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A theory of scattering of massive chiral fermions in bilayer graphene by radial symmetric potential is
developed. It is shown that in the case when the electron wavelength is much larger than the radius of the
potential the scattering cross section is proportional to the electron wavelength. This leads to the mobility
independent on the electron concentration. In contrast with the case of single-layer, neutral and charged defects
are, in general, equally relevant for the resistivity of the bilayer graphene.
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Bilayer graphene, that is, a two-dimensional allotrope of
carbon formed by two graphite atomic sheets,1 is a subject of
much interest now2–12 motivated by the anomalous character
of the quantum Hall effect1,2 and electron transmission
through potential barriers3 due to electron chirality and the
Berry phase 2�, the possible use of the bilayer graphene as a
tunable-gap semiconductor,6 and its other unusual physical
properties �for review, see Ref. 10�. At the same time, it has
been less studied than the single-layer graphene.13,14 In par-
ticular, almost nothing is known about mechanisms of scat-
tering determining the electron transport in the bilayer
graphene. Here we consider this problem theoretically. It will
be shown that for any kind of point defects with small
enough concentration their contribution in the resistivity is
inversely proportional to the charge carrier concentration re-
sulting in the concentration-independent electron mobility. In
a framework of perturbation theory, this result has been ob-
tained earlier in Ref. 5 �see their Eq. �52��; we have gener-
alized it to a case of a strong impurity potential. This situa-
tion is essentially different from the single-layer case when
the scattering by Coulomb potential of charge impurities
leads to the concentration-independent mobility whereas the
short-range scattering centers are almost irrelevant.15–18

The bilayer graphene in a simplest approximation can be
considered as a zero-gap semiconductor with parabolic
touching of the electron and hole bands described by the
single-particle Hamiltonian1,2,10

H = � 0 − �px − ipy�2/2m

− �px + ipy�2/2m 0
� , �1�

where pi=−i�� /�xi are electron momenta operators and
m�0.054me is the effective mass, me being the free-electron
mass. This description is accurate at the energy scale larger
than few meV, otherwise a more complicated picture includ-
ing trigonal warping takes place; we will restrict ourselves
only by the case of not too small doping when the approxi-
mate Hamiltonian �1� works. Two components of the wave
function are originated from crystallographic structure of
graphite sheets with two carbon atoms in the sheet per el-
ementary cell. There are two touching points per Brillouin
zone, K and K�. For smooth enough external potential, no
Umklapp processes between these points are allowed and
thus they can be considered independently.

The Fourier component of the impurity potential with di-
mensionless charge Z at small enough wave vector equals

V�q� =
2�Ze2

��q + ��
, �2�

where �=2�e2N�EF� /� is the inverse screening radius,
��2.5 is the dielectric constant due to quartz substrate, and
N�EF� is the density of states at the Fermi energy EF.15,16 In
the model �1� �=4me2 /�2�, where we take into account con-
tributions from two spin projections and two valleys. Due to
the smallness of the effective mass the screening radius is 4.5
times larger than the nearest-neighbor interatomic distances
which makes the single valley approximation accurate
enough. At the same time, for any reasonable doping the
Fermi wave vector kF�� so one can assume that the elec-
tron wavelength is much larger than the scattering potential
radius.

Let us consider the case of small concentration of point
defects �to be specific, we will call them impurities� with the
concentration nimp and the angle-dependent scattering cross-
section ����. Then the defect contribution to the resistivity �
reads19,20

� =
2

e2vF
2N�EF�

1

	�kF�
,

1

	�kF�
= nimpvF�

0

2�

d�
d����

d�
�1 − cos �� , �3�

where vF=�kF /m is the Fermi velocity and 	 is the mean-
free-path time. Note that the product vFN�EF� is proportional
to kF=	�n �n is the electron concentration� for both single-
layer and bilayer graphene, as well as for conventional two-
dimensional electron gas and thus any essential difference in
their transport properties can be related only to the behavior
of the scattering cross section.

The expression �3� is derived from the standard Boltz-
mann equation and does not take into account localization
�or antilocalization� corrections which can change the results
drastically in the regime of small doping when the resistivity
is of order of h /e2 �Refs. 21–24� �recently the problem of
weak localization has been considered also for the bilayer
graphene12�. We will restrict ourselves only to the case
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�
h /e2; formal derivation of the Boltzmann equation for
graphene in this regime will be published elsewhere.25

To determine the scattering cross section one has to solve
the two-dimensional Schrödinger equation with the Hamil-
tonian �1� plus impurity potential V�r� which, after simple
manipulations �see Ref. 9� can be written in the form

� d

dr
−

l + 1

r
�� d

dr
−

l

r
�gl = �k2 −

2mV

�2 � f l,

� d

dr
+

l + 1

r
�� d

dr
+

l + 2

r
� f l = �k2 −

2mV

�2 �gl, �4�

where l=0, ±1, . . ., is the angular-momentum quantum
number, gl�r�eil� and f l�r�ei�l+2�� are components of the
pseudospinor wave function, r and � are polar coordinates;
to be specific we will consider the case of electrons
E=�2k2 /2m�0.

