
Strength of dipolar backflow patterns around slow protons
in three- and two-dimensional electron gases

R. Vincent,1 I. Nagy,2,1 and E. Zaremba3

1Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián, Spain
2Department of Theoretical Physics, Institute of Physics, Technical University of Budapest, H-1521 Budapest, Hungary

3Department of Physics, Queen’s University, Kingston, Ontario, Canada K7L 3N6
�Received 26 March 2007; revised manuscript received 25 May 2007; published 1 August 2007�

The familiar dipolar backflow in an electron gas around a slowly moving massive impurity represents, in
linear response, the averaged induced current far from the impurity and is proportional to the density response
function and the forward scattering amplitude within the Born approximation. Here, we calculate the strength
of the dipolar density modulation around a slow proton in three- and two-dimensional paramagnetic electron
gases, beyond the perturbative linear-response treatment, by using scattering phase shifts at the Fermi energy
which satisfy the Friedel-sum rule. These are determined by solving self-consistently the ground-state Kohn-
Sham equations for screening. A sign-changing effect, as a function of the electron gas density, is found in the
strength in both dimensions. Using the self-consistent phase shifts, a recently proposed expression for the
so-called direct charge in three-dimensional electromigration is also investigated.
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I. INTRODUCTION AND MOTIVATION

In linear-response theory,1 the strength of the dipolar
backflow around a slowly moving impurity is proportional
with the Fourier transform of the electron-impurity interac-
tion at zero momentum, i.e., with the forward limit of the
two-body scattering amplitude treated in first-order Born ap-
proximation. In the charged-impurity case, it is, therefore,
proportional with Z due to complete dielectric screening of a
point charge �Z� in a metallic environment. The dielectric
description corresponds, in the case of a heavy charged par-
ticle, to the linearized limit �Z→0� of a self-consistent-field
treatment.2 Such a treatment rests on the independent particle
picture, in which the screening can immediately be seen to
be expressible in terms of quantum mechanics of scattering
of a single electron from an effective potential �Vef f�r�� de-
termined self-consistently. The statistical mechanics of the
system then follows2 by filling up the new set of energy
levels according to the whole Fermi distribution. These lev-
els are doubly occupied in a paramagnetic gas.

A recent reconsideration3 of the problem of backflow in
three- and two-dimensional electron gases shows that the
strength, denoted as h�D��h�1��D�+h�2��D�, of the dipolar
backflow is expressible, beyond linear-response theory, in
terms of scattering phase shifts ��m�kF�� solely at the Fermi
surface. The leading term is given by

h�1��D� =
1

�
�
l=0

�

al sin�2�l� , �1�

where al=2l+1 in 3D. In 2D, one has a0=1 and al=2 for all
l�1. The perturbatively higher-order, so-called next-to-
leading term

h�2��D� =
4

�
�
l=0

�

cl sin �l sin �l+1 sin��l − �l+1� �2�

is based on an interference between the first and next-to-
leading contributions in the outgoing waves. In Eq. �2�, cl

= �l+1�2 in 3D and cl=2l+1 in 2D. The host densities �n0�
determine kF in standard way in 3D and 2D dimensions;
kF= �3�2n0�1/3 and kF= �2�n0�1/2, respectively. Hartree
atomic units, e2=�=me=1, are used throughout this work.

To the best of our knowledge, a calculation of h�D� based
on phase shifts at kF which are obtained from the self-
consistent-field treatment is not performed yet. It is an im-
portant question, since the complete dielectric screening of
the point charge implies3 a rule with h�D�=Z, which could
give a nontrivial constraint on phase shifts �solely� at kF.
Apart from this intrinsic theoretical interest, the relevance of
a detailed study of h�D� can be motivated further by the
following observation.

If an electric field �E� is applied to a metal or semicon-
ductor, the phenomenon of electromigration4,5 may occur.
The technological importance of this current-driven phenom-
enon is in its possible failure influence, especially at
miniaturization.6 According to a recent7 derivation, which is
based also on one-electron scattering states at kF, the direct
charge �Zd� to the total force

F = �Zd + Zw�E �3�

is given �in 3D� by the following expression:

Zd =
2

�
�F0�kF� +

1

3
kF

2 d

dkF
� 1

kF
F0�kF�	
 . �4�

In this equation, 2F0�kF�=�l=0
� �2l+1�sin�2�l�kF��. There-

fore, the first term for the direct charge has the same form as
h�1��3D� in Eq. �1�. There is an agreement between theories
of electromigration that the wind �w� force ZwE is described
via the transport cross section. Thus, the electron-wind term
is at least of order of Z2. On the other hand, there are con-
ceptual uncertainties in the theoretical magnitude of the di-
rect charge.5
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II. RESULTS

