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Spin-orbit splitting in an anisotropic two-dimensional electron gas
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In the conventional Rashba model for an isotropic two-dimensional electron gas (2DEG), the electrons are
spin-orbit split by a structural inversion asymmetry (SIA) perpendicular to the confinement plane. An addi-
tional SIA within the confinement plane leads to another contribution to the spin-orbit interaction which is
investigated by means of a nearly-free electron model. The interplay of both contributions manifests itself as an
enhanced splitting in the anisotropic 2DEG, as compared to the isotropic case. Further, the spin polarization of
the electronic states is rotated out of the confinement plane. Both findings corroborate recent experimental and
theoretical results for the ordered surface alloys Bi/Ag(111) and Pb/Ag(111).
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At interfaces, inversion symmetry is naturally broken al-
though the respective bulk systems might be inversion in-
variant. For such a structural inversion asymmetry (SIA),
electronic states localized at the interface are split by spin-
orbit coupling, in analogy to the Dresselhaus effect' (bulk
inversion asymmetry). A prominent example is a two-
dimensional electron gas (2DEG) which is typically formed
in a semiconductor heterojunction.>* Electrons confined to
the band-bending region’ are subject to an electrostatic field,
the latter being described as a potential gradient normal to
the interface. As a consequence, the potential at the interface
is asymmetric.%” The resulting splitting, known as Rashba-
Bychkov effect,® shows up as a beating pattern in
Shubnikov-de Haas oscillations.’

Another noted example for a spin-orbit split 2DEG is the
L-gap surface state at the Au(111) surface.'®!' Here, the
structural inversion asymmetry is due to the confinement of
the surface state on one side by the surface barrier and on the
other side by a gap in the bulk-band structure. The L-gap
surface state is very well described within the model of an
isotropic 2DEG. The parabolic dispersions, the circular mo-
mentum distributions (MDs), and the complete in-plane spin
polarization—all characteristic features of that model—are
found in experiments.'>>  First-principles electronic-
structure calculations agree with the experimental findings in
general,'® except for a small normal component of the spin
polarization P (|P.|<1.4%)."” It was shown that P, depends
on the corrugation of the surface barrier, thus suggesting an
influence of the crystal potential on P.

In contrast to Au(111), low-index Bi surfaces are highly
anisotropic. As a result, their surface states exhibit a strong
[stronger than in Au(111)] and highly anisotropic spin-orbit
splitting, as was shown experimentally and theoretically.'®
This finding is further supported by an investigation of ultra-
thin Bi(111) films.'?

In a recent experiment on the ordered surface alloy
Bi/Ag(111), a Bi-induced surface state shows an unexpect-
edly large spin-orbit splitting? [even larger than that at low-
index Bi surfaces; similar results were obtained for
Pb/Ag(111) (Ref. 21)]. This striking effect was accompanied
by a deviation from a parabolic dispersion and by a momen-
tum distribution with sixfold rotational symmetry (in agree-
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ment with surface symmetry). The experimental results are
consistent with first-principles calculations.?>?3 The latter
also showed a considerable P, (|P,|<10%).?® In contrast to
those for an isotropic 2DEG, these findings lend themselves
support for an explanation in terms of a significant influence
of the surface potential, in particular, of its in-plane gradient.

A breaking of the in-plane inversion symmetry results in
an asymmetric in-plane component of the potential gradient.
The latter produces—in the rest frame of the electron—an
effective magnetic field along the surface normal. The latter
leads then to an enhanced splitting and to a nonzero z com-
ponent of the spin polarization.

