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Taking Si�111�4�1-In as a prototype reconstruction, we have examined the possibility of modifying an
adsorbate-induced reconstruction by varying the averaged lattice constant of the substrate. In the experiment,
the lattice constant of Si�111� substrate has been increased by forming a thin alloying GexSi1−x layer on
Si�111�. It has been found that this action results in removing the 4�1 reconstruction and developing a 7
�3 reconstruction, the transformation being completed when more than 0.3 ML �monolayer� of Ge has been
incorporated into the substrate. The 7�3 reconstruction has a striped-shaped structure built of double rows and
plausibly contains 0.1 ML of In and 0.65±0.04 ML of Si�Ge� atoms and, like the 4�1, demonstrates metallic
properties. The 7�3 reconstruction is not observed in “pure” In/Si�111� and In/Ge�111� systems. We believe
that the artificial variation of substrate lattice constant not only provides a possibility of examining the role of
surface stress in reconstructions but also opens a degree of freedom for engineering other types of
reconstructions.
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Starting from the early 1960s and until now, adsorbate-
induced reconstructions on the surfaces of single-crystalline
elemental semiconductors, Si and Ge, have been the object
of numerous investigations, and a great body of information
has been accumulated about them by the scientific commu-
nity. By now, more than 300 reconstructions on silicon and
about 100 reconstructions on germanium have been found,
phase diagrams have been built for many adsorbate-substrate
systems, and the structure and properties of many reconstruc-
tions have been elucidated.1,2 However, the question of
which specific parameters of the substrate surface and adsor-
bate overlayer control the structure and properties of a given
reconstruction still demands a thorough consideration. Find-
ing the answer to this question opens the possibility for the
controllable modification of the reconstructions in a desirable
way, underlining the significance of the mounting efforts in
this direction.

It is generally accepted that the formation of a particular
reconstruction is basically a result of the interplay of two
trends: �i� reducing the number of dangling �unsaturated�
bonds due to rearrangement of atoms at the surface �this
trend acts toward minimizing surface energy� and �ii� in-
creasing lattice stress induced by atom displacements �this
trend acts toward increasing surface energy�. One possible
way of altering the structure and properties of a reconstruc-
tion is to add atoms of another adsorbate. This action can
affect both trends, thus leading to various types of effects.
For example, adding Au atoms to Si�111��3��3-Ag
changes surface electronic properties,3,4 adding In atoms to
Si�111��3��3-Au eliminates the domain boundary
network,5 while adding Al atoms to the same reconstruction
produces new binary reconstructions, 3�3�3�3 and 2�2,6

and so on. Another possibility of modifying a reconstruction
is to do this by changing the averaged lattice constant of the
substrate. This action is mainly concentrated toward chang-
ing surface stress. In this Brief Report, this was done by

adding Ge atoms to the Si substrate, since Ge has the 4%
larger lattice constant compared to Si and the initial deposi-
tion of Ge on Si is displacive, which leads to the formation
of the homogeneously mixed GexSi1−x alloying layer on Si
substrates.7–11 As a prototype original reconstruction for
modification, we have chosen Si�111�4�1-In phase, which
currently attracts a great interest due to the quasi-one-
dimensional nature of its electronic properties12–16 and in-
triguing phase transition to a low-temperature 8�2
structure.17–21 We have found that upon the addition of about
0.3 ML �monolayer� of Ge �i.e., changing the substrate lattice
constant by less than 1%�, the 4�1-In reconstruction is re-
moved and a 7�3 reconstruction develops at the surface.

Our experiments were performed with Omicron scanning
tunneling microscope operated in an ultrahigh vacuum
��2.0�10−10 Torr�. Atomically clean Si�111�7�7 surfaces
were prepared in situ by flashing to 1280 °C after the
samples were first outgassed at 600 °C for several hours.
Indium was deposited from a Ta foil tube at a rate of
0.1 ML/min. Germanium was deposited from a W basket at
a rate of 0.25 ML/min. For scanning tunneling microscopy
�STM� observations, electrochemically etched tungsten tips
cleaned by in situ heating were employed. The STM images
were acquired in a constant-current mode after cooling the
sample to room temperature �RT�.