Modifying a standard scattering theory26 for the two-
dimensional case one should try the solutions of Eq. �4� out-
side the region of action of the potential in the form

gl�r� = A�Jl�kr� + tlHl
�1��kr� + clKl�kr�� ,

f l�r� = A�Jl+2�kr� + tlHl+2
�1� �kr� + clKl+2�kr�� , �5�

where the terms proportional to Bessel �Hankel� functions
describe incident �scattering� waves; the terms proportional
to the Macdonald functions are analogous to the exponen-
tially decaying solutions in the case of potential barrier.3

To calculate the scattering cross section one has to find
the current operator j= 1

�
�H
�k and its normal component

jn= jx cos �+ jy sin �. The result reads

jn = −
�k

m
� 0 e−2i�

e2i� 0
� . �6�

The Bessel and Hankel functions in Eq. �5� correspond to
the expansion of the incident plane wave and scattered radial
wave, respectively. Calculating the average value of the cur-
rent operator �6� over the scattered wave we find for the
cross section

d����
d�

=
2

�k

 �

l=−





tle
il�
2

, �7�

which is formally the same expression as for the case of
single-layer graphene.18

The Schrödinger equation �4� has as important symmetry
with respect to replacement f ↔g, l↔−l−2 which means
tl= t−l−2. This is the consequence of chiral properties of elec-
trons with the Berry phase 2�; a similar identity for the
single-layer case with the Berry phase � reads18 tl= t−l−1.
Thus, Eq. �7� can be rewritten in the form

d����
d�

=
2

�k

t−1 + 2�

l=0




tl cos��l + 1���
2

. �8�

To understand the behavior of the scattering parameters
tl�k� in the interesting limit k→0 one can consider the sim-
plest case of the potential V�r�=V0 at r�a and V�r�=0 at

r�a. Strictly speaking, a sharp jump of the potential with
atomic scale is beyond applicability of our approach since it
will induce Umklapp processes between the valleys. We as-
sume that the boundary is smooth enough in comparison
with the interatomic distance but much thinner than the elec-
tron wavelength �see Ref. 3�. The solution outside the poten-
tial well has the form �5�, with A=1 and the solution for
r�a regular at r=0 can be tried as

gl�r� = �lJl�qr� + �lIl�qr� ,

f l�r� = ���lJl+2�qr� + �lIl+2�qr�� , �9�

where �=sgn�E−V0� and q=	2m�E−V0� /� is the wave vec-
tor inside the well. Using boundary conditions of continuity
of the wave functions and their first derivatives at r=a one
can find the scattering parameters tl as well as cl, �l and �l
�cf. the case of one-dimensional potential3�.

For the case l=−1 taking into account identities K1�z�
=K−1�z�, I1�z�= I−1�z�, J1�z�=−J−1�z�, and H1

�1��z�=−H−1
�1��z�

one can prove immediately that c−1=0 and t−1� �ka�2 at
ka→0 so as we will see this contribution in the scattering
cross section is negligible. Using asymptotic of the Mac-
donald and Hankel functions for l�2, z→0,

Kl�z� �
1

2
�2

z
�l

�l − 1�! −
1

2
�2

z
�l−2

�l − 2�!,

Hl
�1��z� � −

i

�
�2

z
�l

�l − 1�! −
i

�
�2

z
�l−2

�l − 2�!, �10�

one can prove that for l�1 and ka→0 both tl and cl are, at
least, of order of �ka�2l or smaller and thus only s channel
�l=0� contributes in the scattering cross section so that Eq.
�8� can be rewritten as

d����
d�

=
8

�k
�t0�k��2 cos2 � . �11�

For the single-layer graphene, �����cos2 � /2 and the back
scattering is forbidden. On the contrary, for the case of bi-
layer there is a strong suppression of the scattering at
��� /2.

For the case l=0 the wave functions outside the well �5�
has the asymptotic form

gl�r� = 1 + t0 + 	0�ln
kr

2
+ �� + O��kr�2 ln kr� ,

f l�r� = −
2i

�
t0 − 	0� 2

�kr�2 −
1

2
� + O��kr�2 ln kr� , �12�

where ��0.577¯ is the Euler constant, 	0= 2i
� t0−c0. Using

this we find that t0�k� tends to a finite complex number
��t0�k��2�1� at k→0. Substituting this into Eqs. �11� and �3�
one can find an estimation for the resistivity �
��h /4e2�nimp/n. It seems to be in a qualitative agreement
with the dependence of the resistance of bilayer graphene on
the gate voltage measured in Ref. 11. The same dependence
of the resistivity on the charge carrier concentration
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takes place for the single-layer graphene with Coulomb
scattering centers15 whereas the point defects with short-
range potential give much smaller resistivity18 of order of
���h /4e2�nimpa

2. For the case of bilayer, on the contrary,
there is, in general, no essential difference between charge
impurities and neutral point defects such as, say, atomic-
scale roughness of the substrate.

It is interesting to mention that the scattering by the short-
range potential in the case of bilayer graphene is more effi-
cient than not only in the case of the single-layer graphene
but also for the conventional nonrelativistic two-dimensional
electron gas where t0�k��1/ ln�ka� at ka→0 and thus18,27,28

� �
h

4e2

nimp

n ln2�kFa�
. �13�

To summarize, we have proven that the scattering by
point defects in bilayer graphene is more efficient than both
in single-layer graphene and in conventional electron gas.

The difference with the single-layer case is just due to van-
ishing density of states for the massless Dirac fermions
whereas for the bilayer graphene �as well as for the conven-
tional electron gas� it is constant. However, for the two-
dimensional nonrelativistic electrons an arbitrary weak po-
tential leads to formation of a bound state in the gap29 which
results in the logarithmic singularity of the scattering ampli-
tude at small energies �see Eq. �13��. In the case of the bi-
layer, there is no gap and thus no localized states. As a result,
the resistivity should be just inversely proportional to the
Fermi energy or, equivalently, to the charge carrier concen-
trations. This seems to be in agreement with the recent ex-
perimental data.11
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