A cast iron proof of this proposed mechanism for the en-
hanced spin-orbit splitting in Bi/Ag(111), however, is hardly
possible by means of first-principles calculations. Therefore,
a model of a 2DEG is needed which, on one hand, goes
beyond the standard Rashba-Bychkov model (which is
solved analytically, e.g., Ref. 24) and, on the other hand, is
much simpler than advanced ab initio electronic-structure
calculations. To fill this gap, we present in this Brief Report
a nearly-free electron (NFE) model® of spin-orbit effects in a
2DEG which includes anisotropy within the confinement
plane. In a NFE model, parameters can be chosen freely and
its ingredients can be easily switched on or off. These fea-
tures allow to verify that a large spin-orbit splitting is medi-
ated by the in-plane gradient of the anisotropic crystal poten-
tial, hence explaining the findings for Bi/Ag(111) and
Pb/Ag(111).

The standard model for the Rashba-Bychkov effect in an
isotropic 2DEG assumes only the SIA perpendicular to the
confinement plane (xy plane). The Pauli spin-orbit interac-
tion

. .
H50=F0"(VV><P) (1)
C

[c is the speed of light, o=(0,,0,,0,) is the vector of the
Pauli matrices, and p=(p,,p,,0) is the momentum operator]
results in the following for the potential gradient VVle, in
the Rashba terms:>!
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[:ISO = a(_ Uxﬁy + O'yﬁx) . (2)
As a consequence, the parabolic bands become split,

k2
E*(k) = Z_m* + a'|k

o k=(kpky). 3)

The size of the splitting is specified by the Rashba parameter
a (which is proportional to the potential gradient’s modulus;
m* is the effective mass) and increases with wave vector k.
The momentum distributions consist of concentric circles.
Further, the electronic states are completely spin polarized
within the xy plane, with the spin polarization P* L k. De-
composing P* into a tangential, a radial, and a normal com-
ponent (with respect to k and e.), this implies P}, (k)==+1,
P 4(k)=0, and PZ(k)=0.

To mimic an anisotropy within the confinement plane, the
above standard model is enhanced by an in-plane potential V'
which shows an in-plane SIA [i.e., V(p) # V(-p), p=(x,y)].
An in-plane SIA shows up, for example, at fec(111) surfaces,
due to their ABC stacking sequence, and also for the ordered
surface alloy Bi/Ag(111). We note in passing that the Bi-
induced surface state is strongly confined to the outermost
layer of the Bi/Ag(111) surface.” It appears therefore ad-
equate to confine the 2DEG strictly to the xy plane (no ex-
tension in the z direction).

The standard model requires two ingredients, namely, a
strong atomic spin-orbit coupling and a perpendicular struc-
tural inversion asymmetry. The latter can be viewed as being
induced by a surface-potential barrier. However, the slope of
the latter (i.e., dV/dz) is by far too small to explain the ob-
served splittings, even for Au(111).>* Consequently, the
Rashba parameter « comprises the strength of both the
atomic and the perpendicular-SIA contributions to the spin-
orbit coupling (SOC).?2° With this in mind, the SOC con-
tribution arising from the in-plane SIA has to be scaled by
the atomic contribution because the NFE potential V alone is
too small to produce a significant splitting.

Within a two-dimensional (2D) NFE model, V(p) and the
wave functions are expanded into plane waves. The secular
equation resulting from the Schrodinger equation, including
the SOC terms due to the perpendicular and the in-plane
SIA, is solved numerically.

The effect of an in-plane SIA on dispersion and spin po-
larization within the anisotropic Rashba model is considered
in the following for a 2D hexagonal lattice (with point group
3m due to the in-plane SIA). A reasonable representation of
the experimental dispersion of the surface state in
Bi/Ag(111) (Ref. 20) was obtained for m*=-0.4 and
@=0.392 eV A, a value close to that for Au(111).!" Only the
Fourier coefficients of the first shell of reciprocal lattice
vectors g were considered to be nonzero [Vy=-6.6 eV and
Ve==i5 eV (Ref. 32) for [g[=1.47 A-!; lattice constant of
2.86 A). The SOC terms due to the in-plane SIA are scaled
to the same strength of that for the perpendicular SIA, in
accordance with the above consideration.