We use standard local approximation local-density ap-
proximation for the exchange-correlation part in the Kohn-
Sham �orbital� approximation9 to obtain effective potentials
�Vef f�r�� at ground-state embedding conditions. This approxi-
mation treats the screening action, a fundamental property of
the electron gas, by using a grand-canonical ensemble for the
electron gas with constant chemical potential. The scattering
phase shifts generated satisfy10–12 the appropriate Friedel-
sum rules,

Z =
2

�
�
l=0

�

al�l�kF� , �5�

at self-consistency of iterations in both dimensions. The cor-
responding �negative� sums of phase shifts at k=0 cancel the
number of occupied bound states in agreement with the
Levinson’s theorem. This number depends, of course, on the
details of Vef f�r�, for example, on the input exchange-
correlation chemical potential for electron-electron interac-
tion. More importantly, a charge state and Eq. �5� are inher-
ently interconnected.3

The Friedel condition in Eq. �5� ensures the charge neu-
trality of the entire system in the presence of a static charged
impurity. It does not tell us where an extra electron is
located.13 This comes from a concrete screening calculation,
as the present one. Notice that if the screening problem were
perturbative �Z→0�, all phase shifts would be small and Eqs.
�1� and �5� would be numerically equivalent. Since Eq. �2� is
at least of order Z3 in this weak potential limit, the dipolar
backflow strength would be given by h�D��Z.

For completeness, we present in Table I self-consistent
phase shift values as a function of the density parameter rs
=�2/kF; Eq. �5� is properly satisfied at iterative convergency
in 2D. For a detailed Table in 3D, we refer to the work of
Puska and Nieminen.11 In 3D, a bound state appears at about
rs�2, which is occupied by two electrons in a paramagnetic

system. In the 2D case, the doubly occupied bound state
appears already at the rs=0 value of the density parameter.12

For related detailed mathematical investigations on the prob-
lem of bound-state appearance in 2D, we refer to Refs. 14
and 15. Note that all-electron quantities, such as the total
physical densities, are analytical �smooth� functions in our
Hartree-like mean-field treatment, even at the appearance of
a normalizable �doubly populated� bound state.16–18

Since the total screening charge must integrate to unity
according to Eq. �5� in both dimensions, the continuum states
must themselves contribute a total charge of +1 in order to
compensate for the overscreening provided by the two bound
electrons. These charge arrangements represent the ground
states in the applied effective one-electron method. The ob-
vious differences of h�D� or Zd�3D� from Eq. �5� suggest that
deviations from Z=1 �proton� are expected beyond the per-
turbative limit.

The strengths of the dipolar part, calculated by Eqs. �1�
and �2� for Z=1 in 2D by using self-consistent phase shifts,
are exhibited in Fig. 1. The open circles refer to the leading
term, Eq. �1� for h�1��2D�, while the filled ones to the com-
plete h�2D�=h�1��2D�+h�2��2D� expression. The 3D equiva-
lents, based on the corresponding self-consistent phase shifts,
are plotted on Fig. 2 for a similar range of the density pa-
rameter rs. The open squares in Fig. 2 refer to Eq. �4� for the
direct charge. As we mentioned earlier in this Brief Report,
only the leading terms �open circles� are equal in the scatter-
ing description of h�3D� and the direct charge Zd�3D�.

In our ground-state modeling, Zd�3D� becomes negative
at about rs
3, while h�3D� only at about rs
4. Clearly, the
role of the next terms, beyond the common first one, is dif-
ferent. Indeed, via the derivative term for Zd�3D�, a weighted
change in the density of states gives a strong effect already at
a relatively high density of the host system. For a free-
electron metal, Al with rs�2, the deviations from unity are
notable and the difference between h�3D� and Zd�3D� is
transparent.

We can conclude that an “effective-antiproton” nature of
the screened proton potential �with doubly populated bound

TABLE I. Phase shifts at the Fermi level �l�kF� for proton, Z=1, embedded in 2D electron gases with
selected rs values.