The Si�111�4�1-In reconstruction was prepared by satu-
rating adsorption of 1.0 ML of In onto the well-ordered
Si�111�7�7 substrate held at about 450 °C. Sample modi-
fication by Ge adsorption was conducted using three differ-
ent procedures. In the first procedure, Ge was deposited onto
an atomically clean Si�111�7�7 surface prior to the deposi-
tion of In. The structure of the prepared surface depends
mainly on the substrate temperature, as it controls the extent
of Ge-Si intermixing. As examples of extreme cases, Fig. 1
shows GexSi1−x�111� surfaces prepared by depositing about 1
ML of Ge onto Si�111�7�7 surfaces held at 350 and
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750 °C. The surface prepared at 350 °C �Fig. 1�a�� consists
of islands with a mixed 7�7/5�5 reconstruction residing
on the terraces covered by 7�7 reconstruction. The surface
prepared at 750 °C �Fig. 1�b�� consists of only flat terraces
with a 7�7 reconstruction. The surfaces prepared at the tem-
peratures within a 350–750 °C interval represent intermedi-
ate cases between the above extreme ones. After the
GexSi1−x�111� surface had been prepared, 1.0 ML of In was

adsorbed onto it at 450 °C. In the second procedure, Ge was
deposited onto an already prepared Si�111�4�1-In surface
at RT, and then the sample was annealed at 450 °C for
1 min. In the third procedure, Ge was deposited onto a
Si�111�4�1-In surface held at 450 °C. The surprising thing
is that for all three procedures, the results were identical,
depending solely on the amount of deposited Ge.

Figure 2 illustrates structural transformations at the sur-
face as a function of Ge coverage. When Ge coverage is
relatively low �e.g., 0.06 ML, as in Fig. 2�a��, destruction of
the original 4�1 reconstruction starts to occur at the domain

FIG. 1. 500�370 Å2 empty-state �+1.6 V� STM images of the
GexSi1−x wetting layer on Si�111� surface produced �a� by deposit-
ing 1.0 ML of Ge at 350 °C and �b� by depositing 1.0 ML of Ge at
750 °C. Insets show large-scale �2000�1500 Å2� topographic
STM images of the corresponding surfaces.

FIG. 2. 430�430 Å2 filled-state STM images illustrating struc-
tural transformations at Si�111�4�1-In surface induced by adding
�a� 0.06 ML, �b� 0.12 ML, �c� 0.25 ML, and �d� 0.35 ML of Ge.

FIG. 3. �a� 1740�900 Å2 filled-state
�−2.8 V� STM image of the surface with coexist-
ing domains of 4�1 and 7�3 reconstructions
�Ge coverage is 0.25 ML�. Inset illustrates that
seven rows of 4�1 equal in width four rows of
7�3. The number of rows �4, 8, and 12� in
7�3 domains is indicated. �b� Fragment of a sur-
face at a greater magnification. 4�1 and
7�3 unit cells are outlined. �c� Line profiles
along passes A and B in �b�, showing that period-
icity along rows for 7�3 is three times larger
than for 4�1.
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boundaries and step edges. With increasing Ge coverage
�Figs. 2�b� and 2�c��, the 4�1 destruction proceeds further
�involving regions inside the 4�1 domains�, and one can see
that a stripe-shaped structure is replacing the 4�1 recon-
struction. At about 1 /3 ML of Ge, the whole surface be-
comes occupied by another reconstruction. A further increase
in Ge coverage up to 1–2 ML does not affect the surface
structure.

Another reconstruction has a 7�3 periodicity, as illus-
trated in Fig. 3. From the STM image of the surface with the
coexisting domains of 4�1 and another reconstruction, one
can learn that the width of four rows of this reconstruction
equals the width of seven rows of a 4�1 reconstruction �see
inset of Fig. 3�a��, which means that the width of this recon-
struction row is 7a. As a result, the width of this reconstruc-
tion domain developed within an area occupied by a 4�1
domain is quantized: the number of rows is divisible by 4 �4,
8, 12, etc.�. Periodicity along the rows of the reconstruction
equals 3a, as obtained from comparison of the line-profile
scans drawn along the row of 4�1 and that of the recon-
struction �profiles A and B, respectively, in Figs. 3�b� and
3�c��.