The spin-orbit split bands disperse downward due to the
negative effective mass m* (Fig. 1). For small |k|, they fol-
low the parabolic dispersion of the isotropic 2DEG. With
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FIG. 1. (Color online) Dispersion of spin-orbit split bands in an
anisotropic two-dimensional electron gas. The red (light gray) and
blue (dark gray) symbols are for the wave vector k along e, and e,,
respectively. y

increasing |k|, however, the bands deviate sizably from the
parabolic dispersion. Due to the in-plane SIA, the dispersion
is anisotropic. The band structure for k along e, (within a
mirror plane of the system) differs significantly from that for
k along e, (perpendicular to a mirror plane), especially at
larger binding energies or, equivalently, at larger |k|. As a
result, the momentum distribution at larger binding energies
should deviate considerably from a circular shape, while for
small binding energies, they are expected to be almost circu-
lar.

The latter anticipation is exemplified by spin-resolved
momentum distributions at E=—0.5 eV (left column in Fig.
2). That of the inner branch is almost circular but that of the
outer clearly shows a hexagonal shape [with rounded cor-
ners, Fig. 2(b)]. The tangential components P, of the spin

tan

polarizations are dominating [0.80 <Py, |<0.97; Fig. 2(a)],
as for the isotropic case (for which P, ==+1). The radial
components are with 0.00 <P, ;| <0.04, also close to that of
the isotropic 2DEG (for which P}, =0). The most striking
difference to the isotropic case is the sizable normal compo-
nent (0.00=<|P%/<0.41) which reflects the symmetry of the
potential V [Fig. 2(c)]. Note that |PZ| is largest and |Pj| is
smallest at the corners of the hexagon, that is, in regions
where the MDs differ most from a circle. Due to
time-reversal symmetry, the system is nonmagnetic, i.e.,
P*(k)=—P*(-k).

At E=-1.0 eV, the effect of the in-plane SIA shows up
even more pronounced (right column in Fig. 2) because its
SOC matrix elements increase with |k|. At this energy, even
the inner branch clearly exhibits a hexagonal shape while the
outer branch displays a blossomlike shape. The maximum
|Pp,| is 0.91 and the minimum is 0.30. P, is comparatively
small (less than 0.13 in absolute value), and |P,| of the outer
branch is 0.88 at maximum.

Comparing the momentum distributions of the anisotropic
model with that of a first-principles calculation (Fig. (3) in
Ref. 23), one finds that all the main aspects are reproduced
by the model. Quantitative agreement, however, cannot be
expected due to the simplicity of the model.

In the following, we will provide evidence that the inter-
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FIG. 2. (Color online) Spin-resolved momentum distributions of
an anisotropic two-dimensional electron gas at E=—0.5 eV (left col-
umn) and E=-1.0 eV (right column). The symbol sizes indicate the
moduli of spin-polarization components Py, [top row, panels (a)
and (d)], P, [center row, panels (b) and (e)], and P, [bottom row,
panels (c) and (f)]. They are comparable within this figure. Blue
(light gray) and red (dark gray) symbols are for negative and posi-
tive values, respectively.

play of perpendicular and in-plane SIAs is the origin of the
enhanced splitting in Bi/Ag(111) (Fig. 3). For this purpose,
we switch on and off individually the SOC contributions
of both SIAs. For only the perpendicular SIA being
present (green or medium gray), there is a splitting of
Ak=0.025 A=, which is close to the value of Au(111).

For only the in-plane SIA being present and k being per-
pendicular to a mirror plane (e.g., klle,; red or light gray in
Fig. 3), the two bands exhibit an increase of the splitting with
increasing |k|. Note that the splitting is much less than that
induced by the perpendicular SIA alone. If k lies within a
mirror plane of the system, there is no splitting at all because
of the lacking in-plane SIA in this case (not shown).