rs

�l�kF�

l=0 l=1 l=2 l=3 l=4 l=5 l=6

0.5 0.765577 0.165566 0.071559 0.040944 0.025981 0.018308 0.013707

1.0 1.154110 0.115585 0.032537 0.018592 0.009020 0.006952 0.004761

2.0 1.575694 −0.000683 −0.007204 0.003724 −0.002086 0.001460 0.000048

3.0 1.780856 −0.075585 −0.017898 0.000252 −0.004024 −0.000326 0.000546

4.0 1.875719 −0.116874 −0.017275 −0.005233 −0.002954 −0.004692 −0.002056

5.0 1.907727 −0.138777 −0.016339 −0.005588 −0.003475 −0.004263 0.000171

6.0 1.914537 −0.148908 −0.013374 −0.006827 −0.002840 −0.004869 0.000282

7.0 1.915041 −0.149949 −0.007571 −0.009738 0.000102 −0.003224 0.000168

8.0 1.906250 −0.151205 −0.005618 −0.012838 0.001045 −0.003853 −0.002088

9.0 1.902759 −0.145352 0.004626 −0.016408 0.002476 −0.000004 −0.001318

10.0 1.867959 −0.171308 0.034339 −0.007462 −0.003574 −0.000480 −0.000036
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and scattering states� is evident from Figs. 1 and 2, in the
density dependences of h�D� and Zd�3D�. This already hap-
pens with the leading term. The self-consistent calculations
for h�D� result in a sign-changing effect in 2D and 3D. This
statement is the main result of the present study performed
within a Kohn-Sham-type, ground-state mean-field approxi-
mation.

III. COMMENTS AND SUMMARY

In our mean-field method, where the independent elec-
trons move in a common field, we cannot �apart from the
high-density limit� satisfy a h�D�=Z constraint proposed
earlier3 as a sum rule for the scattering phase shifts at the
invariant Fermi surface. To prescribe a different charge ar-
rangement for the complete screening cloud around a proton,
we could force �by putting holes� a not population in the
Kohn-Sham bound state but this would refer, from energetic
point of view, to an excited-state configuration in our para-
magnetic electron gas. This problem and a detailed modeling
in a completely spin-polarized system, where a bound state is
populated by one electron only, are left for future consider-
ations. The form of the corresponding h�D� will not, of
course, involve a factor of 2 due to spin summation.

Finally, we outline here alternative ways for the interac-
tion of a fixed external potential with an ideal electron gas.
In many-body perturbation theory, matrix elements of the
potential which connect occupied states have no effect on
many-body wave function, since their effect cancels in a de-
terminant wave function.19 Due to this effect, one can use a
truncated effective potential which is appreciably weaker
than the original one; thus, the problem of a bound state may
not appear. However, since the truncated potential is nonlo-
cal, it would therefore, in practice, be inconvenient19 to work
with and, more importantly, a physical self-consistency be-
comes clearly nontrivial in field-theoretic methods.

A more conventional attempt based on higher-order re-

sponse functions with a linearly screened input potential
might also have relevance to the controversy found in the
present work. At the level of quadratic response ��Z2� ap-
proximation for the forward �q=0� scattering amplitude, the
h�3D�=Z still holds.17 This is due to the perfect screening at
the first-order ��Z� linear level and a complete cancellation
of two Z2-order terms in a consistent amplitude. This partial
observation is not in contradiction with the order3 of Z3 for
the h�2��3D� second term to the complete h�3D� at �Z /kF�
�1.

In summary, the strength of the dipolar backflow patterns
around slow protons in three- and two-dimensional electron
gases is calculated by using scattering phase shifts at the
Fermi level. These are obtained in a self-consistent mean-
field approximation, in which the Friedel-sum rule is satis-
fied. A sign-changing effect, as a function of the host density,
is found in this strength in both dimensions, which we at-
tribute to the doubly populated Kohn-Sham bound state.
Moreover, on the same footing, we have investigated the
magnitude of the so-called direct charge in 3D electromigra-
tion; a similar sign change is found, but at a different host
density.

We pointed out few possibilities �by discussing briefly
standard many-body methods� which might help to under-
stand, beyond simple first-order perturbation theory, the clas-
sic problem of the strength of dipolar backflow pattern
around a slow charged particle in a homogeneous electron
gas. A combination of the present results with the above-
outlined future studies could provide, in our opinion, impor-
tant additional information to the existing controversy �Zd
=1 or not�5,8,20 on the proper magnitude of a direct charge to
the total-force expression in current-driven electromigration
also. As in modern semiconductor technology, a controlled
tuning of carrier densities seems to be feasible, and the sign-
changing effect found here in the strength of the 2D dipolar
backflow may become experimentally accessible.

FIG. 2. Strengths of the dipolar backflow around a slow proton
Z=1 in a 3D gas for rs� �0.5,7�. The leading term, denoted by
h�1��3D�, and the complete expression, denoted by h�3D�, are based
on Eqs. �1� and �2� and are represented by open and filled circles,
respectively. The open squares, based on Eq. �4�, refer to the direct
charge Zd�3D�. The density parameter �rs� is calculated from the
host density as �4�rs

3 /3�=1/n0.

FIG. 1. Strengths of the dipolar backflow around a slow proton
Z=1 in a 2D gas for rs� �0.5,7�. The leading term, denoted by
h�1��2D�, and the complete expression, denoted by h�2D�, are based
on Eqs. �1� and �2� and are represented by open and filled circles,
respectively. The density parameter �rs� is calculated from the host
density as �rs

2=1/n0.
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