Vg, where t is the thickness of the silicon oxide substrate,
one obtains a collapse of the optical conductivity for differ-
ent gate voltages by representing �xx��� /Vg versus �
Vg.

Our next goal is to obtain the density dependence of the
thermal conductivity and of the thermopower. For a discus-
sion within the Kubo formalism, see Ref. 23.

In the presence of a temperature gradient in the sample,
the linearized Boltzmann equation has the form

−
�f0��k�

��k
vk · ��−

�k − �

T
��rT + eEobs� =

gk

�k
, �19�

where the measured electric field is given by Eobs=E
−�r� /e. In this situation, we have, in addition to the electric
current, a heat current �flux of heat per unit of area� given by

U =
4

A
�

k
vk��k − ��gk. �20�

Both the electric and heat currents can be written as22

J = e2K0 · Eobs +
e

T
K1 · �− �rT� ,

�21�

U = eK1 · Eobs +
1

T
K2 · �− �rT� ,

where Ki, i=0,1 ,2 are second order tensors. In this problem,
the tensors are diagonal, i.e., Ki=1ki, and by a well estab-
lished procedure,22 one obtains

k0 =
2

h

�2

u0
2 , �22�

k1 =
4

3


2

h
�kBT�2 �

u0
2 , �23�

k2 =
2

3


2

h
�kBT�2 �2

u0
2 . �24�

From the results �22�–�24�, it is easy to derive both the ther-
mal conductivity � and the thermopower Q. These are given
by

� =
1

T
�2

3


2

h
�kBT�2 �2

u0
2 −

8

9


4

h
�kBT�4 1

u0
2� �25�

and

Q =
1

eT

2

3


2

�
�kBT�2. �26�

Again, what should be emphasized in these results is the
dependence of both � and Q on the particle density, which is
different from that of the usual two dimensional electron gas.
Since it is experimentally feasible to control the carrier den-
sity in the graphene, plane1 it is possible to check experimen-
tally the dependence of the transport coefficients on the par-
ticle density.

In what follows, we prove that the scattering rate �Eq. �9�
leads to a classical �low field� Hall coefficient R given by

R =
1

en
, �27�

in agreement with the experiments. For a discussion within
the Kubo formalism, see Ref. 24.

The linearized Boltzmann equation in the presence of a
static magnetic field, perpendicular to the graphene plane
H= �0,0 ,B�, is given by

�−
�f��k�

��k
�eE · vk =

gk

�k
+

e

�
�vk � H� · �kgk. �28�

The determination of gk becomes quite simple by realizing
that the right-hand side of Eq. �28� �after multiplication by
�k� is the first order expansion of

gk+�k�e/���vk�H�. �29�

Since vk=vFk /k and �k is given by Eq. �9�, Eq. �29� can be
rewritten as gk+��evF/���k�H�, where �=vF�2u0

−2. We now de-
fine a new momentum variable k� given by
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k� = k +
�evF

�
�k � H� . �30�

Solving Eq. �30� for k as a function of k� and making the
left-hand side of Eq. �28� equal to gk�, one obtains the solu-
tion

g�k� = �−
�f��k�

��k
�evF�k · �E − �evFH � E/��/�1 + a2� ,

�31�

with a=vF
2�2 / �lB

2u0
2� and lB

2 =� / �eB�.
Knowing the solution to g�k�, the electric current is easily

computed giving

J =
�xx

1 + a2 �E − aẑ � E� , �32�

where ẑ is a unit vector along the z direction. The conduc-
tivity tensor � is therefore given by

� =
�xx

1 + a2� 1 a

− a 1
� . �33�

In the traditional Hall setup, one has Jy =0, leading to

Jx = �xxEx, �34�

meaning that there is no magnetoresistance, and

Ey =

vF

2�2

�2e
HJx =

1

ne
HJx, �35�

which produces an R Hall constant given by Eq. �27�. This
result is in agreement with the experimental findings in the
low field Hall effect.1,2

In this Brief Report, we derived, using a semiclassical
approach, the electronic density dependence of the dc con-
ductivity, the optical conductivity, the thermal conductivity,
the thermopower, and the classical �low field� Hall effect.
Our proposed expressions are based on a phenomenological
equation for the scattering rate of the Dirac electrons. Some
of our findings have already received experimental confirma-
tion; the results for the thermal properties and for the optical
conductivity can be tested experimentally. The Boltzmann
approach cannot explain the universal conductivity value oc-
curring for n→0, that is, our approach breaks down at the
neutrality point.
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