A strongly enhanced splitting is observed, however, if
both SIAs are present (blue or dark gray in Fig. 3), regardless
of the direction of k. In this case, Ak=0.108 A~! is about
four times larger than for the perpendicular SIA being
present solely. It appears that the upper (lower) band origi-
nates from the corresponding red (or light gray) band by an
upward (downward) shift in energy. This finding is in line
with the picture of a k-dependent Zeeman splitting which is
due to an effective magnetic field along e,. A closer analysis
shows that the in-plane potential V(p) leads to a nonzero P,
because it involves only spin-diagonal terms (just like a Zee-
man term Bo,). The associated matrix elements change sign
with spin, as for a magnetic field in the z direction. There-
fore, its spin-orbit contribution can be viewed as a wave-
vector-dependent effective magnetic field along e,. Its
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FIG. 3. (Color online) Effect of SIAs on the dispersion in a
two-dimensional electron gas for k along e, (perpendicular to a
mirror plane). The colors indicate the spin—orbit contributions: green
(medium gray) is for perpendicular SIAs only, red (light gray) is for
in-plane SIA only, and blue (dark gray) is for perpendicular and
in-plane SIAs. The horizontal arrows near the respective band
maxima mark the spin-orbit splitting 2Ak.

strength is proportional to the Fourier coefficients of V and
increases with |k|.

The above results substantiate a significant influence of an
in-plane SIA on both dispersion and spin polarization of an
anisotropic 2DEG. A comparison to the standard Rashba-
Bychkov model (with only perpendicular SIA) shows three
manifestations of the in-plane SIA: (i) the spin-orbit splitting
can be drastically enhanced, (i) the momentum distributions
can deviate considerably from a circular shape, and (iii) the
spin polarization of the electronic states can be rotated out of
the confinement plane.

First-principles calculations predicted a nonzero but small
P, for the L-gap surface states in Au(111).* In view of the
above picture, this can be understood as follows. The
fec(111) surface is closely packed, resulting in a small cor-
rugation and, consequently, in a small in-plane SIA. Further,
the wave function of the surface state decays slowly toward
the bulk,!” thereby “smearing out” the in-plane SIA.

In contrast to Au(111), ab initio calculations for the
(V3 X \3)R30°-Bi/Ag(111) surface alloy predict a sizable
|P,|,? indicating a strong in-plane SIA. Note that each Bi
atom is significantly relaxed toward the vacuum and is sur-
rounded by six Ag atoms in the outermost layer. Further, the
Bi-induced surface state decays rapidly toward the bulk,
making it susceptible for the in-plane SIA. The predicted P,
is clearly larger than the experimental detection limit of spin-
and angle-resolved photoelectron spectroscopy.!>?728 There-
fore, we would like to encourage experimental investigations
of the spin-resolved electronic structure of Bi/Ag(111) or
similar systems to confirm the out-of-plane rotation of P.

Recently, the enhanced splitting was related to the relax-
ation of the Bi sites.”> An outward displacement of Bi is
accompanied by adding a p, , contribution to the otherwise
sp, surface state and by an increased splitting. Since Dy
orbitals are more sensitive to an in-plane SIA than sp, orbit-
als, this finding is consistent with the explanation presented
in this Brief Report.
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An increased spin-orbit splitting was also found experi-
mentally at W(110) and Mo(110) upon Li coverage.?® It was
attributed to the conventional Rashba-Bychkov effect in in-
terplay with a strong localization of the surface states in the
surface layer due to Li adsorption [i.e., similar to
Bi/Ag(111)]. An effect of an in-plane SIA was not consid-
ered in that work. Li forms compressed (possibly disordered)
monolayers if adsorbed on W(110) or Mo(110),® which
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might induce an in-plane gradient contributing to the spin-
orbit splitting. A verification of this mechanism by means of
spin- and angle-resolved photoelectron spectroscopy or first-
principles electronic-structure calculations appears, there-
fore, desirable.

We appreciate very much fruitful discussion with Chr. Ast
(Stuttgart), M. Grioni (Lausanne), and G. Bihlmayer (Jiilich).
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