Since the design of a structural model based solely on
STM observations seems to be very hazardous, we will limit
ourselves by considering composition and major structural
features of the 7�3 reconstruction. This is believed to pre-
serve an original 1 ML of In, since its formation procedure is
insufficient to induce a notable In desorption. Besides adsor-
bate coverage, the coverage of substrate atoms involved in
reconstruction is also an important characteristic of a recon-
struction. Note that the Si�111�4�1-In reconstruction is
known to contain 0.5 ML of Si, i.e., two additional Si atoms
per 4�1 unit cell.22 These Si atoms are arranged into zigzag
chains on top of an essentially unperturbed Si lattice.23 A 7
�3 reconstruction cannot adopt the same 0.5 ML of sub-
strate �Si and/or Ge� atoms, since the area of its unit cell
equals 21 �i.e., an odd number� of the 1�1-unit-cell areas.
Evaluation based on quantitative analysis of substrate-atom
redistribution during phase formation22,24 shows that 7�3
contains 0.65±0.04 ML of Si�Ge� atoms.

As for the structure of the 7�3 reconstruction, one can
see that it is less ordered compared to the 4�1 phase pre-
pared under similar conditions. The domain size of the
4�1 structure is usually on the order of a Si�111� terrace
width. In contrast, a typical 7�3 domain consists of several
rows whose length rarely exceeds 200 Å. In empty-state
STM images �Fig. 4�a��, one can see that the 7�3 row ac-
tually contains two rows of round-shaped protrusions. Within
the double row, the distance between neighboring protrusions
equals 3a, thus giving the 3�3 local periodicity. Along the

�11̄0� direction, the closest distance between protrusions in
the neighboring double rows equals 4a, provided that these
rows are in the same phase. �Otherwise, the protrusions in
the neighboring rows are shifted along the row by ±1a with
respect to each other�. Filled-state STM observations �Fig.
4�b�� reveal that features constituting the 7�3 reconstruc-
tion, albeit looking similar in the empty-state images, are
actually not equivalent. They show up in the filled-state im-
ages as features of three types, namely, single protrusions,
double protrusions �in two possible orientations�, and triple
protrusions.

In order to see how the structural transformation affects
the electronic properties of the surface, we have conducted
scanning tunneling spectroscopy �STS� measurements on the
4�1 and 7�3 reconstructions. These STS results are dis-
played in Fig. 5. One can see that despite a certain quantita-

single

double

triple

FIG. 4. 500�500 Å2 �a� empty-state and �b� filled-state STM
images of the 7�3 reconstruction. The lower panel illustrates STM
appearance of empty-state and filled-state features at a greater
magnification.

FIG. 5. �a� STS spectra from 4�1 �solid
circles� and 7�3 �open circles� reconstructions
in the form of �a� tunneling current I versus bias
voltage V and �b� logarithmic derivative
�dI /dV� / �I /V� versus electron energy.
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tive difference �density of states for 4�1 is systematically
lower�, both reconstructions demonstrate a clear metallic be-
havior. Thus, taking into account that 7�3 reconstruction
has a metallic nature and stripe-shaped structure �just as
4�1 phase�, one could expect to observe a phase transition
from 7�3 to another structure at low temperatures �by anal-
ogy with the 4�1↔8�2 transition�.

In conclusion, we have demonstrated the possibility of
modifying adsorbate-induced reconstructions by varying the
average lattice constant of the substrates. In the experiment,
by adding Ge atoms to Si�111�, the In-induced 4�1 recon-
struction has been transformed to the 7�3 one. Transforma-
tion is completed when about 1 /3 ML of Ge has been added.
Assuming that the Ge is dissolved in the top Si�111� bilayer,
one gets an estimate for the average increase of the substrate
lattice constant of about 0.07%. At first glance, this value
might look too small to induce such a dramatic change in the
surface structure. However, we could refer to the result of a
theoretical study,25 which shows that compression of the ger-

manium surface leads to the transformation of the Ge�111�
surface from its natural c�2�8� structure to a 7�7 DAS
structure associated with a Si�111� surface at only �1.5% of
the lattice contraction. It is worth noting that the observed
phenomenon is not limited by the 4�1-In reconstruction.
For example, we have found that �3��3−In transforms un-
der similar conditions into a �21��21 reconstruction. Note
that these reconstructions are not observed in “pure”
In/Si�111� �Ref. 26� and In/Ge�111� �Refs. 27–29� systems.
Thus, this transformation technique not only provides a pos-
sibility of examining the role of surface stress in reconstruc-
tion formation but also opens another degree of freedom for
engineering other types of reconstructions.
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